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Introduction: Improving swimming performance involves assessments of
biomechanical variables of the stroke, and it can be achieved using semi-
tethered swimming tests. The aim of this study was thus to investigate the
associations between load-velocity (L-V) profiles, from a semi-tethered
swimming protocol and race variables in the 100 m and 200 m freestyle events.
Methods: Eight swimmers completed a L-V profiling protocol consisting of four
sprints (25 m, 25 m, 20 m, 15 m) against increasing loads (0.1, 2.0, 4.0, 6.0 kg
respectively) with complete recovery between repetitions (>5 min). The L-V
linear regression was used to estimate maximal velocity (V0) and body mass
normalized load (rL0). Race variables such as clean swimming speed (V), stroke
rate (SR), distance per cycle (SL) and stroke index (SI) were assessed from
video analysis of 100 m and 200 m freestyle events taking place 3–4 days after
the L-V protocol.
Results: L-V results showed high levels of speed (mean ± SD: 1.87 ± 0.04 m/s)
and heavy maximal relative loads (mean ± SD: 38.5 ± 6.51 as % of body mass).
Swimmers also achieved high-level performances in the 100 m (mean ± SD
time: 51.95 ± 0.75 s) and the 200 m (mean ± SD time: 113.85 ± 2.67 s). For the
100 m events, the maximal relative load showed strong correlation with
performance (r=0.63) whereas trivial correlation was observed for the 200 m
events (r= 0.12). SR on the 100 m and the 200 m also showed very strong
association with rL0 (r=0.83) and a strong association with V0 (r= 0.68)
respectively.
Conclusion: The relationships between L-V variables and race variables depend
on the distance of the event. However, L-V variables seem to be less related to SR
and SL evolutions for the 100 m than in the 200 m event. Moreover, L-V profiles
tend to be more related to the 100 m than 200 m freestyle performance. L-V
profile should be interpreted taking into consideration the specific
physiological and biomechanical constraints of the main events of the swimmer.
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TABLE 1 Information and performance characteristics of the swimmers.

Age
(year)

Height
(cm)

Body
mass (kg)

Best all-time
performance (World
Aquatics points)

Swimmer 1 19 183 86.6 737

Swimmer 2 18 178 69.8 771

Swimmer 3 17 185 75.8 766

Swimmer 4 21 180 72.7 930

Swimmer 5 20 186 74.0 807

Swimmer 6 17 182 74.2 788

Swimmer 7 22 180 68.5 851

Swimmer 8 20 185 78.6 861
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1. Introduction

For several years now, with the help of the development of new

technologies, the number of studies related to the analysis of

competitive swimming performance has increased (1). Some of

the variables most commonly used to assess swimming

performance include stroke variables such as stroke rate (SR) and

distance per cycle (SL) (2–4). However, it is difficult for coaches

to have additional monitoring tools during competition. That is

why some testing evaluations are needed to assess swimming

technique before competition (5).

Among the monitoring tools commonly used in swimming,

semi-tethered methods represent a good way to assess

biomechanical skills of the swimmers (6–8). Besides, the semi-

tethered protocol allows to better understand propulsion (9) and

active drag (10). More recently, with the help of technologies

(i.e., speedometer and force transducer) resulting in the

development of new devices (e.g., SwimOne; Sportmetrics S.L.,

Spain; 1080 Sprint, 1080 Motion, Lidingö, Sweden), some studies

highlighted the possibilities of assessing dynamic variables with

an easy and rapid feedback on the field (11–13). Other variables

such as the intra-cycle velocity variations (IVV), which is

associated to dynamic variables and especially to drag, can also

be measured using such devices, providing important additional

information (14, 15). Some other studies also investigated the

relationships between both propulsive and resistive force, and

swimming performance (16, 17). Load-velocity (L-V) profiles can

provide information on these aspects of propulsive and resistive

forces (9), mainly highlighted by variables such as estimated

maximal tethered load (L0) and maximal velocity (V0). These

variables correspond to the endpoints of the L-V linear

regressions obtained from velocity measurements recorded on

sprints against different resistances called “load” and applied with

specific devices. Additionally, recent literature demonstrated the

strong relationships of L-V profiles with dryland variables (18),

and sprint performance (19, 20). Those same authors pointed

out the importance of assessing drag and propelling efficiency, to

have a complete profile of the swimmer technique. However, the

relationships between L-V profile and performance in

competition remain unclear.

In other sports such as running, rugby and soccer, force-

velocity profiles are one of the major tools to monitor and guide

training. By using force-velocity profiles, coaches can design more

precise and individualized training programs for each athlete,

following a fine-tune methodology (21). This interaction has

already been described in other sports such as running and team

sports (22–24). Such an individualized approach already

demonstrated its efficacy in high level rugby athletes, who

improved their capacities after a specific training guided by force-

velocity profiles, with resisted or overspeed training (25).

Although several studies have described some of these aspects, L-

V profiling in swimming is a different concept and it seems

important to study it in more detail on very high-level swimmers.

The aim of this study was thus to investigate relationships

between L-V profiles, evaluated using semi-tethered swimming,

with 100 m and 200 m freestyle performances and stroke variables.
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2. Methods

2.1. Participants

Eight male swimmers (18.6 ± 1.9 years, 74.5 ± 5.9 kg of body

mass, 182.0 ± 2.9 cm of height) who were part of the same

training group voluntarily participated in this study. They swam

1,844 km in the season during which the study was conducted.

62.5% of the annual swimming volume was performed at low

intensity [blood lactate (La)b < 2 mmol·L−1], 20.5% at moderate

intensity [(La)b between 2 and 4 mmol·L−1], and 17% at [La]b >

4 mmol·L−1 (26). The swimmers had at least 9 years of

experience as competitive swimmers and their performance

characteristics are presented in Table 1. Based on their personal

best performances, seven swimmers can be classified as “level 2”

and one as “level 1” (27). The study was conducted in agreement

with the Declaration of Helsinki. After a comprehensive oral

explanation, all participants signed an informed consent form to

participate.
2.2. Experimental overview

The testing session took place before an international meeting.

The L-V profiling was performed in a 25-m indoor swimming pool

(air temperature: 25.1°C, water temperature: 28.5°C). Swimmers

were equipped with their usual training suit. The testing session

was conducted between 7:00 and 9:00 am on the same day for

every swimmer. They performed an individualized warm-up of

20 min including 600 m at low intensity, 200 m of specific drills

and three repetitions of short distances (20 m) at maximal speed.

The competition took place 3 days (for the 100 m) and 4 days

(for the 200 m) after the testing session. One swimmer did not

take part in the 100 m freestyle event, and another swimmer did

not take part in the 200 m freestyle event.
2.3. Testing session

The swimmers performed a resisted sprint protocol, using the

1080 motion (Lidingö, Sweden) allowing to complete a L-V

profiling. The testing procedure was already described in a

previous study (19). The protocol consisted of four all-out
frontiersin.org
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sprints: 25 m, 25 m, 20 m, and 15 m against increasing loads (0.1,

2.0, 4.0 and 6.0 kg respectively) with complete recovery (>5 min).

Instantaneous speed was collected directly via the device for each

imposed load. Regarding post-session data processing, average

swimming velocities were computed using three cycles in the

middle of the sprints. Maximum values of velocity (V0), body

mass normalized load (rL0) and the Slope were computed using

the L-V linear regression. Arm stroke Froude efficiency (ηF) was

calculated using the following equation (28), assuming that the

arm stroke contributed to 90% of the speed in a 25 m all-out

sprint, as previously suggested (29, 30):

hF ¼ 0:9 � y
yhand

where v is the speed of the swimmer and vhand is the effective hand

speed calculated according to a model proposed in a previous study

(31). Finally, Intracycle Velocity Variation (IVV) was computed

using this equation (32):

IVV ¼ Standard deviation of velocity
mean velocity

� 100
2.4. Video recording

During the competition, all the events were recorded with one

fixed 1080p camera (Sony FDR AX700) in panoramic mode, which

was positioned at the 25 m mark on the top of the stands and

perpendicularly to the long axis of the pool. The sampling rate

was 50 Hz. As described in a previous study (33), the video was

then analyzed frame by frame using a dedicated software to

calculate speed and stroke variables for the swimmer.
2.5. Data processing and analysis

Race analysis software (Actriss, Brest, France) was used for

calibration and image processing as already described (4). Using

manual digitalization with the lane markers located every five

meters (34), the video analyst annotated the time when the head

of the swimmer crossed each lane marker, and at the beginning

of each cycle. To measure all stroke variables, the time, and

points of the first and last arm entry for each lap was calculated,

giving the beginning and the end of each “free-swimming”

period, and allowing to compute clean swimming speed (V;

swimming speed excluding underwater parts) as depicted in (33).

This clean swimming speed (m/s) was determined by dividing

the total distance covered during the free-swimming period per

the time spent during that free-swimming period. SC is the total

number of arm entries on the water surface. SL is calculated

dividing the free-swimming distance by SC. SR is calculated

dividing the free-swimming time by SC. SI is the product of the

swimming speed (lap distance divided by lap time) and SL. We

collected those stroke variables for each lap (one value per lap

for each stroke parameter). For statistical analysis, we calculated

an overall mean for the race for each stroke variable (using the
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mean of the two laps for the 100 m and the four laps for the

200 m). All analysis were conducted by the same experienced

analyst who worked for the French swimming federation.
2.6. Statistical analyses

For all variables, descriptive statistics (mean, standard

deviation, minimum, maximum and variation coefficient) were

performed. Shapiro–Wilk test was used to verify the normality of

the data. R coefficients of Pearson correlations were computed

between L-V and race variables. We considered correlation

threshold values of 0.1, 0.3, 0.5, 0.7, and 0.9 corresponding to

small, moderate, strong, very strong, and nearly perfect

correlations, respectively (35). Statistical significance of the data

was assessed using the Student’s t-test. Null hypothesis was

rejected at p < 0.05. Statistical analyses were undertaken using the

Rstudio software package (PBC, Boston, Massachusetts, USA).
3. Results

Swimmers performed an average time of 51.95 s (minimum:

50.89 s; maximum: 52.47 s) in the 100 m freestyle and 113.85 s

(minimum: 109.55 s; maximum: 117.73 s) in the 200 m freestyle,

corresponding to 90.3% and 89.6% to the current world records

respectively.

Despite homogeneous results in competition, swimmers

showed a wide range of L-V profiles (Figure 1). For a small

range of V0 (between 1.80 m/s and 1.93 m/s), we observed a

wide range of rL0 (from 0.30 to 0.50 kg/kg of body weight). V0

and IVV were the variables with the lowest coefficient of

variation, reflecting more homogeneous results (Table 2). All

stroke variables are presented for the 100 m and 200 m freestyle

(Table 2). The values are the intra-individual averages of these

variables over the whole race. We observed more variations of SL

than SR during both the 100 m and 200 m freestyle events.

Matrix of correlation (Figures 2A,B) described the

relationships between L-V profiles and stroke variables for 100 m

and 200 m freestyle respectively. V0 had a very strong correlation

with SL on the 200 m but only small or moderate correlations

were found between V0 and race variables on the 100 m. On

another hand, rL0 had a very strong correlation with SR and a

strong correlation with the clean swimming speed on the 100 m

but only small or moderate correlations were found between rL0

and race variables on the 200 m. Figure 3 represented the

profiles of two different swimmers with similar 100 m

performances but with different hydrodynamic profiles.
4. Discussion

4.1. Originality of the study

This study is the first to describe associations between in-water

L-V profiles and race variables of elite swimmers. The main
frontiersin.org
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FIGURE 1

Results of individual load−velocity linear regressions, presenting also the inter-individual mean and standard deviation of the load-velocity group
results.

TABLE 2 Load-velocity results and race parameters.

Mean ± SD Min Max Inter-individual coefficient of variation

Load-velocity results
Estimated maximal velocity (m/s) 1.87 ± 0.04 1.80 1.93 2.30%

Estimated maximal relative load (% BW) 38.5 ± 6.51 29.9 49.7 16.90%

Arm stroke efficiency (% Wt) 51.0 ± 3.8 46 56 7.48%

Intracycle velocity variation (% Vmean) 10.7 ± 2.77 6.1 14.8 25.98%

100 m freestyle race parameters Mean of intra -individual coefficient of

variation (by 50 m laps)
Clean swimming speed (m/s) 1.79 ± 0.03 1.76 1.83 1.66%

Stroke rate (cycle/min) 49.6 ± 0.9 48.3 50.6 1.90%

Stroke length (m/cycle) 2.24 ± 0.05 2.17 2.32 3.31%

Stroke index (m2/s) 4.02 ± 0.12 3.82 4.16 4.79%

200 m freestyle race parameters
Clean swimming speed (m/s) 1.73 ± 0.04 1.67 1.79 1.97%

Stroke rate (cycle/min) 42.9 ± 2.2 39.9 45.6 4.18%

Stroke length (m/cycle) 2.39 ± 0.13 2.24 2.53 5.40%

Stroke index (m2/s) 4.13 ± 0.27 3.80 4.52 6.22%

SD, standard deviation; Min, minimal value of the eight swimmers; Max, maximal value of the eight swimmers.

Raineteau et al. 10.3389/fspor.2023.1326106
findings suggest that V0 was not a good determinant of 100 m nor

200 m performance but was strongly related to race kinematics (SL,

SR, and SI) whereas rL0 was strongly correlated with the

performance on the 100 m. This study is also the first to present

L-V profiles of swimmers of such level. Indeed, our results

showed higher values of V0 and rL0, compared to previous work

on elite swimmers (20). Moreover, these results highlighted a

more homogeneous group with a lower CV for V0 and rL0
Frontiers in Sports and Active Living 04
variables. We also observed different findings regarding the

correlations between L-V results and the swimming speed

compared to the above-mentioned study, both rL0 and V0

showing lower association with performance in the present study.

The expression of performance (i.e., clean swimming speed vs.

total mean speed) and the distance evaluated (i.e., 100 & 200 m

vs. 50 m) differed between the two studies [i.e., the present one

and (20) respectively] which could explain the different results.
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FIGURE 2

(A) R coefficients of Pearson correlations between 100 m race parameters and parameters obtained from the testing session. V, clean swimming
speed; SR, stroke rate; SL, stroke length; SI, stroke index; CV, intra-individual coefficient of variation (for V, SR, SL and SI variables); V0, estimated
maximal velocity; rL0, estimated maximal relative load; Slope, slope of the L-V linear regression; nF, arm stroke efficiency; IVV, intracycle velocity
variation. (B) R coefficients of Pearson correlations between 200 m race parameters and parameters obtained from the testing session. V, clean
swimming speed; SR, stroke rate; SL, stroke length; SI, stroke index; CV, intra-individual coefficient of variation (for V, SR, SL and SI variables); V0,
estimated maximal velocity; rL0, estimated maximal relative load; Slope, slope of the L-V linear regression; nF, arm stroke efficiency; IVV,
intracycle velocity variation.

FIGURE 3

Global representation of swimmers’ profiles, considering the speed variable during the 100 m freestyle event and other variables from the testing
session. Each line represents one swimmer. V, clean swimming speed during the 100 m (m/s); V0, estimation of maximal speed (m/s); rL0,
estimation of maximal relative load (as % of body mass); ηF, arm stroke efficiency (as % of total arm stroke power production); IVV, intracycle
velocity variation (as % of mean velocity).

Raineteau et al. 10.3389/fspor.2023.1326106
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4.2. Relationships between load-velocity
results and race variables

Correlations between L-V results and race variables also

differed between the two distances evaluated in the present study.

The greater the distance, the more stroke variables are associated

with V0 (Figure 2). This can be explained by the fact that both

distances require specific physiological and biomechanical

abilities (1). However, V0 was not correlated with 100 m and

200 m performance. For 100 m, we observed a strong correlation

between V and rL0 and a very strong correlation between SR and

rL0. This in line with a previous study (36) which showed

similar results, highlighting a strong correlation between mean

force values during 30 s tethered swimming and 100 m

performance (r = 0.72). Moreover, the association between rL0

and SR in the 100 m could be explained by the ability of short-

distance swimmers to produce more force and power, and

probably to maintain a higher SR (37). Other studies also

showed that an improvement of SR and velocity could occur

after a strength training program (38). Moreover, we already

know that elite swimmers demonstrate a higher SR than the

others, and it is associated with high propulsive phase and by the

stability of these values during the race (39).
4.3. Relationships between race variables
changes and load-velocity results

Correlations between the different biomechanical variables and

variations of speed and stroke variables over races support this

observation. We observed that ηF in the testing session presented

a negative correlation with variations of speed in the 100 m,

while it was positively correlated with variations of SR in the

same event. We can then deduce that the most efficient

swimmers seem to maintain their speed all along the 100 m

distance using the ability to adjust their SR. For comparison, a

previous study showed that the fastest swimmers in the 100 m

freestyle were characterized by the capacity to maintain their

stroke variables throughout the race (40). The results of this

study differ slightly from ours, but it should be noted that the

considered variables are not the same (i.e., efficiency vs. velocity).

Indeed, ideally the ability to swim fast arises from the capacity:

(i) to produce a high mechanical power output enabling the

generation of high propulsive force; (ii) to reduce drag; (iii) to

perform at a high efficiency (41). Moreover, some studies showed

most efficient swimmers are also more economical (42) which

may be beneficial to maintain speed throughout 200 m but also

100 m.

The relationships between evolutions of speed and stroke

variables with biomechanical variables such as the tethered force

were also investigated by some authors (43) who have shown a

strong correlation (r = 0.62) between the peak force (Fpeak) and

the relative changes in velocity during the 100 m freestyle. We

found a lower association between rL0 and velocity variations

over the 100 m. We speculate that the difference in results is
Frontiers in Sports and Active Living 06
given to the different dynamic parameters measured in both our

study (rL0) and the above-mentioned study (Fpeak), suggesting

that rL0 would reflect different qualities compared to Fpeak.
4.4. Profile overview

This hypothesis may be supported by the case study of two

swimmers who achieved similar 100 m freestyle performances

(i.e., 49.04 and 49.37 s, cf. Figure 3). They also had similar L-V

results, yet each had very different hydrodynamic profiles

representing for some variables the opposite extreme values

measured on this group. Indeed, we can see that swimmer 1 is

able to compensate for its lower propulsive efficiency with lower

IVV and therefore lower active drag as assumed (15). This

highlights the importance of combining measurements, to assess

kinematic and dynamic variables in swimming.
4.5. Limitations

These results must be considered acknowledging the potential

shortcomings of this study. First, the number of participants was

limited, and the population included only male swimmers, for

which we have only analyzed their races in front crawl.

Moreover, the evaluation and the competition occur at a time of

their season when they were not in their best shape, and the

group’s coach had not tapered them to perform at this

competition. All these reasons may have counterbalanced some

conclusions of this study.
5. Practical applications

The findings of this study propose implications for coaches

who are sensitive to the assessment of swimmers’ technique

during training periods. L-V profiling, and the biomechanical

variables derived from it, can help to evaluate technique, track

changes for stroke variables and identify areas for improvement

in both propulsion and technical aspects of front crawl. Then,

profiling the swimmer through this semi-tethered sprint protocol

provides a comprehensive swimmer’s identity card. Furthermore,

maximal relative load representing high degree of resistive

swimming and being associated with performance on several

distances could justify the use of in-water resistance workouts.
6. Conclusion

This study shows associations between L-V profiles and race

spatio-temporal variables on a small group of swimmers. Those

insights revealed the importance to consider a wide range of

biomechanical variables when assessing a swimmer’s profile. This

study also highlighted the diversity of each race distance in many

aspects, which seems to have an impact on the relationship

between L-V profiling results and race variables.
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