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Estimation of ground reaction force
waveforms during fixed pace
running outside the laboratory
Seth R. Donahue and Michael E. Hahn*

Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR,
United States

In laboratory experiments, biomechanical data collections with wearable technologies
and machine learning have been promising. Despite the development of lightweight
portable sensors and algorithms for the identification of gait events and estimation
of kinetic waveforms, machine learning models have yet to be used to full potential.
We propose the use of a Long Short Term Memory network to map inertial data to
ground reaction force data gathered in a semi-uncontrolled environment. Fifteen
healthy runners were recruited for this study, with varied running experience:
novice to highly trained runners (<15 min 5 km race), and ages ranging from 18 to
64 years old. Force sensing insoles were used to measure normal foot-shoe forces,
providing the standard for identification of gait events and measurement of kinetic
waveforms. Three inertial measurement units (IMUs) were mounted to each
participant, two bilaterally on the dorsal aspect of the foot and one clipped to the
back of each participant’s waistband, approximating their sacrum. Data input into
the Long Short Term Memory network were from the three IMUs and output were
estimated kinetic waveforms, compared against the standard of the force sensing
insoles. The range of RMSE for each stance phase was from 0.189–0.288 BW,
which is similar to multiple previous studies. Estimation of foot contact had an
r2 = 0.795. Estimation of kinetic variables varied, with peak force presenting the best
output with an r2 = 0.614. In conclusion, we have shown that at controlled paces
over level ground a Long Short Term Memory network can estimate 4 s temporal
windows of ground reaction force data across a range of running speeds.
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Introduction

Wearable sensors are being used extensively for the collection of human running

biomechanical data outside of the laboratory (1–5). The primary wearable sensors used

recently in locomotion biomechanics have been multi-axial inertial measurement units

(IMUs), which measure linear acceleration, angular velocity data as well as the local magnetic

field. Previously, IMUs have been used to estimate gait events, contact time, and other spatial

temporal variables (2, 6–8). Additionally, specific kinetic variables have been estimated from

IMU data collected in laboratory settings, such as joint moments, peak vertical force, impulse

and loading rate (1, 6, 9, 10). Other wearable sensors utilized for biomechanical monitoring

or clinical evaluation are insole force sensors. These sensors measure force between the foot

and shoe, and have been validated as a measure of vertical ground reaction forces (GRF)

during locomotion on a treadmill (11). Wearable sensors have the capability to also be

incorporated into other sensor systems for the estimation of specific external loading variables

and internal tissue loading (12, 13), and for overall feedback during training (14, 15).

Previous studies have reported either statistical or physics based models for the estimation of

kinetic variables associated with external loading (6, 16, 17). In recent years, machine learning
01 frontiersin.org
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TABLE 1 Participant demographics.

Sex Age (years) Mass (kg) Height (cm) Pace range
(m s−1)

M 59 68 180 2.68–3.35

M 20 79 180 2.55–3.16

M 18 82 183 3.83–4.88

M 18 79 183 3.83–5.36

M 19 61 173 3.83–5.36

M 20 68 173 3.83–5.36

M 20 67 178 3.58–4.47

M 29 70 185 3.83–5.36

M 34 68 180 3.35–4.47

F 19 68 170 2.33–2.82

F 20 66 170 2.98–3.83

F 20 66 170 2.98–3.83

F 20 63 168 3.16–4.13

F 20 63 168 3.35–4.47

F 20 54 173 3.58–4.88
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techniques have been used instead of physical or statistical modelling,

having become a popular and robust set of tools for biomechanical

analysis and estimation of kinematic and kinetic variables without

having a precise mathematical description of the underlying

mechanics. Previous work using machine learning algorithms have

estimated or predicted gait events from IMU data (18–21); with

IMUs located either bilaterally on the feet or on the sacrum.

Machine learning algorithms, including artificial neural networks

(ANNs), recurrent neural nets (RNNs), among other techniques,

have also been used to estimate kinetic variables, such as vertical

impulse, loading rate and peak GRFs (9, 10, 22–24). These

previous methods focused on feature engineering, and the

extraction of specific features to make estimations from various

waveforms to inform estimation. A few drawbacks for these studies

include the biomechanical expertise required for estimation of

these variables, significant preprocessing of raw data, and

identification of stance phase before data can be parsed into a

usable form. One of the advantages of modern machine learning

algorithms such as the Long Short Term Memory network

(LSTM), is the ability to extract meaningful features from a given

time series data. Essentially, this presents as a machine translation

problem, translating IMU data to kinetic data. Furthermore, these

machine learning models are yet to be tested on data collected

outside the laboratory, as they have been built using data from

controlled laboratory settings and do not capture the variability of

human movement that occurs out of the laboratory in response to

surface differences and changes in velocity (25).

The present work is the next step in the development of modeling

techniques for the estimation of kinetic variables outside of the

laboratory and testing the performance of these models using

Leave One Out Cross Validation (LOOCV). We propose the use of

Long Short Term Memory networks (LSTMs) to map IMU data

onto GRF waveforms measured with force sensing insoles from

participants running on a track at a set pace. The LSTM approach

was specifically developed for time series data, and mapping

between two different waveforms (26). The sequence-to-sequence

regression allows the LSTM to identify features and estimate the

GRF waveform in a manner that requires no feature engineering.

The purpose of this study was to implement a machine learning

algorithm for the mapping of inertial data to kinetic waveforms

from participants running on a track across a range of velocities.
TABLE 2 Example paces for 400 m run.

Example Paces Minutes per mile Average velocity (m s−1)

Pace 1 8:30 3.16

Pace 2 8:00 3.35

Pace 3 7:30 3.57

Pace 4 7:00 3.83

Pace 5 (Optional) 6:30 4.12
Methods

This study was approved by the University of Oregon

Institutional Review Board (protocol # 10062020.007). Data were

collected from 15 participants (Table 1), (9 male, 6 female, age:

23.6 years, height: 178.3 cm, mass: 73.5 kg) as part of a larger,

ongoing project. All analyses were performed in custom Matlab

programs (Mathworks, Natick, MA). Multi-axial IMUs (Casio,

Tokyo, Japan) were mounted bilaterally on the dorsal aspect of

each participants feet and approximately on the sacrum (clipped

on the back of each participant’s waistband). These sensors

recorded 3D linear accelerations and angular velocities at 200 Hz

(acceleration measurement range 0–16 g). The use of multiple

inertial sensors has been suggested to lead to improved estimation
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of spatial temporal and kinetic variables, compared to a single

inertial sensor (6, 27, 28). Foot-shoe normal force data were

recorded with Loadsol insole force sensors bilaterally in between

the foot and the shoe (Novel Electronics, St. Paul, MN) at 100 Hz.

The force sensing insoles and IMUs were synced using foot-stomps

before each trial. Based upon their 5-km race pace participants

performed a total of 4 or 5 paces on a 400 m square track, with

the fastest pace being optional. Each participant monitored their

pace with Garmin GPS, (Kansas City, KS). If they missed their

expected time trial duration by more than 2 s, they would be asked

to repeat the trial, after sufficient rest. An exemplar set of paces is

shown in Table 2. The total range of velocities run by participants

in this study was 2.33–5.36 m s−1. These velocities represent typical

training and race paces for the majority of recreational and high-

level distance runners (6, 29).
Data processing

Data from the IMUs were post processed with a Kalman filter to

orient the local (IMU) coordinate system vertical to gravity prior to

any post processing in Matlab (Figure 1 Panel B). The IMU data
frontiersin.org
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FIGURE 1

Panel A, machine learning methodology and throughput, specifically the input data, machine learning protocol and output. Calculated output contact time
and kinetic variables are shown here. Panel B instrumentation on the foot, with the Kalman corrected coordinate system on the IMU. The Sacral IMU was
positioned with the orange clip to the posterior of the participant, so the IMU proper was between the participants skin and the shorts to minimize the
movement of the sensor. Panel C measured and estimated ground reaction forces from a participant with the smallest RMSE for a participant, Panel D
shows the largest RMSE measured and estimated ground reaction forces from the same participant.
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were down sampled to 100 Hz to match the force sensing insole

sampling frequency and then filtered with a 4th order low-pass

zero-lag Butterworth filter ( fc = 35 Hz). Foot-shoe normal force

data were measured from force sensing insoles, considered the

standard reference for identification of measured gait events and

kinetic variables in this study (11). Kinetic data were filtered with a

2nd order low-pass zero-lag Butterworth filter ( fc = 20 Hz).

Internal clock drift between the insoles and the IMUs was rectified

by an iterative corrections algorithm. This algorithm adjusted the

IMU and kinetic data such that it approximately matched each IC

from both systems within ±0.02 s, by removing or adding zeros in

the previous swing phase of the kinetic data. The identification of

IC from the IMU data is detailed in previous work from our

laboratory (30). Force data <5% body weight (BW) were set to

0 BW. The estimated kinetic waveforms output from the machine

learning algorithm were filtered with the same filter as the

measured kinetic waveforms. Estimated foot ground contacts less

than 0.050 s were set to 0 BW, as foot contacts shorter than 0.050 s

were considered noise, having small magnitudes and not consistent

with measured foot contacts observed in running locomotion.
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Machine learning architecture

The overall structure of the machine learning algorithm is shown

in (Figure 1 Panel A). Briefly, the sequence input was 400 × 24 for

the input channels (acceleration, angular velocity and their

resultant magnitudes), and the output was a 400 × 1 GRF

waveform (sum of the left and right GRF waveform data from the

force sensing insoles). The activation functions of the LSTM are

described elsewhere (26, 31). The steps for development and

testing of the machine learning models were two-fold; first the

network architecture was optimized using the Bayesian

Optimization for Deep Learning (32), and then the network was

tested using Leave One Out Cross Validation (LOOCV). Bayesian

Optimization for Deep Learning requires user specification of the

hyperparameters, which are then optimized. The Bayesian

Optimization was conducted on the data set with 70% Training,

15% Validation and 15% Test segmentation of the data (Figure 1).

The optimal network architecture was determined by performance

on the test data set. The initial set of hyperparameters optimized

included the initial learning rate, gradient decay factor, squared
frontiersin.org
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TABLE 3 Stance and waveform root mean square error.

Average Speed
(m s−1)

Stance RMSE (BW) Waveform RMSE (BW)

2.24 0.230 ± 0.000 0.238 ± 0.025

2.33 0.189 ± 0.000 0.191 ± 0.029

2.44 0.199 ± 0.000 0.202 ± 0.028

2.55 0.253 ± 0.080 0.271 ± 0.100

2.68 0.268 ± 0.056 0.266 ± 0.074

2.82 0.267 ± 0.019 0.274 ± 0.057

2.98 0.281 ± 0.020 0.309 ± 0.059

3.16 0.262 ± 0.038 0.304 ± 0.056
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gradient decay factor, L2Regularization and number of hidden units.

From the hyperparameter optimization only the number of hidden

units were observed to influence the outcome of the machine

learning protocol. All other hyperparameters were therefore set to

the recommended values from MATLAB for sequence-to-sequence

regression. The range of the number of hidden units used in the

optimization was [10–50]. Through the Bayesian Optimization

process, the optimal number of hidden units was determined to be

42. This value was used for the LOOCV process. Throughout the

hyperparameter optimization process, we tested the range of

temporal input data from 0.5 s to 5 s windows. Based on the

performance of these optimized algorithms, by analysis of whole

waveform RMSE it was found that a 4 s temporal window was the

most accurate for the estimation of ground reaction force waveforms.

3.35 0.288 ± 0.039 0.305 ± 0.071

3.58 0.248 ± 0.033 0.268 ± 0.062

3.83 0.230 ± 0.049 0.265 ± 0.076

4.13 0.242 ± 0.053 0.281 ± 0.072

4.47 0.233 ± 0.048 0.275 ± 0.073

4.88 0.243 ± 0.043 0.284 ± 0.089

5.36 0.240 ± 0.052 0.287 ± 0.101

TABLE 4 LSTM estimated gait event error.

Average Velocity
(m s−1)

IC DIFFERENCE (S) TO DIFFERENCE (S)

2.24 0.013 ± 0.000 0.041 ± 0.000

2.33 0.019 ± 0.000 0.014 ± 0.000

2.44 0.019 ± 0.000 0.015 ± 0.000

2.55 0.015 ± 0.003 0.007 ± 0.003

2.68 0.017 ± 0.005 0.014 ± 0.018
Data analysis

Estimated waveforms from the LOOCV were concatenated for

each trial, analyzed and are presented in this work. This sets a

baseline for the use of these machine learning models as each

participant was treated as a novel participant. Initial Contact (IC)

was identified by the first instance of force >5% BW and toe off

(TO) was determined by the last instance of force greater than

>5% BW. Contact time was determined by taking the temporal

difference between these two discrete events. Stance average GRFs,

impulse, peak GRFs, and average loading rate were the kinetic

variables calculated in this work, from the estimated force

waveforms. Average loading rate was calculated by identifying the

impact peak and then averaging the slope in the middle 60% of

the region between IC and the impact peak (33).

Pearson correlation coefficients (r2) were used to compare the

estimated force data output from the LSTM to the measured insole

force data. Seventy-five trials were used, with fifteen participants

running five velocities, and each data point representing a 400 m

time trial on a square track. Differences between the model

estimated variables and measured waveform variables are presented

in both linear regression and Bland-Altman plots with 95%

confidence intervals (CIs) and Limits of Agreement (LoA),

respectively. A strong correlation was defined as r2≥ 0.8, a

moderate correlation as 0.5≤ r2≤ 0.8 and a weak correlation as

0.3≤ r2≤ 0.5. Differences between measured and estimated gait

events are presented as well as root mean square error (RMSE) for

each contact time and kinetic variable.
2.82 0.015 ± 0.006 0.015 ± 0.017

2.98 0.015 ± 0.003 0.007 ± 0.017

3.16 0.014 ± 0.006 0.001 ± 0.011

3.35 0.019 ± 0.004 -0.003 ± 0.022

3.58 0.020 ± 0.005 -0.011 ± 0.012

3.83 0.018 ± 0.005 -0.007 ± 0.012

4.13 0.015 ± 0.008 -0.012 ± 0.009

4.47 0.017 ± 0.008 -0.009 ± 0.009

4.88 0.017 ± 0.003 -0.006 ± 0.008

5.36 0.017 ± 0.005 -0.006 ± 0.005
Results

The data presented are the trial means from each subject and

velocity from the LOOCV analysis. Waveform RMSE ranged from

0.191–0.309 BW, while the individual stance phase RMSE ranged

from 0.189 to 0.288 BW (Table 3). Exemplar data for the minimal

and maximal RMSE outputs for a participant are shown in

(Figure 1 Panel C). Estimated IC was identified prior to measured

IC and IC differences ranged from 0.013–0.020 s per trial

(Table 4). The identification of TO differences ranged from −0.012
to 0.041 s. At velocities <3.16 m s−1, TO was estimated prior to the
Frontiers in Sports and Active Living 04
measured gait event. However, at velocities >3.16 m s−1, the

estimation of TO occurred after the measured gait event (Table 4).

Estimated and measured contact time had good agreement at

average running velocities < 3.16 m s−1, however at average running

velocities >3.16 m s−1, contact time was overestimated (Figure 2

Panel A). The Pearson’s Correlation Coefficient between the

estimated and measured contact time showed a moderate

correlation; r2 = 0.795 (Figure 2 Panel B). Bias in the estimate of
frontiersin.org
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FIGURE 2

Complete analysis of contact time. Panel A shows contact time trends across the range of speeds. The measured contact times are in black and the estimated
contact times are in red. Regression analysis and 95% confidence intervals of contact time is in Panel B. Panel C presents a Bland-Altman plot of the difference
between the estimated and measured contact times, and 95% limits of agreement.
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contact time was 0.020 with 95% LoA: [−0.011, 0.051] (Figure 2

Panel C). Contact time RMSE ranged from 0.089 s to 0.021 s

(Table 5).

Estimated output from the measured stance average GRFs

showed a consistent underestimation at velocities > 3.16 m s−1

(Figure 3 Panel A). There was a weak correlation between the

estimated stance average GRF and the measured stance average

GRF; r2 = 0.373 (Figure 4 Panel A). The agreement between the

estimated stance average GRFs and the measured stance average

GRFs were offset by −0.092 BW and 95% LoA [−0.351 0.167]
Frontiers in Sports and Active Living 05
BW (Figure 5 Panel A). The stance average ground reaction

force RMSE ranged from 0.063–0.402 BW (Table 5). The

measured stance impulse decreased as the average running

velocity increased. At all but the slowest velocity (2.24 m s−1)

and the two fastest velocities (4.88 and 5.36 m s−1) the impulse

was overestimated by the LSTM output (Figure 3, Panel B).

Estimated impulse had a weak correlation with measured

impulse; r2 = 0.271 (Figure 4 Panel B). The agreement between

the estimated impulse and the measured impulse bias was

0.007 BW*s and 95% LoA [−0.051 0.065] BW*s (Figure 5 Panel
frontiersin.org
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TABLE 5 LSTM estimated spatial-temporal and kinetic variables root mean square error.

Average Velocity (m s−1) Contact time (s) Stance average (BW) Impulse (BW*S) Peak GRF (BW) Loading rate (BW S−1)

2.24 0.090 ± 0.000 0.063 ± 0.000 0.103 ± 0.000 0.266 ± 0.000 13.592 ± 0.000

2.33 0.021 ± 0.000 0.070 ± 0.000 0.032 ± 0.000 0.159 ± 0.000 15.575 ± 0.000

2.44 0.023 ± 0.000 0.070 ± 0.000 0.032 ± 0.000 0.183 ± 0.000 12.559 ± 0.000

2.55 0.028 ± 0.002 0.127 ± 0.082 0.048 ± 0.024 0.227 ± 0.081 9.535 ± 3.032

2.68 0.024 ± 0.001 0.122 ± 0.069 0.041 ± 0.016 0.221 ± 0.053 8.733 ± 1.564

2.82 0.024 ± 0.001 0.108 ± 0.048 0.042 ± 0.012 0.256 ± 0.053 8.695 ± 1.839

2.98 0.025 ± 0.006 0.121 ± 0.037 0.044 ± 0.012 0.208 ± 0.034 7.798 ± 1.242

3.16 0.023 ± 0.006 0.154 ± 0.073 0.041 ± 0.011 0.221 ± 0.018 9.963 ± 4.378

3.35 0.034 ± 0.014 0.150 ± 0.068 0.047 ± 0.013 0.213 ± 0.038 11.383 ± 5.400

3.58 0.039 ± 0.016 0.196 ± 0.091 0.047 ± 0.016 0.225 ± 0.056 14.725 ± 4.691

3.83 0.031 ± 0.012 0.177 ± 0.086 0.037 ± 0.018 0.230 ± 0.107 14.085 ± 3.744

4.13 0.033 ± 0.013 0.196 ± 0.093 0.040 ± 0.022 0.237 ± 0.130 14.825 ± 4.458

4.47 0.032 ± 0.014 0.198 ± 0.093 0.037 ± 0.019 0.226 ± 0.118 15.561 ± 5.319

4.88 0.029 ± 0.008 0.218 ± 0.102 0.034 ± 0.014 0.237 ± 0.118 15.608 ± 3.667

5.36 0.028 ± 0.007 0.198 ± 0.085 0.032 ± 0.014 0.229 ± 0.121 18.132 ± 5.392
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B). The RMSE across the range of velocities ranged from 0.159 to

0.266 BW*s (Table 5).

The estimated peak forces across the range of velocities were

similar to the measured peak forces, except for at the slowest

velocity (2.24 m s−1) (Figure 3 Panel C). Estimated peak GRFs

were moderately correlated with the measured peak ground

reactions forces (r2 = 0.612) (Figure 4 Panel C). The agreement

between the measured and estimated peak GRFs had an offset of

0.029 BW with 95% LoA [−0.322 0.381] BW (Figure 5 Panel C).

The average RMSE of peak vertical GRFs ranged from [0.07 0.218]

(BW) (Table 5). The estimated average force loading rate was

overestimated compared to measured loading rate across the range

of velocities. Estimated loading rate was weakly correlated with

measured loading rate (r2 = 0.133) (Figure 4 Panel D). The

agreement between the measured and estimated loading rate had

an offset of −6.116 BW s−1, with LoA [−20.475 8.243] BW s−1

(Figure 5 Panel D). The average RMSE for loading rate over each

velocity ranged from [7.798 to 18.132] BW s−1 (Table 5).
Discussion

The purpose of this study was to implement a machine learning

algorithm for the mapping of IMU data to kinetic waveforms from

participants running on a track across a range of velocities. We

estimated GRF waveforms with three inertial sensors from

participants running in a real-world training scenario: 400 m

repeats at prescribed paces. Three specific findings can be

summarized briefly here: (1) we estimated four-second GRF

waveforms from the IMU data of the same duration, (2)

estimations of contact time from the output waveform were

accurate, but were overestimated at average running velocities

>3.16 m s−1, and (3) estimates of single kinetic variables matched
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the overall trends of the measured input data, however the model

tended to underestimate kinetic variables (stance average forces,

peak force and average loading rate) at running velocities >3.16 m

s−1 (Figures 3, 5). We have presented the baseline performance of

these models using a LOOCV process and the transfer of the

model for use on data from a novel participant.

The estimation of gait events from IMUs have been reported with

a wide variety of algorithmic methods, as these are the most critical

variables for parsing biomechanical waveforms (34–36). In the

present study, IC difference between estimated and measured gait

events ranged from 0.013–0.020 s across a range of running

velocities. This temporal difference may have been due to the

iterative corrections algorithm that was utilized to match estimated

IC calculated from the output of the LSTM with measured IC.

Estimation of TO differences ranged from −0.012–0.041 s. These
differences appear to be specific to running velocity, as estimation

of TO at velocities <3.16 m s−1 occurred before measured TO, and

at running velocities >3.16 m s−1 TO was estimated to occur after

measured TO. It follows that contact time was overestimated at

velocities >3.35 m s−1. Previous work reported an RMSE of 0.011 s

and r2 = 0.665 from a quantile regression forest (9). Our results

show a threefold increase in the RMSE to 0.032 s but a stronger

correlation r2 = 0.795. Greater error in our estimates likely came

from greater variability in the average running velocity throughout

a trial and the inclusion of accelerations and decelerations within a

running trial.

Stance phase ground reaction force RMSE was comparable to

ranges presented in previous work (RMSE of 0.39 BW) (10), with

our estimated waveforms resulting in average RMSE of 0.245 BW

for all running velocities. Another study reported an RMSE

ranging from 0.13–0.17 BW between velocities of 2.7 and 4.5 m s−1

(22), using an algorithm that is closest in nature to ours, as they

estimated portions of waveforms that could be concatenated into
frontiersin.org
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FIGURE 3

Kinetic variables across velocities. Measured (black) variables calculated
directly from the force sensing insoles. Estimated (red) calculated from
the LSTM estimated waveform. The trends in the estimated data follow
those of the measured data, there is however an offset between the two.

FIGURE 4

Regression analysis of estimated kinetic variables with mean and 95%
confidence intervals. Each data point represents an average speed trial.
The color of a trial represents the average running speed of the trial.
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full GRF waveforms. The performance of our algorithm was similar

to these previously reported values, with an RMSE ranging from

0.189–0.288 BW (Table 3), across a wider range of velocities and

at non-constant velocities. The primary difference between our

current study and previous work in this area is that previous

studies estimated whole GRF waveforms in the laboratory at steady

state running velocities on a treadmill, and only estimated stance

phase or a segment of the waveform. Ours is the first study to

produce a model for estimation of a full GRF waveform with
Frontiers in Sports and Active Living 07
multiple stance and swing phases from data collected outside of

the laboratory.

In our study, measured stance average GRFs generally increased

with velocity (Figure 3 Panel A), however not linearly as expected

(29). Estimated stance average GRFs were underestimated when

compared to measured stance average GRFs (Figures 2 Panel A, 5

Panel A). Divergence between estimated and measured values

occurred over the same range of velocities (3.16 to 5.36 m s −1)

that contact time was overestimated (Figures 2, 5 Panel A).

Generally, an increase in contact time will cause a decrease in

stance average GRFs. This is compounded with the

underestimation of peak GRF values at faster average running
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FIGURE 5

Bland Altman plot with offset and 95% limits of agreement. Each data
point represents an average speed trial. The color of a trial represents
the average running speed of the trial.
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velocities (Figure 5 Panel C). Faster running velocities revealed a

greater bias in estimated stance average GRFs. For comparison, the

physical model developed by (37), presented an average RMSE

ranging from 0.681–1.302 BW for running velocities from 2 to 5 m

s−1. Regardless, our results show notable improvement on this

work, with an RMSE for estimated stance average GRF ranging

from 0.063 to 0.218 BW (Table 5).

Estimation of impulse is the most mathematically complex

variable presented in this work and it also has the poorest

agreement between estimated and measured values. Impulse was

expected to decrease as velocity increased (16, 38), which matches

our results. Estimated impulse from a quantile regression forest

was reported to have a strong correlation (r = 0.974) and an RMSE
Frontiers in Sports and Active Living 08
of 0.004 BW*s for running velocities between 3.8 and 5.4 m s−1

(9). Our results differ, with a weak correlation of r2 = 0.385 and an

average RMSE across velocities 0.044 BW*s. These differences can

be related, in part, to the discussion of errors above for both

contact time and stance average GRFs. Another key difference is

the variation in experience levels among our participants when

compared to highly trained Division 1 endurance athletes. Beyond

these differences, impulse is highly susceptible to errors in both the

estimation of contact time and GRF magnitude, both of which had

detectable bias in the current model.

As expected, peak force increased with running velocity

(Figure 3 Panel C). This measure has been related to estimation of

external load while running (16, 38). Estimation of peak GRFs

across the range of running velocities was the most accurate output

from the current model. However, it should be noted, at faster

running speeds the peak vertical ground reaction forces did not

continue to increase; this may be a limitation of the mechanical

function of the sensors (e.g., sampling frequency or physical

limitations). Previous research reported that the relationship

between peak GRFs estimated by an ANN at three different

velocities (ranging from 2.78–3.89 m s−1) had a moderate

correlation for peak GRF; r2 = 0.72 and 95% LoA [−0.17 0.18] BW,

with a bias of 0.01 BW, on average (10). In contrast, our model

had a slightly weaker correlation (r2 = 0.614) and LoA

[0.322 0.381] BW, with an average RMSE of 0.223 BW. Although

our model resulted in similar correlations, we also have twice as

much variability represented by our 95% LoA range. Further

investigation revealed an outlier from the peak GRF analysis, in

which the value was overestimated by approximately 50% for a

single participant. This observation indicates that the force-

measuring insoles were moving between the foot and the shoe for

this participant.

Measured loading rate generally increased with running velocity,

as expected (Figure 3 Panel D) (38). Wouda et al. reported an ANN-

estimated loading rate with correlation of r2 = 0.57, LoA of [−16 10]

BW s−1 and a bias of −2.9 BW s−1 (10). Our results showed a

correlation of r2 = 0.405, with LoA [−20.450 8.243] BW s−1 and a

bias of −6.116 BW s−1, demonstrating less agreement and a larger

bias than the previous work. This could be due in part to

differences in data collection protocols and the sensitivity of the

force sensing insoles to error in the calculation of loading rate

(39). Estimated average loading rate was underestimated at

velocities > 3.16 m s−1, possibly due to errors in the estimation of

gait events. Identification of IC prior to the measured gait event

decreases the estimated average loading rate. We attempted to

mitigate this by estimating average loading rate between 10% and

40% contact time.

There are several limitations in this work. The force sensing

insoles occasionally lost connection during trials, which led to

different calibration files for the same participant. Force sensing

insoles rely heavily on the calibration process prior to the data

collection, and if they move between the foot and the shoe the

force values will be affected. We noted this anecdotally from

comments from a few participants that their shoes became slightly

loose, which may have led to the insole moving slightly between

the foot and the shoe. These sources of error likely contributed to

the variability within our data and affected the machine learning
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model for the estimation of GRF waveforms. Given the IMUs were

not perfectly rigidly attached to the user or embedded in the

participants shoes or waistband, there is the potential for

movement artifact of the IMU throughout the gait cycle. The

methodology presented in this work is transferable to real-world

running. However, we hesitate to recommend the algorithm in

current form as a tool for the analysis of training and the

translation of this work into the real-world environment.

Overestimation of contact time with increased running velocity is

an example of the limited transferability of the algorithm to novel

environments. Building a machine learning model for a single

participant or a small subset of participants with similar running

ability would substantially reduce the model’s estimation error. We

have demonstrated a baseline for performance of a machine

learning algorithm outside of the laboratory by presenting data

from a LOOCV. We had a single participant run at the slowest

velocities, and this participant’s data did not follow the expected

kinetic trends. However, this participant’s data provide a good

benchmark to demonstrate how these methods capture running

performance of a truly novice runner. This work has improved

upon much of the relevant literature for estimation of spatial-

temporal and kinetic measures from the estimated ground reaction

force waveforms. Future studies investigating the effects of differing

volumes of data input, and potentially the inclusion of a wider

range of running velocities should improve estimations from

similar machine learning algorithms.

In conclusion, the mapping of GRF waveforms from IMU data

collected in a real-world environment has been shown to be feasible,

with limitations. We have presented conservative results from an

LSTM model of GRF waveform estimation by reporting data from a

LOOCV analysis. We used three IMUs for the mapping of inertial

to kinetic data for a variety of participants ranging in skill from

truly novice runner (30:00 estimated 5 km race time) to more highly

trained runners (15:30 5 km race time) running 400 m on a square

track. Additionally, it would be valuable to identify biases in the

reported variables by comparing measurement of force data from a

force-instrumented treadmill to those measured by force sensing

insoles, across a range of velocities and inclinations matching the

training environment of experienced runners.
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