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Nutrition, hydration and
supplementation considerations
for mountaineers in high-altitude
conditions: a narrative review
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Staying and climbing in high mountains (>2,500 m) involves changes in diet due to
poor access to fresh food, lack of appetite, food poisoning, environmental
conditions and physiological changes. The purpose of this review is to
summarize the current knowledge on the principles of nutrition, hydration and
supplementation in high-altitude conditions and to propose practical
recommendations/solutions based on scientific literature data. Databases such as
Pubmed, Scopus, ScienceDirect and Google Scholar were searched to find
studies published from 2000 to 2023 considering articles that were randomized,
double-blind, placebo-controlled trials, narrative review articles, systematic
reviews and meta-analyses. The manuscript provides recommendations for
energy supply, dietary macronutrients and micronutrients, hydration, as well as
supplementation recommendations and practical tips for mountaineers. In view
of the difficulties of being in high mountains and practicing alpine climbing, as
described in the review, it is important to increase athletes’ awareness of
nutrition and supplementation in order to improve well-being, physical
performance and increase the chance of achieving a mountain goal, and to
provide the appropriate dietary care necessary to educate mountaineers and
personalize recommendations to the needs of the individual.
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1 Introduction

High altitude climbing is alpinism defined as ascending difficult mountain terrain

using appropriate technique and equipment. It is a sport combining rock climbing, ice

climbing, ski mountaineering and glacier travel (1). A special variety of climbing is

Himalayanism i.e., climbing practiced in the highest mountains in the world, whose

peaks exceed 7,000 m the (Himalayan mountain ranges, Karakorum, Daxue Shan,

Hindu Kush, Kunlun, Pamir and Tienshan) (2). Interest in high-mountain climbing is

growing every year, including among mountaineers at the amateur level. The

Himalayan Database describes all known attempts to climb Nepalese and border peaks

between 1905 and 2019, where 10,363 expeditions were recorded, involving 60,162

climbers and 28,587 high-altitude porters (3, 4). Table 1 shows the characteristics of

altitude ranges referred to in the article (5, 6).

Staying and climbing in high mountains involves a change in diet due to poor access to

fresh food, lack of appetite, food poisoning, harsh environmental conditions and
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TABLE 1 Definitions of altitude and associated physiological changes (5, 6).

Altitude Definition Physiological changes
1,500–2,500 m Intermediate altitude Physiological changes detectable. Arterial oxygen saturation >90%. Altitude illness rare but possible with rapid ascent, exercise, and

susceptible individual.

2,500–3,500 m High altitude Altitude illness common when individuals ascend rapidly.

3,500–5,800 m Very high altitude Altitude illness common. Arterial oxygen saturation <90%. Marked hypoxemia during exercise. 5,800 m is altitude of the highest
permanent habitation.

>5,800 m Extreme altitude Marked hypoxaemia at rest. Progressive deterioration despite maximal acclimatisation. Permanent survival is not thought to be
possible.

>8,000 m “Death zone” Prolonged acclimatisation (>6 weeks) is essential. Most mountaineers require supplementary oxygen to climb safely. Arterial oxygen
saturations about 55%. Rapid deterioration is inevitable and time spent above this altitude is strictly limited.
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physiological changes (7, 8). According to the definition of altitude

above 2,500 m altitude illness common when individuals ascend

rapidly (Table 1) (5, 6). Mountaineers have to deal with reduced

atmospheric pressure, leading to the development of hypobaric

hypoxia, intense solar radiation, heavy rain or snow, strong

winds and low temperatures with large diurnal fluctuations, as

well as the risk of avalanches and falling rocks (1, 9). Physical

performance and aerobic capacity are impaired under hypoxia,

and maximal oxygen consumption (VO2max) decreases by 6%

for every 1,000 m of elevation gain (10). Acclimatization to

prolonged hypoxia is regulated at the molecular level by hypoxia-

inducible factor (HIF). HIF-induced genetic reprogramming

includes increased erythropoiesis, angiogenesis, increased glycolytic

enzyme activity and inhibition of oxidative phosphorylation

(11, 12). Physical or mental stressors activate the hypothalamic-

pituitary-adrenal (HPA) axis, resulting in the release of

glucocorticoids that induce the activity of cellular reduction and

oxidation systems (13).

Due to the conditions that prevail in the high mountain

environment, low supply of antioxidant components with food,

heavy physical exertion and mental stress there is an increased

production of reactive oxygen species (ROS), which is referred

to as oxidative stress (14–19). The effects of ROS include

the development of neurodegenerative processes, which are

recognized in mountaineers returning from high-altitude

expeditions, as well as cognitive impairment and the appearance

of pathological changes in brain structures, indicating the

development of vasogenic edema (20) and damage to the

intestinal barrier, leading to consequences such as bacterial

translocation and local/systemic inflammatory reactions (21).

Visitors to high mountains often experience gastrointestinal

distress and loss of appetite, which can result from hypoxia itself,

but can be exacerbated by infection. Acute short-term exposure

to altitude appears to increase leptin levels through hypoxia-

inducible factor HIF 1α and contributes to decreased appetite

(22, 23). In addition, several other hormonal markers may

contribute to this effect (24). This appears to be largely

dependent on the duration of exposure to hypoxia, with the

greatest weight loss, due primarily to loss of free fat mass,

observed during the first weeks at altitude (8, 25–27), so

monitoring energy intake to limit weight loss should be

a priority in mountaineers.

Staying in high-altitude conditions poses a risk to

mountaineers’ health and life, and requires them to have
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adequate knowledge, preparation and experience to prevent the

negative effects of climbing at high altitude, as well as the ability

to make quick decisions and manage the risks of staying in

exposed terrain. One mistake can cost the loss of life, hence full

focus on the tasks performed during climbing under conditions

of increasing fatigue is essential. Adequate nutrition, hydration

and appropriately selected supplementation (of micronutrients

that are deficient in high-mountain conditions, antioxidants and

ingredients that improve exercise performance) help optimize

mountain activities and can help prevent nutritional deficiencies

that negatively affect health, cognition and physical performance.

Developing nutritional and supplementation recommendations

requires an understanding of the physiological adaptations to

altitude that occur in the human body, as well as the

consequences of staying in an unfavorable high-altitude

environment, which are weight loss and decreased appetite. The

purpose of this review is to summarize current knowledge on

nutrition, hydration and supplementation in high-mountain

(>2,500 m) conditions. Previously published studies have

described recommended solutions for mountaineers in the

context of nutrition and hydration. Our review completes this

information with data on supplementation in high mountains in

order to create a compendium of practical knowledge necessary

to develop an optimal nutritional and supplementation strategy

to help mountaineers.
2 Materials and methods

The review was conducted using the following databases:

Pubmed, Scopus, ScienceDirect for studies published in English,

from January 2000 to October 2023. Search terms included the

following keywords: “mountains”, “mountaineers”, “himalayans”,

“hypoxia”, “high altitude”, “nutrition”, “hydration”, “diet”, “energy

expenditure”, “macronutrients”, “micronutrients”, “minerals”,

“vitamins”, “supplements”, “nitrates”, “beetroot juice”, “N-

acetylcysteine”, “Ginko biloba”, “tart cherry”, “glutamine”,

“curcumin”, “omega-3 fatty acids”, “carbohydrates”, “proteins”,

“fats”, “probiotics”, “prebiotics”, “short-chain fatty acids”, “caffeine”

which were combined with Boolean operators (“AND” and “OR”).

A preliminary search identified 2,579 articles. Exclusion criteria

included studies involving neonates, newborns, high altitude

natives or animals, permanent sojourns at altitude and/or disease

related hypoxia. An additional Google Scholar search was
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conducted to identify other additional studies not identified in the

above databases. Literature lists of articles and books were also

downloaded. The remaining articles were searched manually.

Reviewed articles related to the search terms were evaluated based

on the titles, abstracts and content of the articles, and in the end,

207 articles were selected. Articles considered were randomized,

double-blind, placebo-controlled trials, narrative review articles,

systematic reviews and meta-analyses.
3 Discussion

3.1 Energy supply and energy expenditure in
the context of weight loss of mountaineers
during high altitude expeditions

Prolonged exposure to high altitudes is associated with an

imbalance between energy expenditure and energy intake,

resulting in a decrease in body fat stores, and this relationship

increases as altitude increases (28). At altitudes above 5,000

meters above sea level, negative energy balance may result from

reduced energy intake due to reduced appetite (29) or partly due

to intestinal disorders (28, 30, 31). To offset heat loss and

maintain proper body temperature, there may be an additional

increase in energy expenditure due to involuntary shivering,

activated to increase heat production and use fat stores (32).

Changes in body composition may not only be based on an

adaptive response to hypoxia, but may also depend on genetic

factors (33, 34). Reduction of brown adipose tissue during high-

altitude sojourns does not appear to be desirable due to its

thermoregulatory functions (maintenance of body temperature)

(35, 36) and resulting impairment of physical performance (37).

Natural stressors, such as cold, physical exercise, leptin

expression and interleukin-6 expression, initiate adipocyte

browning towards beige fat, triggering a higher thermogenesis

(38). Especially in long-term altitude sojourns, this might be a

factor which strongly increases energy expenditure. Both

increased leptin expression and increased energy expenditure

decrease with the degree of altitude acclimatization and

presumably subside after complete acclimatization. This initial

period during high-altitude sojourns is characterized by greater

consumption of fatty acids recruited from the body’s reserves

stored in adipocytes (37).

Increased ventilation, due to being in a cold and dry high

altitude environment, can also contribute to increased water loss

(i.e., non-perceptible water loss), also leading to weight loss (27).

Mountaineers lose at least 3% of their body weight after eight

days at 4,300 m above sea level and 15% after three months at

5,300–8,000 m above sea level (29). In women, altitude-induced

weight changes are smaller compared to men. In a study

involving 12 women who climbed to an altitude of 5,050 m

above sea level and stayed there for 21 days, no changes

were observed in body weight and lean mass compared to

baseline values (39).

Negative energy balance leading to depletion of glycogen and

fat stores is the main cause of muscle protein catabolism (40).
Frontiers in Sports and Active Living 03
Above 5,000 m above sea level, 60%–70% of weight loss is lean

body mass (41, 42). Its loss negatively affects aerobic capacity

(43), muscle strength (44), and immune function (45), which can

increase the risk of disease and injury in these extreme

conditions. At altitudes above 8,000 m, the total number of

muscle fibers decreases by about 17% (46, 47). The mechanisms

of muscle atrophy are largely unknown, but can be attributed in

part to malnutrition and reduced exercise intensity, as well as

loss of appetite and impaired digestion or absorption (48, 49).

On the other hand, the breakdown of muscle tissue may be

beneficial as an adaptation under high-altitude conditions

because it increases the density of capillaries in relation to the

muscle cell (50). Being in hypobaric hypoxia decreases leucine

turnover and uptake from muscle cells (51), which results in the

arrest of protein synthesis and is associated with a decrease in

mammalian target of rapamycin (mTOR) and is not dependent

on food intake (52). This suggests that proper nutrition can

offset the loss of muscle mass, but it is not possible to

completely prevent muscle atrophy when climbing at high

altitudes over time (22).

Analyses using the double-labeled water method in

mountaineers ascending Mount Everest indicate that energy

expenditure is 1.85–3.0 times that at sea level (53). The

energy requirements of mountaineers while climbing in the

Himalayas were 4,634 ± 287 kcal/day (5,900–8,046 m) (54),

5,394 ± 1,565 kcal/day (5,300–8,848 m) (42) and 3,248 ±

407 kcal/day (5,300–8,872 m) (53), while the energy supply was,

respectively, 3,296 ± 478 kcal/day (54), 2,928 ± 968 kcal/day (42)

and 1,791 ± 358 kcal/day (53). In the analyzed studies conducted

in the Alps (2,400–3,800 m), the energy requirements of

professional climbers from the French Military Group during an

ultraendurance alpine climbing race were 10,413 ± 287 kcal/day,

and energy supply 3,530 ± 165 kcal/day (55), while in the Cascade

Mountains (2,500–3,100 m) involving soldiers during military field

training, 4,037 ± 387 kcal/day and 2,357 ± 860 kcal/day, respectively

(56). In our own research among Polish mountaineers during an

expedition to Pakistan in the Shuijerab Mountain Group and Peru

in the Cordillera Blanca (4,000–6,000 m), energy requirements were

4,560 ± 425 kcal/day and energy supply was 2,777 ± 878 kcal/day

(57). In a study by Miller et al. the energy requirement of

mountaineers summiting a Pangaea Peak in Karakoram

Mountains (2,230-6,170 m) was 4,173 ± 848 kcal/day, but energy

supply was not determined (58). The majority of studies used the

gold standard technique of energy expenditure measurement,

the doubly labeled water method (42, 53, 54, 56). An alternative

method used by many authors to estimate total daily energy

expenditure during mountaineering activities is heart rate

recording (55, 57, 59).

A study by Pulfrey and Jones found that mountain climbers

staying at extreme altitudes (5,900–8,046 m) covered 70% of their

daily energy requirements with diet (54). The results of Watts

et al. study conducted in the Cascade Mountains (1,636–3,266 m)

showed that technical ice climbing was characterized by

generating the highest energy expenditure of all mountaineering

activities studied (59). A trail hike with a load averaging 45% of

body weight led to an energy expenditure of 7.5 ± 1.9 kcal/min in
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2.2 h, with an average peak of 13.4 ± 3.0 kcal/min. On the other

hand, technical ice climbing consisting of moving up and down

12 meters in an average time of 14.3 ± 2.6 min required an

average energy expenditure of 9.5 ± 3.4 kcal/min, and the peak

average value was 14.6 ± 3.5 kcal/min (59). Energy expenditure of

experienced climbers during mountaineering was lower than that

of inexperienced climbers (59). It was also shown that the

estimated energy expenditure increases with increasing slope

angle by additional 1.5–2.0 kcal/min for overhangs at 80°–90°

and additional 5 kcal/min for overhangs at 102° (60). According

to the recommendations and the level of physical activity, the

energy requirements of athletes can range from 40 to 70 kcal/kg

of body weight/day (kg of b.w.) (2,000–7,000 kcal/day for a

50–100 kg athlete) (61).

Many of the factors influencing weight loss during a high-

altitude expedition are beyond the mountaineers’ control (loss of

appetite, frequent gastrointestinal distress, increased energy

expenditure due to increased thermogenesis and physiological

processes determined by being in hypoxia, water loss due to

constricted ventilation, loss of lean body mass). The only factor

that mountaineers have a real influence on is energy supply. It is

therefore worth aiming to increase energy supply to cover energy

requirements. This is an important element of an expedition to

plan, especially during the acclimatisation phase and in difficult

technical terrain (ice climbing), when energy expenditure is higher.
3.2 Recommendations for macronutrient
dietary supply while at high altitude

Staying in high-altitude conditions alters substrate oxidation

for a given level of exercise intensity (62, 63). Modification in

energy substrate utilization at high altitude toward carbohydrates

(CHO) (64) influences increased dietary carbohydrate

requirements for muscle glycogen storage and replenishment,

maintenance of body mass, avoidance of hypoglycemia, adequate

recovery and optimal glycogen resynthesis (65, 66). A higher

intake of CHO is important at every stage of trekking and

climbing in high mountains and has a beneficial effect on

performance (67, 68). Consuming enough carbohydrates is

especially important when there is cold stress and chills (69).

Heat can be produced by shivering, which is an unconscious

mechanism activated by the central nervous system, triggered by

a decrease in body temperature (70). Increased muscle

contractions during shivering result in a 2.5-fold increase in

energy expenditure, most of which is due to increased

carbohydrate oxidation. Cold exposure also results in increased

muscle glycogen utilization, resulting from increased plasma

catecholamine concentrations (71).

According to dietary recommendations (72), carbohydrate

supply during low-intensity and technical exercise, should be

3-5 g/kg of b.w./day. Athletes doing moderate amounts of high-

intensity training (about 1 h/day) should provide 5–7 g

carbohydrates/kg of b.w./day, while endurance trainers doing

moderate to high-intensity training (about 1–3 h/day) should

take in 6–10 g carbohydrates/kg of b.w./day. Extreme endurance
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training (about 4–5 h/day) of moderate to high intensity requires

8–12 g of carbohydrates/kg of b.w./day. In order to improve

glycogen resynthesis, it is recommended to consume 1–1.2 g of

carbohydrates/kg of b.w. in the first 4–6 h after the end of activity.

Carbohydrate supply should be adjusted not only to the

intensity of the exercise, but also to the stage of the expedition.

During base camp at low physical activity, this supply should be

about 3–5 g CHO/kg of b.w./day, while during trekking and/or

climbing a minimum of 6 g/kg of b.w./day. According to the

study by Friedlander et al. (73), carbohydrate intake in people at

high altitude should be at least 60% (6–8 g/kg b.w./day) of total

energy intake. These guidelines are based on studies showing that

total carbohydrate oxidation during high-altitude exercise is

greater than during exercise of the same intensity at sea level

(74) leading to faster utilization of the body’s carbohydrate stores

(i.e., muscle and liver glycogen and blood glucose). A high-

carbohydrate, low-fat diet at altitude increases the respiratory

quotient (RQ). If only fats are used for energy production, this

coefficient is 0.7, while using carbohydrates (or proteins)

increases to a value close to 1. The effect of this change in RQ is

to increase the partial pressure of oxygen, resulting in an increase

in arterial blood oxygen saturation (75–77). In addition, at high

altitudes, carbohydrate oxidation was considered the preferred

metabolic pathway for aerobic exercise because it provides the

highest adenosine triphosphate (ATP) yield per mole of oxygen

(78). The study by McClelland et al. shows that carbohydrate

utilization does not change after altitude acclimatization and that

metabolic fuel utilization is mainly influenced by relative exercise

intensity, as at sea level (79). In women, unlike men,

carbohydrate utilization decreased while at 4,300 m above sea

level (80). McKay et al. (81) showed in a study that short-term

CHO restriction increased concentrations of the iron-regulating

hormone, hepcidin, thereby potentially reducing post-exercise

iron absorption. These studies were not conducted in

mountainous terrain, so it would be appropriate to conduct an

analogous study among mountaineers to assess the impact of a

low-carbohydrate diet on the athletes’ health. Analysis of the

carbohydrate supply in the diet of mountaineers during an

expedition in the Himalayas indicates either too low [39.5% of

the energy supplied (82)] or the right amount [52.7% (57), 52%

(83), 51.8% and 67.7% (84)].

From a practical point of view, environmental conditions in

high mountains should be taken into account, especially low

temperatures, which may prevent the consumption of

carbohydrate snacks such as bars due to their freezing. Based on

our experience, we recommend that snacks taken to the

mountains are first tested at low temperatures. While food

preparation is not a problem in base camp conditions (it is

possible to take more time to cook and consume the meal

unhurriedly, relying on valuable sources of complex

carbohydrates), during a summit attack, digestive comfort and

ease of meal consumption is a primary requirement. Snacks must

also be convenient to eat with warm gloves.

Mountaineers practicing high altitude climbing should provide

adequate amounts of protein to prevent weight loss and ensure

adequate amounts of this nutrient to build and repair tissues
frontiersin.org
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(85). An adequate supply of protein, especially branched-chain

amino acids, is key to regulating muscle protein synthesis (86).

International sports organizations recommend that the protein

intake of physically active individuals should be between 1.2 and

2.0 g/kg of b.w./day, as recommended by the Academy of

Nutrition and Dietetics, Dietitians of Canada and the American

College of Sports Medicine (ACSM) (72), which is confirmed by

the guidelines of The International Society for Sports Nutrition

(ISSN), which give a range of 1.4–2.2 g/kg of b.w./day (61). The

protein supply of mountaineers’ diets should be adapted to the

stage of the expedition and the intensity of the effort. During an

energy deficit, it is recommended to increase the protein content

of the diet up to 1.6 g/kg of b.w./day, which improves nitrogen

balance and maintains lean body mass (87). The protective effect

of higher protein supply on muscle and whole-body protein

homeostasis is impaired when the energy deficit is more than 40%

of daily energy requirements. It was found that a high-protein diet

(2 g protein/kg of b.w./day) did not spare lean body mass in

military personnel at an altitude of 4,300 m during 21 days of

energy deficit. The doubling of protein intake (compared to the

standard diet group) resulted in a parallel increase in protein

oxidation, suggesting that a greater proportion of dietary amino

acids were then oxidized for energy production. Consequently, the

availability of amino acids to support protein balance was limited

(88). In studies analyzing the nutrient content of mountaineers’

diets in high-altitude conditions, the protein supply was most

often too low in relation to recommendations for athletes i.e.,

1.1 g/kg of b.w./day (57), 1.2 and 1.3 g/kg of b.w./day (84) or an

appropriate 1.5–2.5 g/kg of b.w./day (82). In view of the endurance

exercise undertaken by mountaineers, the dietary protein supply

should be a minimum of 1.4 g/kg of b.w./day, taking into account

high-quality protein and distributing it to the main meals and

snacks during the climb or approach.

Foods rich in fat are high in calories, which in the mountains

can help prevent weight loss. According to recommendations,

athletes should consume a moderate amount of fats from 20% to

35% of their daily caloric needs, while during regular high-

volume training they can safely take in up to 50% (61, 72, 89). A

high-fat diet appears to be beneficial during high-altitude

sojourns (37), due to increased leptin expression, resulting in

decreased appetite and increased β-oxidation of fatty acids. It is

worthwhile for mountaineers to also be guided by their appetite

and select snacks in the mountains according to their own

preferences and tolerance of their digestive system. In the Karl

et al. study, mountain climbers preferred high-fat foods after

weight loss and acclimatization (90). Prolonged exposure to

altitude reduces the consumption of free fatty acids during

physical activity (62). In the studies conducted so far that

analyzed the nutrient content of mountaineers’ diets, the fat

content was too high in relation to the recommendations for

athletes i.e., 45.5% (82), 38% (84), 36.8% (57), 36.1% (83), and

only the Italian group described in the study by Bondi et al. (84)

provided relatively little fat (24%). From our perspective

mountaineers staying in high-mountain conditions should rely

on valuable sources of fat, including in their diet products rich in

poly- and monounsaturated fatty acids, such as vegetable oils
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(olive oil, flaxseed oil), nuts, seeds. Mountaineers choosing

products in the mountain diet should be guided primarily by

appetite and adjust the supply of this component to the

individual tolerance of the digestive system.
3.3 Prevention of micronutrient deficiencies
in mountaineers’ diets

Due to limited access to fresh vegetables, fruits and many

protein-containing foods, the supply of minerals and vitamins in

mountaineers’ diets may be too low. To our knowledge, there is

a lack of research indicating what the micronutrient

requirements of the diet are in high-altitude conditions, and

studies conducted so far emphasize the role of iron, B vitamins,

antioxidant vitamins and minerals, and vitamin D. Further

research is needed to formulate recommendations for the supply

of micronutrients in high altitude conditions.

Given the importance of haemoglobin levels for aerobic power,

optimal iron content is particularly important for endurance

athletes. Furthermore, they are at risk of increased iron loss from

sweat, urine, through the gastrointestinal tract and due to

haemolysis and exercise-related blood loss, through injury and

menstruation (91). At high altitudes, iron requirements are

increased due to erythropoiesis (92). This process may be

impaired in athletes with low iron levels (93). Adequate iron

stores are required to sustain the hypoxia-induced increase in

heme synthesis and iron-dependent enzyme production during

prolonged exposure at altitude (94). Iron intake was insufficient

during the stay in the Alps (3,200–3,616 m) and was 10.4 ±

1.73 mg/day (83) and 14 ± 4 mg/day during an expedition in

the Himalayas (1,070–5,143 m) in the Nepalese group and

24 ± 3 mg/day in the Italian group (84). According to the

recommendations of the International Olympic Committee, 8–10

weeks before the start of training activities above 2000m, ferritin

levels should be assessed (95). It is suggested to increase iron

intake or oral supplementation when serum ferritin levels are less

than 30 nmol/L in women and 40 nmol/L in men (95), however,

these pre-altitude ferritin cut-offs, in combination with iron

supplementation, have not been scientifically validated.

According to Stellingwerff et al. (67) it is recommended to

perform pre-altitude blood tests about 4–6 weeks prior to allow

for a more precise assessment of ferritin levels, so that

appropriate oral supplementation can be started about 2 weeks

before and during altitude exposure, if necessary.

Recommendations for iron supplementation before mountain

activity were established on ferritin cut-offs of <100, ∼100–130
and >130 ng/ml and are based on interpolation and/or

extrapolation of existing data (94, 96–98). Current findings

suggest that most athletes in hypoxic environments increase

hemoglobin mass by taking ∼100–200 mg of elemental iron per

day orally, with most of the evidence related to iron salts. We

recommend involving a sports medicine physician in the process

of assessing the need for iron supplementation prior to high-

altitude exposure and determining its dose in the event of iron

deficiency or low ferritin concentrations. Excessive iron
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supplementation and clinically elevated endogenous iron stores can

have negative health consequences (67, 99). Ferritin limits need

further scientific validation, as there is currently a lack of studies

evaluating the body’s response to iron intake in mountaineers

staying above 3,000 m above sea level. It is important for

mountaineers to include rich sources of iron (meat, fish, pulses,

whole grains, dairy products) in their diet before and during the

expedition. When consuming iron-containing products, it is also

important to consider its bioavailability. Heme iron (from meat)

has a higher absorption capacity (∼5%–35%) than non-heme

sources (∼2%–20%) (100). The presence of vitamin C and meat,

poultry and fish can increase the absorption of nonheme iron,

while substances such as polyphenols, phytates or calcium that are

part of tea, coffee, whole grains, legumes and dairy products can

decrease the amount of nonheme iron absorbed from a given meal

(101). In addition, it is worth considering a probiotic (102, 103)

and lactoferrin (104–106) to improve iron bioavailability.

Lactoferrin increases intestinal iron absorption by binding to iron

and improves hemoglobin and serum iron levels, thus

maintaining iron homeostasis in the body and cells (106).

Optimal levels of vitamin D (30–50 ng/ml) and B12

(400–700 pg/ml) can probably help improve iron status and

thus avoid anemia (107–109).

Hypobaric hypoxia leads to reduced oxygen delivery to the

brain, and can subsequently contribute to cognitive impairment

and increased risk of dementia, including Alzheimer’s disease

(110). High altitude cerebral edema and hypoxia cause cognitive

impairment and dementia associated with white matter

pathology (111). Whether exposure to hypoxia at high altitudes

causes irreversible brain damage is debatable. In an magnetic

resonance imaging (MRI) study of 35 mountaineers, the authors

concluded that there is sufficient evidence of brain damage after

high altitude climbing, and that amateur climbers are at higher

risk of brain damage than professional climbers (112). In the

study, Garrido et al. showed that Sherpas highlanders have better

brain protection when exposed to extreme altitude compared to a

group of elite lowland mountaineers who had climbed more than

8,000 m, and a control group (113). A study by Tunali et al.

describes the case of a 57-year-old man who developed

symptoms of acute mountain sickness after climbing 5,416 m in

Nepal. Several months after descending the mountain, he

developed symptoms such as loss of empathy, impaired speech,

problems with perceiving and expressing emotions, and an

increased interest in sugary foods. The patient’s MRI and PET/

CT results showed frontotemporal neurodegeneration (111).

Metabolic functions of B vitamins and their role in

neurochemical synthesis can be seen as having a particular

impact on brain function (114). Folic acid, vitamin B12 and iron

play a key role in erythropoiesis (115). Krzywanski et al.

recommended that vitamin B12 serum concentrations in athletes

training at sea level should be maintained between 400 and

700 pg/ml to support haemoglobin synthesis and improve red

blood cell markers, with regular monitoring to consider

supplementation when vitamin B12 levels are <400 pg/ml (108).

However, there is a lack of studies assessing the optimum serum

concentration of B vitamins and the requirement for these
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vitamins in high-altitude conditions. Currently, there is insufficient

evidence to recommend supplementation of B vitamins in

high-altitude conditions, given their role in erythropoiesis and

to improve cognitive functions.

Vitamin D plays an important role in immune, muscle and

cardiovascular function, inflammatory response, protein

synthesis, cell growth and regulation of the musculoskeletal

system (116–118). Many athletes have insufficient levels of

vitamin D, and most often serum levels are below 20 ng/ml,

especially during the winter months (119). According to Zhang

et al. (120), to achieve optimal anti-inflammatory effects of

vitamin D, it is important to maintain serum vitamin D levels

>30 ng/ml. According to current recommendations, in normal-

weight adults, cholecalciferol or calcifediol supplementation

should be implemented and continued under supervision of

a medical doctor until an optimal serum concentration of

>30–50 ng/ml of 25-hydroxyvitamin D (25(OH)D) is achieved

and maintained (116). Kasprowicz et al. (109) have shown that

high doses of vitamin D (10,000 IU/day) can prevent the

decline in serum iron levels after exercise. Kasprzak et al. (83)

have observed a decrease in 25(OH)D serum concentrations

among mountaineers during a 14-day stay at 3,200-3,616 m

above sea level, associated with modulation of immune

processes. This is consistent with a study conducted at an

altitude of 5,400-6,700 m, for about 4 months, involving 221

male volunteers serving in the Indian Army (121), in whom a

decrease in serum 25(OH)D concentrations was associated with

skeletal deterioration at extreme altitudes (121). Mountaineers

staying in high-altitude conditions with low temperatures and

UV radiation, need to protect their skin from burns, and

additionally use down suits, both of which prevent skin

synthesis of vitamin D. Given how important the role of

vitamin D is in the context of the immune system and the fact

that its deficiency is associated with a higher risk of anemia

(107), it is important to monitor the concentration of this

vitamin before the expedition, adjust the appropriate dose to

the current serum concentration, and continue supplementation

during the expedition.

Staying at high altitudes, associated with reduced oxygen

pressure, can result in increased production of reactive oxygen

and nitrogen species and the development of oxidative stress

(15). Excessive production of RONS, which exceeds endogenous

antioxidant defenses, can lead to damage to lipids, proteins and

DNA, thereby impairing cellular and immune function, causing

delayed post-workout recovery (122). The supply of antioxidant-

rich dietary components can be a helpful intervention in the

fight against altitude-induced oxidative stress. It seems most

prudent to include a large amount of antioxidant-rich foods,

including vitamin C, beta-carotene, vitamin A, vitamin E,

selenium and zinc in the daily diet of mountaineers. Freeze-dried

fruits, vegetables and their powdered forms can be valuable

sources of antioxidant vitamins in high-altitude conditions. An

intervention at 2,320 meters above sea level to increase the intake

of antioxidant-rich foods, served as snacks between meals, not

only increased the intake of antioxidants, but also improved the

overall amount of macro- and micronutrients in the athletes’
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diets (123). It would be advisable to test such a strategy in the

higher parts of the mountains as well.
3.4 Importance of hydration and electrolyte
supply during high altitude sojourn

Hypoxia occurring in high-mountain conditions increases

fluid loss through hyperventilation and contributes to

dehydration, which reduces aerobic capacity (124). Dehydration

causes changes in electrolyte concentrations in the body,

resulting in stress on the cardiovascular system as plasma

volume decreases. Impaired cardiovascular function reduces

cutaneous blood flow and the body’s ability to dissipate heat to

the environment (125). In addition to these physiological

effects, dehydration can impair cognitive function and

concentration (126).

Dehydration has not been shown to increase the risk of acute

mountain sickness (AMS) (124), although control of fluid output

is thought to be important in preventing the onset of AMS, as

clinically, measures to prevent excessive fluid retention are likely

to reduce the symptoms of AMS (127). Fluid requirements in

high-altitude conditions are higher than at sea level also due to

hyperventilation, low humidity, sweat losses (127, 128) and

increased diuresis as a result of down-regulation of the renin-

angiotensin-aldosterone system, especially during the first days of

the stay (129). Optimal hydration may also be limited by the

time and fuel resources needed to prepare potable water, sourced

from the glacier (130). Another factor that contributes to

dehydration is reduced thirst at high altitudes (131).

Urine colour analysis is a simple and convenient method of

determining the whole-body hydration status (132, 133).

Numerous studies using the subjective eight-point colour scale

have shown that an increase in dehydration of the subject results

in a darker urine colour (134). Fluid supply should be responsive

to thirst and sufficient to prevent dehydration and avoid

infrequent dark-coloured urination. Attempting to take in large

amounts of fluids in a short period of time should be avoided

(75). At 4,300 m water loss from the respiratory tract can be

increased to 1,900 ml/day in men (85) and 850 ml/day in women

(135), and urinary excretion by 500 ml/day (136). Water loss in

mountaineers of Mount Everest (5,000–8,872 m) was 3.3 ± 0.6 L/

day (53), while in people with low physical activity, engaged in

cooking, melting snow, repairing tents, stationed at 6,542 m for

21 days, 3.0 ± 0.5 L/day (137). Another study analyzed water

balance at sea level and at an altitude of 4,350 meters. Water loss

decreased from ∼4.5 to 3.5 L/day, mainly as a result of a

decrease in ambient temperature of ∼10°C (138). There was also

a study among mountaineers who climbed Denali in Alaska.

Based on two methods of measuring hydration status (urine

specific gravity and ultrasound measurements of inferior vena

cava size and IVC-CI collapse index), it was found that about

half of the mountaineers in the study were dehydrated (130). In

contrast, in a survey conducted by Karpęcka-Gałka et al. (57),

almost half of mountain climbers drank 2-3 L of fluids per day

in the mountains, while the rest of the respondents took even
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smaller amounts of fluids per day, which can lead to

dehydration. Average water supply (per person per day) was

monitored in a study conducted by Bondi et al. (84) in a group

of Italians and Nepalese during an expedition in the

Himalayas (1,070–5,143 m), reaching 3,099 ± 462 g/day and

3,240 ± 310 g/day, respectively.

Mountaineers in high-mountain conditions use glacier water as

a source of hydration and for cooking, characterized by low mineral

content, so it is worth considering electrolyte supplementation. An

additional complication that arises in high mountains is the

reduced boiling point, as a result of which prepared meals must

take longer to cook (139). In the absence of water treatment

tablets, there is a high risk of parasite infection. Giardia lamblia,

an intestinal parasite that causes diarrhea, is found in high-

altitude regions (140). It should be emphasized that

recommendations for fluid replenishment at high altitude should

be individualized due to different rates of fluid and electrolyte

loss, urine color control and symptoms of AMS, which causes

water retention in the body. According to ACSM expert

recommendations, the daily fluid requirement is 4–5 L during

altitude training and competition (72), while ISSN encourages

individual monitoring of hydration status to determine athletes’

fluid requirements (61). General recommendations during

mountain activities include intake of 400–800 ml/h fluids with

0.5–1 g Na/L water (139).
3.5 Recommendations on the use of
dietary supplements during high
altitude expeditions

Due to poor access to food products at high and extreme

altitudes, supplementation may be the only solution to provide

adequate energy and essential nutrients, as well as to improve the

functioning of the body in harsh environmental conditions. To

date, there have been many studies confirming the effects of

ergogenic agents during physical activity (141), however, there

are a limited number of reports on supplementation in hypoxic

or high-altitude conditions. Supplements with potential beneficial

effects on exercise capacity, sleep quality, the immune system, the

intestinal barrier, the gut microbiome and more in high-altitude

conditions are described below. However, most of them require

further research.

3.5.1 Carbohydrate supplements
Carbohydrate supplementation during exercise by non-

acclimatized men has improved performance in a test conducted

after 3 days of exposure at an altitude of 4,300 m, with a

simultaneous 30% deficit in delivered energy applied (68). In a

study involving men acclimated to altitude and in a state of

energy balance, there was no benefit of carbohydrate

supplementation on time-trial performance during the first and

third days of altitude exposure (142). From the above studies,

despite many differences in methodology, it can be concluded

that the potential ergogenic effect of supplemented carbohydrates

on exercise capacity may be modulated by acclimatization. In a
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recent study evaluating the effect of carbohydrate supplementation

on aerobic exercise performance in non-acclimated men after 5 h

of exposure to an altitude of 4,300 m and after 22 days of

acclimatization with an accompanying 40% energy deficit, there

was no improvement in aerobic capacity (143). Based on the

results of the study by Bradbury et al. (143), it is recommended

that people planning to stay or engage in physical activity (e.g.,

alpine climbing) in high mountains prioritize carbohydrate

intake while still at sea level in order to optimize glycogen stores

before going into the mountains.

Although carbohydrate requirements to meet energy

expenditure at high altitude increase, there is a paradoxical

impairment in the ability to utilize exogenous carbohydrates for,

at least, the first day after ascent. The inability to oxidize and

functionally benefit from exogenous carbohydrate intake during

high-altitude activity coincides with hyperinsulinemia, accelerated

glycogenolysis and reduced peripheral glucose uptake. These

responses are consistent with hypoxia-mediated deregulation of

metabolism, reflecting insulin resistance. The findings also

suggest a role for the gut microbiome in host metabolism,

bioenergetics and physiological responses at high altitude,

suggesting that the gut microbiome is a potential mediator of

hypoxia-mediated metabolic deregulation (144). Pasiakos et al.

(144) have indicated a lack of ergogenic effects of carbohydrate

supplementation at altitude, which questions the effectiveness of

recommending carbohydrate supplementation to maintain

physical performance after ascending to high altitude. Thus,

more research is needed to develop appropriate carbohydrate

supply strategies that take into account the effects of hypoxia on

insulin sensitivity and substrate oxidation to optimize the

activities performed in high-altitude conditions. From our

perspective, given the challenging conditions during high-

mountain climbing, it is worthwhile for mountaineers to

consider carbohydrate-supplying supplements (energy gels,

gummies, carbohydrate jellies, carbohydrate bars, isotonic drinks)

that are low in weight and easy to open at low temperatures in

order to increase dietary carbohydrate supply, as well as to

increase energy intake.

3.5.2 Protein supplements
If the protein supply does not cover the body’s need for this

nutrient, supplementation with a protein can be considered.

Stimulation of muscle protein synthesis and/or reduction of

proteolysis with a low-volume protein supplement rich in

branched-chain amino acids, especially leucine, seems to be the

best strategy to protect the body of a high altitude climber from

an undesirable decrease in lean body mass (22). However, the

results of studies conducted so far have not shown a benefit in

this aspect when mountaineers supplemented their diet with a

preparation of branched-chain amino acids (145, 146). Protein

increases feelings of satiety (147), which is not a beneficial effect

at high altitude, where mountaineers struggle with altitude

anorexia (148). There is still a lack of studies evaluating the effect

of protein supplementation on feelings of satiety at high altitude.

Based on our experience, a diet rich in protein may not meet the

expectations and dietary preferences of high altitude climbers, so
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when staying in high mountains above base camp, it is worth

considering supplementation with a protein supplement to cover

the daily requirement of this component, which also gains

justification given the lower availability of food products that are

sources of protein.

3.5.3 Antioxidants
Exogenous antioxidants neutralize free radicals, so it would

seem logical that supplementation with these compounds could

be a helpful intervention against altitude-induced antioxidant

stress. While some studies have shown that antioxidant

supplements have a modulating effect on oxidative stress and

AMS symptoms at high altitude (149), more recent studies

indicate that there is no such effect (150). After all,

supplementation with antioxidants, especially in the early phase

of the altitude exposure, can be counterproductive and

potentially weaken or delay acclimatization to altitude (151). On

the other hand, the results of the study of Koivisto et al. indicate

that increasing the intake of antioxidant-rich foods during

altitude exposure caused the expected increase in antioxidant

capacity and attenuated some altitude-induced systemic

inflammatory biomarkers in athletes (152). Undeniably, pro-

oxidant-antioxidant balance is paramount for altitude

acclimatization, but the question of planning an appropriate

antioxidant-related nutritional and supplementation strategy

remains unclear.

3.5.4 Caffeine
Caffeine is a supplement with a very well-documented effect,

used to improve exercise capacity, neuromuscular function,

alertness and concentration, as well as reduce perceived fatigue

during exercise (153). The benefits of its supplementation are

observed in sports of an endurance nature, requiring dexterity

and precision, as well as short-duration, supramaximal or

repeated high-intensity efforts (141). Mountaineering is an

endurance sport with elements of intensive effort of a strength

nature (55). Thus, it is worth considering caffeine

supplementation among mountaineers, given the nature of the

sport and the extreme fatigue and impaired concentration

resulting from the harsh high-altitude conditions. Caffeine

supplementation can also have a positive effect on cognitive

function, and according to a study by Zhang et al. (154), low

doses of caffeine (3 mg/kg of b.w.) have better effects in terms

of improving cognitive function and brain activation. In a

study conducted by Tian et al. (155), caffeine alleviated high

altitude pulmonary edema (HAPE) and reduced oxidative

stress and stabilized mitochondrial morphology in alveolar type

1 cells under hypoxic conditions. The results of the study

presented here suggest that caffeine may be a potential

treatment for abnormal acclimatization resulting in HAPE

(155). Due to the need for mountaineers to remain focused

despite extreme exhaustion throughout the expedition, caffeine

could be used in high-altitude conditions. It is worth

considering caffeine supplementation about 60 min before

situations requiring sharpened attention (blood caffeine

concentrations peak at this time) (156) such as technically
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difficult sections of the route, before rappelling after the climb or

on the way back from the summit. However, further research is

needed to confirm this hypothesis.

3.5.5 Beetroot juice
Beetroot juice (the nitrates it contains) is a supplement that has

attracted a lot of interest in recent years for its effects in improving

the ability to perform long-term moderate-intensity exercise and

repeated high-intensity short-term exercise. The mechanism of

action of nitric oxide (NO) is based on improved blood flow

through blood vessels, lower ATP consumption during force

generation by muscles, reduced aerobic cost of effort, and

increased biogenesis and mitochondrial performance (141, 157–

159), which can potentially improve athletic performance. It is

recommended to consume a dose of 6–8 mmol (∼350–500 mg)

of nitrates 2–3 h before exercise. Another possible strategy is to

consume 6–8 mmol of nitrates per day for several days prior to

competition (160).

There are studies confirming increased exercise economy by

about 5%–10% in hypoxic situations and/or better performance

in recreational athletes after nitrate supplementation (161–163).

In high-performance endurance athletes in hypoxic conditions,

beetroot juice supplementation was not beneficial (164–167), but

there is also a study supporting its effectiveness (168). Current

evidence suggests potential improvement in endothelial function

at high altitude after nitrate supplementation (169). In another

study carried out in hypoxia assessed that the nitrates in beet

juice do not prevent altitude sickness and should not be

recommended as a preventive or ergogenic measure for already

existing altitude sickness (170). Hannis et al. (171) in a study

conducted with young men while trekking to Everest Base Camp

showed that oral nitrate supplementation using beetroot juice

was safe and feasible at altitude, and that dietary nitrate did not

change mountain sickness symptoms or alter physiology. These

results are consistent with a study performed by Cumpstey et al.

(172) in the Alps (4,559 m), in which dietary nitrate

supplementation was shown to be well tolerated at high altitude

and to significantly increase lung NO availability and NO

metabolite concentrations in saliva and exhaled breath condensate,

and was not associated with changes in haemodynamics, oxygen

saturation or the development of AMS. Similarly, a study

conducted by Marshall et al. (173) with the British Military

during a trek in the Himalayas (1,400–5,755 m) confirmed that

dietary nitrate supplementation may ameliorate the decline in

physical performance associated with staying at high altitude and

has no effect on the incidence of high altitude illness. In the

study by Bakker et al. (174), acute dietary nitrate ingestion offset

the decline in endothelial function in healthy young participants

during an expedition in Nepal (28 days >2,500 m, including a

peak of 3,700 m).

Most of the published studies have examined the effects of

nitrate supplementation at simulated altitude (161–168), which is

often considered an incomplete substitute for “real” altitude.

There is ongoing debate about potential differences in the

physiological response to normobaric hypoxia and terrestrial

altitude (175), including potential disparities in NO metabolism
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(176). The research conducted so far at terrestrial altitude is

promising (171–174). Further studies are needed to evaluate the

effects of nitrate−at terrestrial altitude and/or contrasting the

effects of nitrate−supplementation between terrestrial and

simulated altitude.

3.5.6 Prebiotics and probiotics
Gastrointestinal complaints are often reported during climbing

at high altitudes (>2,500 m), although their etiology is unknown.

Hypoxia and oxidative stress can damage the intestinal barrier,

consequently leading to bacterial translocation and local/systemic

inflammatory reactions. Preliminary data suggest that prolonged

exposure to hypoxia can damage the intestinal barrier through

changes in immune function, microbiota or mucosal layers.

Exercise may worsen the intestinal damage associated with high

altitude through additional reductions in visceral circulation and

greater hypoxemia (21). Kleessen et al. analyzed fecal samples

and serum from 7 mountaineers participating in a 47-day

expedition to the Himalayas. The results of the study indicate a

change in the composition of the gut microbiota after exposure

to very high altitudes (>5,000 m). The number of bifidobacteria

and species belonging to the Atopobium, Coriobacterium and

Eggerthella lenta groups decreased, while the number of potential

pathogenic bacteria from the gamma Proteobacteria subgroup

and specific Enterobacteriaceae, such as Escherichia coli,

increased. Changes in the composition of the microbiota may be

associated with changes in indicators of the immune system and

result in the deterioration of mountaineers’ health (177). Karl

et al. (178) have observed increased intestinal permeability in a

group of healthy, physically active but non-acclimated men after

a rapid (transported by airplane and car), 22-day exposure to an

altitude of 4,300 m. The findings are consistent with Dinmore

et al. (179); however, they should be interpreted with caution due

to the limitations of the ongoing projects.

Acetate, propionate and butyrate, short-chain fatty acids

(SCFAs) that are produced by some gut microbes mainly during

the fermentation of dietary fiber, are key mediators of intestinal

permeability and may protect the intestinal barrier from hypoxia-

induced dysfunction (180). Adequate dietary fiber supply is a

major challenge for participants in high altitude expeditions due

to limited access to fresh food outside base camp. In the studies

conducted so far, mountaineers most often did not cover the

dietary requirements for this component for adults i.e., the values

did not exceed 25 g/day (57, 83, 84). Recommended dietary fiber

supply in athletes is 38 g (71). Insufficient intake of dietary fiber

can result in a deterioration of intestinal function, as well as a

reduction in the diversity of the microbiota (181). Prebiotics

(galacto-oligosaccharides, fructo-oligosaccharides, human milk

oligosaccharides, xylo-oligosaccharides, mannano-oligosaccharides,

inulin), which are one type of fiber, are substrates selectively

utilized by host microorganisms (182, 183). Prebiotic

supplementation in high-altitude conditions is worth considering

in view of the low dietary fiber supply, and the well-documented

effect of prebiotics in promoting SCFA production.

Similarly, probiotics, or live microorganisms, when consumed

in adequate amounts, can provide health benefits (184). Long-term
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intake of probiotics Bulgaricus 2038 and Streptococcus thermophilus

1131 can increase the abundance of Bacteroides closely related to

butyrate and propionate production (185). Increasing iron

absorption may be a valuable strategy for improving iron status

while at high altitudes and before going on an expedition. The

probiotic strain Lactobacillus plantarum 299v (Lp299v, LP299V®)

has been shown to improve iron absorption in meal studies

(186, 187). The results of the study indicate that ingestion of

Lp299v with 20 mg of iron may result in a more significant and

faster improvement in iron levels compared to iron alone (102).

The study was conducted in female athletes with low iron stores at

sea level, so the effectiveness of the strategy would also need to be

tested in high-altitude conditions. More studies using prebiotics

and probiotics in high-altitude conditions are needed to assess

their effectiveness in protecting the intestinal barrier against

hypoxia-induced stress.
3.5.7 Omega-3 fatty acids
Long-chain omega-3 polyunsaturated fatty acids, such as

docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and

alpha-linolenic acid (ALA), show anti-inflammatory effects

(188). According to the recommendations of the European

Food Safety Agency (189), their intake by adults should be

250 mg for EPA and DHA and 0.5% of total energy intake for

ALA. EPA/DHA are considered safe in doses of up to 5 g/day

(190). The results of some studies suggest that EPA/DHA may

improve endurance, delay the onset of muscle soreness and

promote recovery in athletes (191, 192). It has also been shown

that supplementation affects muscle protein synthesis,

especially under conditions of immobilization and energy

restriction or when taken with other nutrients (193, 194). A

study using cell cultures assessed that DHA attenuates the

increase in total ROS production and lipid peroxidation in

mature adipocytes. The importance of such changes observed

in response to DHA may reduce the deleterious effects of

excessive ROS production caused by severe hypoxia and

prevent lipid peroxidation and damage (195). In high-altitude

conditions, the provision of adequate omega-3 fatty acids may

be inadequate especially above the base camp due to limited

access to foods abundant in omega-3 fatty acids. However,

further human studies conducted under hypoxic conditions and

at terrestrial altitude are needed to unequivocally recommend

omega-3 fatty acid supplementation in high-altitude conditions.
3.5.8 Curcumin
Polyphenol curcumin derived from the Curcuma longa plant

provides protection of the intestinal barrier by reducing oxidative

stress and apoptosis (196). In the situation of HAPE, curcumin

supplementation increases the integrity of the alveolar epithelial

barrier (197). Curcumin supplementation may lead to lower

levels of pro-inflammatory cytokines or indirect markers of

muscle damage under normoxia (198–200). However, more

studies conducted under hypoxic conditions and at terrestrial

altitude are needed to demonstrate the efficacy of curcumin

supplementation to justify its use in mountaineers.
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3.5.9 Glutamine
Glutamine is an amino acid with potent anti-inflammatory

effects, a key energy fuel for rapidly growing cells (such as

immune cells and enterocytes), a precursor to glucose, proteins

and nucleic acids (201). It has a variety of functions in the body,

including being a key component for the synthesis of cytokines,

hormones, maintenance of acid-base balance, ammonia transport

and cell proliferation (202). Under hypoxic conditions, glutamine

synthesis in the body may be insufficient to meet the increased

demand for this amino acid. Findings indicate that glutamine

supplementation reduces the risk of upper respiratory tract

infections after prolonged low-altitude (1,640 m) exercise, thereby

improving immunocompetence in hypoxia (203). We evaluated

the effects of glutamine supplementation on the regulation of

lymphocyte-mediated immune responses and inflammation in

humans exposed to 6 h of simulated hypoxia at 4,500 m in a

normobaric chamber, with and without exercise (204).

Glutamine (at a dose of 20 g) was administered to study

participants for 6 days before exposure to altitude. Glutamine

supplementation stimulated both T helper 1 lymphocyte

responses, inhibiting T helper 2 lymphocyte responses, and

attenuated the release of IL-6 and TNF-α (204). Glutamine may

have a positive effect on the function of enterocytes and immune

cells in the gut and improve defense mechanisms. Moreover, it

can be an energy substrate for the intestinal microbiota, reducing

the inflammatory process accompanied by increased intestinal

permeability, thereby improving cognitive function and mood

(205, 206). Glutamine administered to rats at a dose of 5 g/kg of

b.w. 3 days before and 5 days during a simulated 7,000 m

altitude had the effect of reducing hypoxia-induced damage to

the intestinal structure and regulating the intestinal microbiota

(207). Glutamine can directly modify neurotransmitter activity in

the brain, affecting mood and cognitive function (208).

McMorris et al. showed in a meta-analysis that hypoxia harms

cognitive processes (209), and this condition can probably be

alleviated by glutamine supplementation (210), but there is a lack

of human studies using glutamine supplementation in high-

altitude conditions to confirm this hypothesis. Studies in hypoxia

and at terrestrial altitude, with and without glutamine

supplementation, should be performed to experimentally

correlate the relationship between glutamine and cognitive

function, mood, immune response in hypoxia.
3.5.10 N-acetylcysteine (NAC)
N-acetylcysteine (NAC) is used for its antioxidant and anti-

inflammatory effects. NAC supplementation appears to be safe

and may regulate glutathione homeostasis, have antioxidant

effects and improve physical performance (211). In studies

conducted to date, NAC has increased resistance to fatigue (212),

improved immune function (213), as well as hemodynamics and

muscle blood flow (214) and modulated EPO production (215).

The dosage of NAC in the conducted studies ranged from 600 to

1,200 mg per day, and supplementation was applied for 5–9 days

(214, 215). There is a lack of studies confirming the validity of

NAC supplementation in hypoxic conditions. Moreover, there
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are also studies available that do not confirm a positive effect of

NAC on EPO production (216) and even indicate a pro-oxidant

effect when taken in high doses before a prolonged period of

time (i.e., 1,200 mg/day for 4 weeks, then 2,400 mg/day for

another 2 weeks) (217). Thus, further research is needed to

evaluate NAC as a useful supplement for use before or during

altitude exposure.

3.5.11 Tart cherry juice
Supplementation with tart cherry taken in many forms

can improve muscle recovery from exercise-induced damage

(218–220), physical performance (221, 222) and sleep quality

(223–225.) It is recommended to use tart cherry juice at a dose

of about 250–350 ml (30 ml for concentrate), twice a day, for 4–5

days before sports competition or for 2–3 days afterwards to

support recovery (141). The results of a study conducted by

Horiuchi et al. (226) indicate that a 5-day supplementation with

tart cherry (a capsule containing 100 mg of anthocyanins)

improves exercise tolerance in hypoxia. However, more studies

are needed to unequivocally recommend supplementation with

this preparation in hypoxia.

New arrivals to altitude commonly experience poor-quality

sleep. At high altitudes, reduced oxygen content in the blood can

cause sleep disturbances with frequent awakenings and feelings

of shortness of breath (227). De Aquino Lemos et al. (228) have

found that hypoxia reduces total sleep time, sleep efficiency and

causes rapid eye movements. Changes in sleep patterns can affect

mood and cognitive function after 24 h (228). In mountaineers

rapidly climbing to high altitudes, sleep quality is initially

impaired, but improves with acclimatization due to improved

oxygen saturation (229). Given the positive effects of tart cherry

juice on sleep duration and efficiency, the use of this supplement

in high-altitude conditions seems an interesting strategy. Further

studies need to be conducted in hypoxia and at terrestrial

altitude, with and without tart cherry juice supplementation, to

experimentally correlate the relationship between tart cherry juice

and physical performance and sleep quality in hypoxia.

3.5.12 Ginko biloba
Ginko biloba herb extract has been found to reduce tissue

hypoxia, induce vasodilation, and reduce free radical generation

and lung leakage, which in turn may prevent AMS (230). A

meta-analysis conducted by Tsai et al. yielded inconclusive

results regarding the effect of Ginko biloba on AMS prevention

(230). In the study, Moraga et al. showed that 24 h pretreatment

with Ginko biloba and subsequent maintenance during high-

altitude exposure was sufficient to reduce the incidence of AMS

in participants with no prior high-altitude experience (231).
3.6 Practical tips for nutrition at different
stages of a high altitude expedition

Staying at high altitudes in the mountains requires advance

planning of nutrition, hydration and supplementation.

Depending on the direction of activities, expeditions vary in the
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location of the base camp and its supplies, so it is necessary to

have knowledge of the expedition’s logistics. Mountaineers can

procure food on their own or use the help of an expedition

agency, which organizes kitchen facilities at base camp and

provides food, and is responsible for obtaining drinking water

(139). Much of the food that will be consumed during the

expedition is obtained in the country where the mountain

activities are undertaken. Cultural differences, religious aspects

and the availability of products in a country should be taken into

account. In Buddhist countries, such as Nepal, it can be difficult

to purchase meat products.

Depending on the stage of the expedition, mountaineers face

some difficulties regarding nutrition and hydration. The first is

trekking and acclimatization. This stage usually ends with an

approach to base camp at an altitude of about 3,500–4,500

meters above sea level, depending on the mountain range.

Mountaineers during this time usually enjoy overnight

accommodations in high mountain villages. Eating in local

restaurants, tasting street food and drinking water can cause food

poisoning and contagious diarrhea. Therefore, extreme caution

should be applied and care should be taken to ensure the

hygiene of the meals consumed.

At base camp (for peaks >5,000 m), mountaineers are usually

located at an altitude between 4,500 and 5,000 meters above sea

level. This is the place where mountain climbers can enjoy a

well-balanced diet, laden with fresh foods for the last time before

setting off on a summit attack. Expeditions without the help of

mountain travel agencies and hired porters are forced to properly

plan the distribution of transported food. Food supplies should

secure the mountaineers’ stay at altitude for several weeks, which

requires an appropriate weight and volume strategy, such as low-

weight high-energy foods and freeze-dried products, to transport

the maximum amount of high-quality and tasty food. Trying to

avoid diet monotony is hard work, but it helps motivate

mountaineers to eat. Storage of fruits and vegetables is a problem

due to low temperatures. Animal products, such as eggs and

meat (poultry and yak meat), are good sources of protein during

the expedition, but their availability is limited. Another source of

protein is fish, usually in canned form. In Buddhist countries,

base camps usually use vegetable protein from pulses such as

lentils and chickpeas. To maintain nutritional hygiene, latrines

should be placed away from kitchens and water sources.

Above the base camp, mountaineers use glacial water for

hydration and for cooking. At this stage, mountain climbers

move to the next point, the intermediate base camp, gaining

more and more altitude on their way to the summit.

Mountaineers also descend to these points after gaining altitude

to acclimatize above base camp for better recovery and sleep. It

is essential to properly plan and pack freeze-dried and

dehydrated foods, carbohydrate snacks and supplements to

ensure an adequate supply of energy on the way to the summit.

Reduced appetite, low temperatures and the problem of cooking

meals and water at high altitude in an unfavorable environment

pose major challenges for mountaineers, which increase with the

altitude gained. Regardless of appetite, it is necessary to eat

regular meals and high-energy snacks throughout the day.
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During a summit attack there is an accumulation of

unfavorable factors. Fatigue and weakness increase, aerobic

capacity decreases due to staying at very high or extreme

altitudes (often in the death zone i.e., >8,000 m), and in

addition, mountaineers are exposed to very low temperatures,

the consequence of which is sometimes frostbite (232).

Throughout the year, the typical chill equivalent temperature

near the summit of Everest is always <−30°C, and the typical

facial frostbite time is less than 20 min (232). Bad weather is

estimated to contribute to 25% of deaths in the mountains

(233). The summit attack, including the return to intermediate

camp, may take 12–24 h (139), and this time depends on the

mountain range and the logistics of this stage. The food taken

by mountaineers must be at this stage as light as possible, high-

energy, and also easily digestible in order not to burden the

weakened digestive system. Drinks and food taken should be

properly protected from freezing, preferably by keeping them

close to the body in the inner pockets of the suit. It is worth

considering energy gels, gummies, carbohydrate jellies and water

with added carbohydrates i.e., high-energy, high-carbohydrate,

low-weight products and supplements. Due to the described

difficulties of staying in high mountains and climbing, it is

important to increase athletes’ awareness of nutrition, hydration

and supplementation in order to improve body function,

general wellbeing, exercise performance and increase their

chances of success.
4 Summary and further directions

Due to the negative effects of weather and environmental

conditions in high mountains, mountaineers are at risk of

compromised health and even loss of life. Adequate preparation

for an expedition, especially attention to factors that

mountaineers have control over, including nutrition, hydration

and supplementation, can help prevent the development of

nutritional deficiencies that affect the deterioration of health and

performance. Energy requirements during climbing in high-

altitude conditions can vary significantly depending on the load

in the form of equipment transported in the backpack, the

experience of the climber, as well as the difficulties encountered

during the climb. Mountaineers, while at high-extreme altitudes,

are at risk of energy deficiency, and consequently loss of body

weight and lean body mass. Despite the lack of appetite, care

should be taken to ensure regularity in the meals eaten and

snacks taken.

The supply of carbohydrates in the diet of mountaineers should

be adapted to the stage of the expedition and the intensity of the

effort. Staying at base camp, with low physical activity, this

supply should be about 3-5 g CHO per kg of b.w./day, while

during trekking and/or climbing—a minimum of 6 g/kg of

b.w./day. In view of the endurance physical effort mountaineers

undertake, dietary protein supply should be a minimum of

1.4 g/kg of b.w./day, taking into account high-quality protein

and distributing it to main meals and snacks during climbing

and ascent to the summit. Mountaineers should rely on
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valuable sources of fat, including in their diet products rich in

poly- and monounsaturated fatty acids such as vegetable oils

(olive oil, flaxseed oil), nuts, seeds. It is recommended that the

supply of fat in the diet of mountaineers should be in addition

to energy after the carbohydrate and protein requirements are

met, and should be 20%–35% of the total energy supply.

Mountaineers choosing products in the mountain diet should

be guided primarily by appetite and adjust the supply of this

component to the individual tolerance of the digestive system.

Limited access to fresh fruits and vegetables and protein-

containing foods in high-mountain conditions may be associated

with an inadequate supply of minerals and vitamins. Ferritin and

vitamin D serum concentration should be assessed before the

expedition. If there is a deficiency of micronutrients, such as iron

and vitamin D, supplementation should be implemented to

optimize health and continued under supervision of a medical

doctor. It is worth including foods rich in iron in the diet and

ensuring adequate iron bioavailability. It is advisable to adjust the

appropriate dose of vitamin D supplementation to the current

serum concentration and continue supplementation during the

expedition. Mountaineers should consume products rich in

antioxidants, including sources of vitamin C, beta-carotene,

vitamin E, selenium and zinc while at high altitude. Freeze-dried

fruits, vegetables and their powdered forms can be valuable

sources of antioxidant vitamins in high-altitude conditions.

Further research is needed to formulate recommendations for the

supply of micronutrients in high altitude conditions.

Fluid supply at high altitude should be individualized due to

different rates of fluid and electrolyte loss, urine color control

(dehydration results in a darker urine colour) and symptoms of

AMS, which causes water retention in the body. A regular supply

of fluids is necessary to prevent dehydration.

Due to poor access to food products at high and extreme

altitudes, supplementation may be the only solution to provide

adequate energy and essential nutrients, as well as to improve the

functioning of the body in harsh environmental conditions. The

potential ergogenic effect of supplemented carbohydrates on

exercise capacity in high-mountain conditions may be modulated

by acclimatization. More research is needed to develop appropriate

carbohydrate supply strategies that take into account the effects of

hypoxia on insulin sensitivity and substrate oxidation to optimize

the activities performed in high-altitude conditions. It is worth

considering supplementation with a protein supplement to cover

the daily requirement of this ingredient due to the lower

availability of food products that are sources of protein in high-

altitude conditions, especially above base camp. There is still a lack

of studies evaluating the effect of protein supplementation on

feelings of satiety at high altitude. Pro-oxidant-antioxidant balance

is paramount for altitude acclimatization, but the question of

planning an appropriate antioxidant-related nutritional and

supplementation strategy remains unclear.

Caffeine administered in low doses (3 mg/kg of b.w.) has the

potential to positively affect mountaineers’ cognitive function.

Preliminary data suggest that caffeine may be a potential

treatment for high altitude pulmonary edema. However, further

studies are needed to assess the efficacy of caffeine
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supplementation in hypoxic conditions. Nitrates supplemented in

the form of beet juice may improve endothelial function at high

altitude, but nitrates are not recommended as a prophylactic or

ergogenic agent for already existing altitude disease. Further

studies are needed to evaluate the validity of beet juice

supplementation in high-altitude conditions. In view of the

gastrointestinal complaints reported during high altitude

climbing, probiotics and prebiotics have the potential to protect

mountaineers’ intestinal barrier from hypoxia-induced

dysfunction. However, further research focusing on the use of

specific probiotic strains and their effects on the state of the gut

microbiota in high-mountain conditions is needed. In high-

altitude conditions, the provision of adequate omega-3 fatty acids

may be inadequate especially above base camp due to limited

access to foods abundant in omega-3 fatty acids. Further research

is needed to assess the validity of omega-3 supplementation in

hypoxic conditions. Glutamine may have a positive effect on the

function of enterocytes and immune cells in the gut. Moreover, it

may be an energy substrate for the intestinal microbiota,

reducing the inflammatory process accompanied by increased

intestinal permeability, thereby improving cognitive function and

mood. Further research is needed with humans using glutamine

supplementation in high-altitude conditions. There are several

supplements, such as curcumin, Ginko biloba, NAC and tart

cherry juice, that need further research to evaluate their

effectiveness in high-altitude conditions. Given the positive

effect of tart cherry juice on sleep quality and physical

performance, the use of this supplement in high-altitude

conditions seems an interesting strategy. There is a lack of

well-designed studies examining the relationship between the

use of dietary supplements and improved athletic performance

and health at high-extreme altitudes. Therefore, there is a need

for controlled, randomized studies involving mountaineers.
5 Conclusions

In view of the difficulties of being in high mountains and

practicing alpine climbing, as described in the review, it is

important to increase athletes’ awareness of nutrition, hydration

and supplementation in order to improve well-being, physical

performance and increase the chance of success in high altitude
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action, and to provide the appropriate dietary care necessary to

educate mountaineers and personalize recommendations to the

needs of the individual.
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