
TYPE Original Research
PUBLISHED 24 September 2024| DOI 10.3389/fspor.2024.1448243
EDITED BY

Carlos Eduardo Gonçalves,

University of Coimbra, Portugal

REVIEWED BY

Luis Manuel Rama,

University of Coimbra, Portugal

Olivier Degrenne,

Université Paris-Est Créteil Val de Marne,

France

*CORRESPONDENCE

Runbei Cheng

runbei.cheng@eng.ox.ac.uk

RECEIVED 13 June 2024

ACCEPTED 10 September 2024

PUBLISHED 24 September 2024

CITATION

Cheng R, Haste P, Levens E and Bergmann J

(2024) Feature importance for estimating

rating of perceived exertion from

cardiorespiratory signals using machine

learning.

Front. Sports Act. Living 6:1448243.

doi: 10.3389/fspor.2024.1448243

COPYRIGHT

© 2024 Cheng, Haste, Levens and Bergmann.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.
Frontiers in Sports and Active Living
Feature importance for
estimating rating of perceived
exertion from cardiorespiratory
signals using machine learning
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1Natural Interaction Lab, Institute of Biomedical Engineering, Department of Engineering Science,
University of Oxford, Oxford, United Kingdom, 2Department of Technology and Innovation, University
of Southern Denmark, Odense, Denmark
Introduction: The purpose of this study is to investigate the importance of
respiratory features, relative to heart rate (HR), when estimating rating of
perceived exertion (RPE) using machine learning models.
Methods: A total of 20 participants aged 18 to 43 were recruited to carry out
Yo-Yo level-1 intermittent recovery tests, while wearing a COSMED K5
portable metabolic machine. RPE information was collected throughout the
Yo-Yo test for each participant. Three regression models (linear, random
forest, and a multi-layer perceptron) were tested with 8 training features
(HR, minute ventilation (VE), respiratory frequency (Rf), volume of oxygen
consumed (VO2), age, gender, weight, and height).
Results: Using a leave-one-subject-out cross validation, the random forest
model was found to be the most accurate, with a root mean square error of
1.849, and a mean absolute error of 1.461 ± 1.133. Feature importance was
estimated via permutation feature importance, and VE was found to be the
most important for all three models followed by HR.
Discussion: Futureworks that aim to estimate RPE using wearable sensors should
therefore consider using a combination of cardiovascular and respiratory data.
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1 Introduction

In sports, fatigue is commonly defined as “sensations of tiredness and associated

decrements in muscular performance and function” and is a complex phenomenon that

encompasses both physiological and psychological factors (1). The build-up of fatigue is

considered a risk factor for injuries in sports, and prescribing sufficient training

regimen to produce positive training outcome while minimising fatigue-related risk of

illness and injury is a challenge constantly faced by coaches, sport scientists and

medical personnel alike (2–5). Various monitoring techniques have been devised by

sport scientists to capture exercise workloads as ways to address these issues, which can

be further divided into two categories; (i) external workloads which are measures of the

physical tasks performed by athletes, often captured via local/global positioning systems,

inertial sensors, and camera-based player tracking systems; and (ii) internal workloads

which are the physiological and psychological responses an athlete has towards the

external workloads, most prominently captured via heart rate (HR) and ratings of

perceived exertion (RPE) (2, 5, 6).
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RPE is one of the most commonly applied and investigated

internal workload measures in team sports, thanks to its

intuitiveness and ease of use, as well as its ability to capture both

physiological and psychological factors that impact exertion (5, 6).

There are many variations of RPE scales developed over the years,

but they all work on the same principle, consisting of a numerical

scale with verbal descriptor corresponding to different levels of

exertion. The two most popular RPE scales are the Borg 6-20

Category Scale and the Borg Category-Ratio-10 (CR-10) Scale

(6, 7). One major shortcoming of RPE is that it is not very suitable

for continuous monitoring of training and match workloads, since

RPE is captured via active feed-back provided by the monitored

athletes. Rather, RPE is often captured as a one-off measurement

after a training session or match in the form of session RPE that

aims to capture the overall exertion level of the session.

In terms of continuous on-field monitoring of athletes, the

most commonly captured physiological measurements consist of

heart rate (HR) and various HR-derived metrics, partly thanks to

a high level of accessibility to commercially available validated

sensor systems (5, 6). HR-based metrics are often more difficult

to interpret than RPE and require greater physiological expertise

to analyse (8). In pursuit of a continuous monitoring metric

which is easy to interpret, researchers have been attempting to

estimate RPE using physiological measurements that can be

continuously monitored via sensor systems (9–15).

Much of the existing literature on estimating RPE using sensor

systems leverages HR-based measures and movement data (9–12,

14, 15). RPE has been theorized to be dependent on both

cardiovascular and respiratory factors (6), and several studies

highlight the strong correlation between respiratory measures and

RPE (13, 16). As such, this study aims to investigate the

importance of respiratory measures in comparison to HR for

estimating RPE using machine learning methods.
TABLE 1 Modified RPE scale used in this study.

Rating Descriptor
0 Rest

1 Very Easy

2 Easy

3 Moderate

4 Somewhat Strong

5 Strong

6 *

7 Very Strong

8 *

9 *

10 Extremely Strong

The participants were shown the scale before each data capture session. The scale along with

the descriptors was also written in chalk on the 0 m line of the running track. During the

Yo-Yo IR1 tests, the participants were instructed to indicate their RPE level by stepping

on the corresponding number each time they crossed the 0 m line.
2 Materials and methods

2.1 Participants

This study was conducted with the approval of the Research

Ethics Committee of the University of Oxford (R43470/RE001).

For the study, 20 participants, between the ages of 18 to 43, were

recruited. The volunteers were all well-informed on the purpose

of the study and have given written consent to be included in

the publications resulting from this work. All participants

included were self-declared to be healthy and in shape to carry

out the physical activities detailed in the experimental protocol.

All participants resided in the UK and were proficient in English.

Basic information about each participant was collected at the

beginning of each data capture session, which includes age, sex,

and self-reported weight and height. Of the 20 participants, 10

were female and between the ages of 19 to 40, with a weight

distribution ranging between 50 kg and 87 kg, and a height

distribution ranging between 150 cm and 182 cm. The other 10

participants were male and between the ages of 18 to 43, with a

weight distribution ranging between 63 kg and 92 kg, and a
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height distribution ranging between 170 cm and 194 cm. The

participants were invited to two identical data capture sessions

scheduled weeks apart. This was done to capture variability

within each participant and minimize the potential bias due to

environmental factors, as well as to generate more training data

per participant. Out of the 20 participants, 3 had one of their

runs omitted due to equipment failure on the day of the data

capture, and 1 was unable to attend a second session due to

scheduling conflicts. Table 2 shows the max Yo-Yo test level and

max RPE achieved by the participants in each data capture session.
2.2 Experimental setup

In each data capture session, the participant performed a

Yo-Yo intermittent recovery level 1 (Yo-Yo IR1) test (17) on a

hard-surface outdoor multipurpose sports court. The test

consisted of bouts of progressive speed shuttle-running around a

20 m track with 10 s of active recovery, in the form of a short

walk or jog around a 5 m track behind the start line, in between.

The running speed was paced via audio cues, and the test

terminated when two consecutive cues have been missed. The

Yo-Yo IR1 test was chosen for this experiment for its ability to

simulate workloads in sports characterized by intermittent high-

intensity efforts, such as football, rugby, basketball and similar (18).

A modified version of Borg’s Category Ratio 10 scale (CR10)

(13, 19, 20) was utilized to rate perceived exertion (RPE), see

Table 1. Each participant was given an explanation of the RPE

scale and time to familiarize themselves with it at the start of

each session. The RPE level of the participant was recorded at

the start and finish of each shuttle of the Yo-Yo test. To achieve

this, the modified CR10 RPE scale along with the anchor words

corresponding to the RPE level were written at the shuttle run

track (0 m line), and the participant was asked to step on the

writing that represents their RPE level at the time. This was both

recorded by a researcher at the time as well as recorded via a

camera stationed at the 0 m line.

Each participant wore a COSMED K5 (COSMED, Rome, Italy)

portable metabolic machine, and a Polar H10 (Polar Electro Oy,
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TABLE 2 Results from the LOSOCV, N stands for the number of 10-s clips from each participant.

Metadata Linear RFR MLP

Participant R1 Yo-Yo R1 RPE R2 Yo-Yo R2 RPE N RMSE MAE RMSE MAE RMSE MAE
D01 12.2 10 12.2 9 17 1.774 1.509 1.143 0.924 1.468 1.255

D02 14.2 10 14.3 7 50 1.595 1.266 1.137 1.004 1.618 1.142

D03 13.4 10 14.3 10 32 2.377 2.103 2.211 1.903 2.570 2.229

D04 14.2 8 15.1 9 64 1.312 1.155 1.449 1.266 1.433 1.211

D05 NA NA 17.5 10 73 0.785 0.653 1.020 0.848 1.089 0.950

D06 17.8 10 19.4 10 177 3.403 3.260 2.047 1.692 2.245 1.929

D07 14.3 7 NA NA 26 3.199 3.107 1.073 0.917 0.862 0.729

D08 18.1 10 17.5 10 155 2.335 1.698 1.899 1.484 1.778 1.353

D10 14.2 10 14.2 9 67 1.394 1.112 1.243 0.918 2.404 2.142

D11 NA NA 20.1 10 108 3.109 2.736 1.839 1.601 1.603 1.213

D13 13.2 10 13.4 10 23 0.998 0.861 1.607 1.255 1.739 1.374

D14 13.2 10 13.2 10 32 3.501 3.049 3.555 2.988 3.310 2.812

D15 13.1 8 13.4 9 37 1.599 1.413 1.433 1.080 1.441 1.168

D16 15.8 9 16.7 10 111 1.370 1.204 1.948 1.519 1.353 1.155

D17 13.3 7 14.1 10 42 2.136 1.635 2.277 1.948 2.836 2.535

D18 12.3 9 13.2 9 30 1.181 0.883 1.290 0.924 1.596 1.395

D19 13.1 8 NA NA 15 1.174 1.012 0.867 0.735 1.752 1.559

D20 16.2 10 16.2 10 106 1.750 1.476 2.086 1.713 1.898 1.642

D21 11.2 8 12.3 10 18 0.922 0.751 1.423 1.066 1.107 0.807

D24 11.2 8 12.1 8 24 0.924 0.758 2.367 2.152 1.431 1.204

All 1,207 2.263 1.798 1.849 1.461 1.882 1.511

Columns “R1 Yo-Yo” and “R2 Yo-Yo” show the max Yo-Yo text level achieved by the participant in the first round (R1) and the second round (R2) of the data capture, while columns “R1 RPE”
and “R2 RPE” show the max RPE level achieved by the participant in each of these data capture rounds. Each row of the table shows the results of the cross-validation iteration where the data

from the stated participant was selected as the validation set, thus left out of the training set. The last row shows the average performance of each model across all subjects. The RFR model

(highlighted in green) has been shown to have the best performance overall, followed by the MLP model (highlighted in yellow, and finally the linear model (highlighted in red) in last place.
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Kempele, Finland) heart rate monitor throughout the test, enabling

the capture of respiratory frequency (Rf), minute ventilation (VE),

volume of oxygen consumed (VO2) and heart rate (HR). The

COSMED K5 has been validated against the state-of-the-art

stationary metabolic machine and demonstrated reliable accuracy

(21). The Polar H1 heart rate monitor has been validated against

electrocardiography and shown to have acceptable reliability

during exercise (22). In this experiment the Polar H10 was

linked to the COSMED K5 via Bluetooth, and the COSMED K5

was set to breath-by-breath mode for data collection.

Figure 1 shows a snapshot of the experimental setup at the 0 m

line of the Yo-Yo test.
FIGURE 1

This figure shows a participant, wearing the COSMED K5 and a Polar
H10 heart rate strap, at the starting (0m) line at the beginning of a
Yo-Yo test level. The Borg CR10 RPE scale, written in chalk, was
marked in front of the start (0m) line. The participant can be seen
stepping on the number 3, indicating their RPE level was 3 at
that instant.
2.3 Data preprocessing

The RPE and COSMED data were recorded as time series

spreadsheets and synchronized via the COSMED K5’s built-in

GPS which allowed for the identification of the starting point of

the Yo-Yo test. In the HR data, null values were present, likely

due to motion artifacts. This artifact affects around 3% of the

data, all impacted data containing a null value heart rate were

omitted during pre-processing. The data was then divided into

10-s clips with no overlaps, and the average Rf, VE, VO2, HR,

and RPE were obtained from these clips. The average Rf, VE,

VO2, and HR values were then grouped with the participants’

physical characteristics: height, weight, gender, and age, as a set

of features that were available to estimate the RPE.
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2.4 Machine learning model selection

Three regression models were tested using this set of 8 features,

a linear regression (LR) model, a random forest regression model

(RFR), and a multi-layer perceptron (MLP) regression model.

Both the linear model and the RFR model were built using the

scikit-learn python package (23). The MLP was built via the

Tensorflow library in Python3 (24) and consists of two dense

layers with ReLU activation, and a regression layer that is a

single fully connected node with a linear activation function.

The hyperparameters of each model were tuned and the

generalizability of each model was tested using leave-one-

subject-out cross-validation (LOSOCV). In LOSOCV, each cross-

validation iteration involved training the model on data from all

but one participant which is then used to validate the model

(25). The models were evaluated on root-mean-squared-error

(RMSE) and mean-absolute-error (MAE). The results of the

LOSOCV were used to compare the performance of the tuned

models. Finally, using the optimized hyperparameters, each

model was retrained using all the available data for the feature

importance estimation.
2.5 Feature importance

Permutation feature importance (PFI) is a model inspection

technique used to evaluate the significance of individual features

to the prediction accuracy of a model (26). PFI works by

evaluating a trained model using randomly shuffled values for

each feature, simulating scenarios where each feature, in turn,

provides no information to the model, thus measuring the

impact of each feature on the accuracy of the model. Unlike

parameter-based importance which can only be applied to

certain models (such as impurity-based feature importance for

RFR), permutation feature importance is model agnostic and can

be applied to any model. In this study, PFI was used to inspect

the importance of Rf, VE, VO2, HR, height, weight, gender, and

age when estimating RPE using Linear, RFR, and MLP models.
3 Results

The maximum CR-10 RPE reached across the participants

ranged from 7 to 10, with 14 participants reaching level 10, every

participant’s max RPE level is detailed in Table 2.
3.1 Model validation

For the RFR model tuning, the number of estimators was tuned

between 50 to 200 at an increment of 50, and 100 estimators were

found to be the most optimal. For the MLP model, the number of

dense layer units (32, 64, 128), the learning rate (1e�3, 1e�4,

1e�5), and the epoch number (5–20) were tuned, and the final
Frontiers in Sports and Active Living 04
model was built with 128 units per dense layer, trained at 1e�3

learning rate for 15 epochs.

Table 2 shows the detailed test results of the leave-one-subject-

out cross-validation. The RFR model is the most accurate overall,

with a RMSE of 1.849 and MAE of 1:461+ 1:133 when

averaging across all subjects. The RFR model was the second

most consistent model across all subjects in the cross-validation,

with a median of 1.528 and an interquartile range of 0.874 in

RMSE, and a median of 1.261 and an interquartile range of

0.779 in MAE.

The MLP model placed second in overall accuracy but was

found to have performed the most consistently in cross-

validation, with a RMSE of 1.882 and MAE of 1:511+ 1:123

when averaging across all subjects; in LOSOCV, the MLP model

had a median of 1.611 with an interquartile range of 0.640 in

RMSE, and a median of 1.304 and an interquartile range of

0.624 in MAE.

The linear model performed the worst out of the three, with the

highest RMSE (2.263) and MAE (1:798+ 1:374) when averaging

across all subjects. Furthermore, the linear model was the most

inconsistent in the cross-validation, with a median of 1.597 and

an interquartile range of 1.1785 in RMSE, and a median of 1.340

and an interquartile range of 0.953 in MAE.
3.2 Feature importance

PFI was used for each model to estimate the impact of

individual input features for estimating RPE. PFI was repeated 10

times for each model to minimize bias. The output of a PFI

calculation is the decrease in accuracy score of the model when

each feature is randomized. Figure 2 shows the detailed results of

the PFI calculations for each model. For all three models, VE

was identified as the most important feature when estimating

RPE (with median PFI scores of 3.8 for the RFR model, 3.4 for

the MLP model, and 7.2 for the linear model), followed by heart

rate (with median PFI scores of 3.7 for the RFR model, 1.2 for

the MLP model, and 1.9 for the linear model).
4 Discussion

There is a growing interest in capturing perceived exertion

during physical activity as a way to optimize training and

potentially prevent injury due to fatigue. Recent studies already

highlighted the importance of capturing respiratory

measurements in sports. This study aimed to further investigate

the impact of respiratory measures when estimating RPE using

machine learning methods. Heart rate is one of the most

commonly captured physiological metrics in sports, and is often

used as a feature for modelling RPE in the current literature

(5, 9–12, 14). A previous study found that both HR and

respiratory measures can be used as predictors for RPE (13). As

such, this study evaluated the importance of respiratory measures

when modelling RPE alongside heart rate.
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FIGURE 2

Permutation feature importance Boxplots for the three tested models. VE has been identified as the most important when estimating RPE, followed by
HR, consistently across all three models. (A) RFR model feature importance, (B) MLP model feature importance, (C) Linear model feature importance.
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In this study, three regression models were evaluated. The

RFR and the MLP models performed better than the linear

models, which was expected due to their ability to capture

more complex relationships. It was noted that during the

cross-validation, the MLP exhibited signs of over-fitting for

several participants, which was confirmed by allowing early

stopping during the cross-validation. When early stopping is

enabled, the MLP’s accuracy increases measurably, going from

a RMSE of 1.882 and MAE of 1:511+ 1:123 to a RMSE of

1.668 and MAE of 1:299+ 1:046. The early stopping method

is, however, not feasible when training the model with all

available data, as early stopping requires a dedicated validation

set. This shows that the performance of the MLP model is

limited by the cohort size of this study, and has the potential

to achieve much higher accuracy with more data available.

With a larger dataset, it is also possible to further refine the

hyperparameters of the MLP, which can potentially further

improve the accuracy of the MLP.

The Permutation Feature Importance (PFI) calculations

suggested that minute ventilation was the most impactful

feature when modelling RPE across all models. Heart rate was
Frontiers in Sports and Active Living 05
found to be the second most important feature across these

models. It was also shown that VO2 was of less importance

when its margins were compared to VE and HR (VO2 PFI

score median, RFR: 0.660, MLP: 0.354, LR: 0.383). This

finding seems to be in line with earlier findings reported by de

Almeida e Bueno et al. (13), who found minute ventilation to

be better correlated (r ¼ 0:843) with RPE than heart rate

(r ¼ 0:770), and both are better correlated with RPE than VO2

(r ¼ 0:705). These outcomes suggest that respiratory measures

are crucial in understanding fatigue and warrant further

investigations in sports settings. In order to capture perceived

exertion, both respiratory and heart rate-based measurements

should be taken into consideration.

While the collection of respiratory measurements in sports

currently requires the use of expensive and obtrusive equipment,

such as the COSMED K5 used in this paper, a number of recent

studies have shown the possibility of collecting respiratory

measures via more affordable and unobtrusive wearable systems,

in the forms of chest straps (27, 28), instrumented garments

(29), and instrumented mouthguards (13, 30). These systems also

provide the opportunity to directly measure or estimate VE and
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Rf. While measuring VO2 on-field might be impossible without

obtrusive devices capable of gas analysis, it is also import to note

that the results of this study suggest that VO2 might be less

relevant when estimating RPE using cardiorespiratory

measures. When VO2 is omitted from the models presented in

this paper, they achieve a similar level of accuracy to when

VO2 is included as a feature. Without VO2 inclusion, the RFR

model has an average RMSE of 1.794 and MAE of

1:430+ 1:082 (as opposed to a RMSE of 1.849 and MAE of

1:461+ 1:133 when VO2 is also considered), the MLP model

has an average RMSE of 1.956 and MAE of 1:551+ 1:193 (as

opposed to a RMSE of 1.882 and MAE of 1:511+ 1:123), and

the LR model has an average RMSE of 2.173 and MAE of

1:734+ 1:309 (compared to a RMSE of 2.263 and MAE

of 1:798+ 1:374). These findings support the future

possibility of on-field capturing of athletes’ exertion levels

using real-time cardiorespiratory sensing.
4.1 Limitations

Experimental conditions were kept as consistent as possible,

whilst allowing for real-world representation. All measurements

were taken outdoors at the same location. The air temperature

and relative humidity were captured by the COSMED on the

days of the experiments. No corrections for weather conditions

were made in order to increase the generalisability of the results.

The average peak ambient temperature across all tests was

22:85+ 6:06�.
While the sensors used in this study have been shown to be

valid with good accuracy in the literature, they are still prone to

errors that can arise from poor contact due to motion. In the

COSMED data, we detected spikes in the signal that are likely

due to movements of the face mask. Furthermore, the HR data

contained null values throughout the data, possibly due to

temporary loss of adequate skin contact resulting from motion.

The extent of the impact of these errors on the machine learning

models should be further investigated in future studies as motion

artifacts are inevitable in sports scenarios.

Only 80% of the volunteers completed two rounds, either due

to availability conflicts or equipment failure, and around 3% of the

data had to be omitted due to motion artifacts. Participants also

differed in their athletic abilities, as shown by the final level

reached on the Yo-Yo test. The leave-one-subject-out cross-

validation was chosen, to minimize any bias due to these

differences. Furthermore, the MLP model might be able to reach

higher performance if more data were presented. Future studies

should focus on expanding the dataset to capture more data for a

wider range of participants, in order to better facilitate models

that require large datasets. Lastly, our findings are based on a

specific running interval test and the external validity might not

be present for other forms of exercise.

Lastly, the cohort size can be considered small. However, it

should be noted that it was very similar in size to previous
Frontiers in Sports and Active Living 06
published studies that are relevant for this topic Chowdhury

et al. (11) (n ¼ 22); Rossi et al. (15) (n ¼ 22); de Almeida e

Bueno et al. (13) (n ¼ 8); Albert et al. (12) (n ¼ 16). The limited

cohort size would likely negatively impact the generalizability of

this work, for this reason, and the reasons highlighted in the

discussion above, we strongly recommend future studies to

consider a larger cohort.
4.2 Conclusion

In this study, we investigated the feature importance when

estimating RPE from cardiorespiratory measurements using

machine learning methods. We compared three different

regression models, linear regression, random forest regression

(RFR), and multi-layer perceptron (MLP), and found that the

RFR model had the best performance overall, with an average

mean absolute error of 1:407+ 1:091 in a leave-one-subject-

out cross-validation. The feature importance of each machine

learning model was investigated using permutation feature

importance, and we found minute ventilation (VE) to be the

most important feature, followed by heart rate, when

estimating RPE using cardiorespiratory signals. Future works

that aim to estimate RPE using wearable sensors should

therefore strongly consider including respiratory data.
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