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Inter-individual differences in
muscle damage following a single
bout of high-intense whole-body
electromyostimulation
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Frank C. Mooren1,2

1Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten,
Germany, 2DRV Klinik Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
Purpose: This brief report aimed to characterize inter-individual training
responses following a single session of high-intense whole-body
electromyostimulation (WB-EMS) using markers of muscle damage over a
period of 72 h.
Methods: Twelve healthy individuals (5 men, 7 women; 32.0 ± 7 years)
participated in a single 20-minute high-intensity WB-EMS training session.
Markers of muscle damage, creatine kinase (CK) and myoglobin (Mb), were
assessed before and immediately after training, as well as at 1.5, 3, 24, 48 and
72 h post-exercise. Lactate levels were determined pre- and post-exercise.
Results: Overall, WB-EMS induced significant CK elevations, peaking at 72 h
(18.358 ± 21.380 U/L; p < 0.01), and correlating Mb levels peaking at 48 h
(1.509 ± 1.394 ng/dl, p < 0.01). Despite significant inter-individual variability in
CK levels, both slow (SR) and fast responders (FR) were identified. FR showed
significant increases in CK at all time points post WB-EMS (p < 0.05), whereas
CK in SR significantly elevated after 48 h. Post-WB-EMS lactate concentration
was identified to predict peak CK and Mb levels (r≥ 0.65, both p < 0.05).
Conclusion: High-intensity WB-EMS has the potential to induce severe muscle
damage, as indicated by elevated levels of CK and Mb. We identified two distinct
groups of individuals, SR and FR, indicating variability in response to WB-EMS.
Furthermore, we suggest that individual responses to WB-EMS can be
predicted based on post-WB-EMS lactate concentration.
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Introduction

In the past decade, research on whole-body electromyostimulation (WB-EMS) has

increased significantly, demonstrating its efficacy in altering body composition and

enhancing performance across various health conditions and age groups (1, 2). This has

led to a massive increase in WB-EMS centers and available home-training supplies,

bringing WB-EMS to a large and often untrained population. Since WB-EMS

application stimulates up to eight muscle groups simultaneously, the potential risks

associated with too-intense and unsupervised use should not be underestimated.

Excessive WB-EMS training, characterized by intense current impulses, may lead to

severe muscle damage predominantly in untrained, unaccustomed users, characterized

by significant increases in serum creatin kinase (CK) and myoglobin levels (3, 4).
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Both CK and Mb are commonly used as markers of training

intensity, influenced by various factors such as exercise type and

individual physiological variations, including ethnicity and age

(5). CK, a central enzyme in muscle cellular energy metabolism,

facilitates the transfer of phosphate between creatine phosphate

and adenosine triphosphate (ATP), providing energy, especially

during short, intense exercise. Elevated blood levels of the CK-

muscle type isoform, primarily found in skeletal muscle, indicate

muscle damage or injury (5–7). Similarly, myoglobin (Mb),

which stores and transports oxygen in muscle tissue, follows a

parallel pattern. When muscle damage occurs, both CK and Mb

are released into the bloodstream, marking muscle injury,

typically defined as exertional rhabdomyolysis when CK levels

exceeding 1,000 U/L (8). In case of Mb, it is important to

consider its solubility during severe muscle damage, as Mb

accumulation in the renal tubulus can lead to Mb-induced

nephropathy, posing a risk to kidney health (9).

Given the current scientific focus on individual responses to

(standardized) training (e.g., high vs. low responding) and sex-

specific differences in physiological training adaptation (10–13),

it is of particular interest to investigate the individual response to

intense WB-EMS training since knowledge is still limited.

Additionally, identifying markers that may indicate unfavorable

outcomes is crucial. This report examines the inter-individual

WB-EMS response by assessing serum CK and Mb levels over a

time course of up to 72 h and analyzes potential predictors for

the extent of muscle damage. Notably, we intentionally applied a

non-recommended protocol for an initial WB-EMS application
TABLE 1 Peak values of muscle damage markers following WB-EMS by respo

Subject Sex Age Height Weight SM

[Years] [cm] [kg] [kg]

Fast responder (FR)
1 Female 28 172.6 73.1 29.3

2 Male 44 183.2 81.2 37.1

5 Male 32 195.4 103 46.6

9 Female 27 170.0 65.3 27.0

10 Female 33 162.0 55.3 22.0

Mean 33 176.6 75.6 32.4

SD 7 12.9 18.1 9.6

Slow responder (SR)
3 Female 29 170.8 72.3 26.2

4 Female 23 174.0 72.1 27.6

6 Female 34 176.4 82.4 30.0

7 Male 33 185.0 85.5 39.2

8 Female 42 176.0 61.9 27.0

11 Male 18 169.0 74.1 34.8

12 Male 37 177.0 72.7 33.9

Mean 31 175.5 74.4 31.2

SD 8 5.2 7.7 4.9

Overall MEAN 31.7 176.0 74.9 31.7

SD 7.4 8.7 12.3 6.8

Subject values are given as absolute and peak values; group values (FR, SR) are given as mean and
aafter 48 h.
bafter 72 h.

*p < 0.05.

**p < 0.01.

***p < 0.001; SMM, skeletal muscle mass; CK, creatine kinase; CRP, C-reactive protein; peak val
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to provoke unusually high physiological responses, particularly in

WB-EMS novices, deviating from the established guidelines for

WB-EMS (14).
Materials and methods

Twelve (5 male; 7 female) healthy and recreationally active

WB-EMS novices (for characteristics see Table 1) performed one

single high-intensity session of WB-EMS training using an

established protocol (3). Written informed consent was obtained

from all participants. The study adhered to the ethical principles

of the Declaration of Helsinki and was approved by the ethics

committee of University Witten/Herdecke (#91/2018). Participants

had no history of cardiovascular or musculoskeletal diseases,

orthopedic problems, or contraindications for WB-EMS (15).
WB-EMS session

The clinically supervised WB-EMS session took place between

7 and 9 am at the medical rehabilitation center Klinik Königsfeld,

Ennepetal, Germany. Prior to the WB-EMS session and during the

time course, participants were instructed to maintain their usual

activity level, nutrition, and hydration status.

The CE-certified WB-EMS device and equipment (miha

bodytec type-II, Gersthofen, Germany) was utilized as described

(1, 16), in combination with an established load protocol
nse.

M Lactate CK Myoglobin CRP

[%] [m/mol] [U/L] [mg/dl] [mg/dl]

40.1 1.96 4,919a 515.7a 0.58b

45.7 2.87 27,501b 3,064.9a 0.45b

45.2 4.82 33,071b 2,579.3a 1.01b

41.3 2.95 32,701b 2,608.3a 0.11b

39.8 5.05 74,354b 7,097.4b 1.03b

42.4 3.53 34,511* 3,173.1** 0.64***

2.8 1.34 25,088 2,405.5 0.39

36.2 1.79 1,398b 219.1a 0.26

38.3 3.02 8,135b 921.2a 0.05

36.4 1.70 585a 129.8a 0.11b

45.8 3.58 5,331b 558.3a 0.17b

43.6 4.31 9,898b 1,694.5b 0.07b

47.0 2.40 20,029b 1,083.4b 0.08

46.6 3.34 2,581b 365.4b 0.14b

42.0 2.88 6,851 710.2 0.13

4.9 0.96 6,759 558.7 0.07

42.2 3.15 18,375 1,736.4 0.34

4.0 1.13 21,369 1,970.5 0.36

standard deviation (SD). Statistical significance was tested using repeated measures ANOVA.

ue.
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(biphasic, 85 Hz frequency, 350 µs pulse width, 0.4-s pulse ramp,

and a 3:2 current-rest ratio of 6 s vs. 4 s) (3). The WB-EMS

session (20 min; 4 sets, 6 exercises with 5 repetitions each) was

conducted dynamically, with stimulation applied primarily on

top of eccentric muscle contractions, including movements such

as squatting, lunge movements and combined arm movements

(2). Individual current adjustments were applied to ensure

muscular exhaustion, defined as rating of perceived exertion

(RPE) of ≥18 via the 6–20 Borg Scale (17). Close monitoring,

with a ratio of 1 trainee to 1 trainer, ensured standardized

movement patterns throughout the session.
Assessments

Anthropometric data were obtained using the seca216 (seca,

Hamburg, Germany) for height measurement and a direct-

segmental multi-frequency bioelectrical impedance analysis device

(Inbody720, BioSpace, Seoul, Korea) for weight, skeletal muscle

mass (SMM), and extracellular water (ECW) assessment, serving

as indicator for training-induced plasma volume shifts. Blood

samples were collected from the antecubital vein pre and

immediately post WB-EMS, and at five additional time points

(after 1.5, 3, 24, 48, and 72 h), and analyzed at SYNLAB MVZ

Laboratory GmbH (Leverkusen, Germany) for CK, Mb, and

C-reactive protein (CRP). To monitor muscle damage-induced

rhabdomyolysis, participants were instructed to promptly report

changes in urine color during the timespan of 72 h. Lactate

concentration was measured using capillary pre and post blood

samples taken from participants’ earlobes (20 μl heparinized

capillary) using the Biosen S-line automated analyzer (EKF

Diagnostics, Magdeburg, Germany). Muscle exertion was assessed

through maximal isometric leg strength testing (extension and

flexion) pre and post WB-EMS using DIERs myoline professional

device (DIERs Biomedical Solutions, Schlangenbad, Germany).
Statistical analysis

Statistical analyses were conducted using SPSSv23 software

(IBM, Armonk, NY, USA) and Prism 9.2 (GraphPad Software,

La Jolla, CA, USA). Data are presented as mean ± standard

deviation (SD). Statistical significance was set at p < 0.05. Non-

normal distribution was assessed using Kolmogorow-Smirnov

Test. Differences from baseline and differences between

responding groups were analyzed using repeated measures

ANOVA. Correlation analysis of peak values was performed

using the bivariate Spearman correlation coefficient (r).
Results

Participants completed the protocol at a RPE of 18.3 ± 1.0,

resulting in muscle fatigue, as evidenced by a reduced maximal

isometric strength (leg extension: −145.8 ± 64.3 N, p < 0.001; leg

flexion: −41.8 ± 52.8 N, p < 0.05). The protocol was performed
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under aerobic conditions, with a mean post-exercise lactate

concentration of 3.15 ± 1.13 mmol/L (p < 0.05). ECW remained

constant after WB-EMS (− 0.06 ± 0.27 L; p = 0.072), indicating

no significant shift in plasma volume.

Immediately post-exercise, initial signs of muscle damage were

identified through a significant increase in overall CK (pre-exercise,

178 ± 192 vs. post-exercise, 198 ± 201 U/L; p < 0.001) and Mb

concentrations (pre-exercise, 38 ± 12 vs. post-exercise, 204 ±

183 ng/dl; p < 0.05). Subsequently, WB-EMS induced substantial

and exponential elevations in both mean CK levels (at 1.5 h:

302 ± 219; 3 h: 486 ± 341; 24 h: 3,320 ± 3,421; 48 h: 10,584 ±

10,865; and 72 h: 18,375 ± 21,369 U/L) and Mb levels (at 1.5 h:

482 ± 479; 3 h: 457 ± 572; 24 h: 379 ± 347; 48 h: 1,510 ± 1,394;

and 72 h: 1,320 ± 1,924 ng/dl). Peak levels were predominantly

observed after 48 h for Mb and after 72 h for CK (all p < 0.05);

with a strong correlation between CK and Mb concentrations

(r = 0.977; p < 0.001).

Substantial inter-individual variability was evident regarding

the maximal levels in both muscle damage markers, ranging

from 585 to 74,354 U/L for CK and 130–7,097 ng/dl for Mb (see

Table 1 and Figure 1).

Upon closer examination of individual time courses over time,

two distinct profiles were identified, categorized as slow responders

(SR) and fast responders (FR). A comparison between both groups

revealed significant differences for CK at 3 h (p = 0.019), 24 h

(p = 0.013), and 48 h (p = 0.013), and Mb after 1.5 h (p = 0.035),

24 h (p = 0.011), and 48 h (p = 0.025), with FR exhibiting

higher peak levels for CK (34,511 ± 25,088 U/L) compared to SR

(6,851 ± 6,759 U/L; p = 0.018) and for Mb (FR: 3,173 ± 2,406 vs.

SR: 710 ± 559 ng/dl; p = 0.009). Additionally, CRP showed a

highly significant time × group effect at 72 h, with elevations only

in the FR group (p < 0.001).

Of importance, individual characteristics such as sex, age, SMM,

or RPE did not affect maximal levels of CK and Mb. Notably, post-

WB-EMS lactate levels exhibited a strong correlation with

subsequent peak levels of both muscle damage markers, suggesting

predictive potential for an individual WB-EMS response (CK:

r = 0.648, p = 0.02; Mb: r = 0.681, p = 0.01; Figure 2).
Discussion

This report aimed to highlight the inter-individual variability

in muscle damage induced by WB-EMS and to identify potential

predictive factors for long-term CK and Mb elevations. A key

finding is the identification of two distinct inter-individual

response profiles to WB-EMS, with the extent of muscle

damage potentially predictable by measuring post-WB-EMS

lactate concentrations.

In general, markers of muscle damage exhibit heterogeneous

increases depending on the type, extent, and intensity of exercise.

For instance, CK levels can range from approximately 1,000 U/L

after conventional resistance exercise to as high as 80,000 U/L

following exhaustive eccentric exercise. While established

laboratory reference values for CK typically fall between 60 and

400 U/L, various thresholds have been defined to categorize
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FIGURE 1

Individual time course of muscle damage markers (creatin kinase, myoglobin) and acute inflammation marker C-reactive protein by
responder category.

FIGURE 2

(A) Post-WB-EMS lactate levels predict muscle damage. Correlation and linear regression of peak creatine kinase (CK) and myoglobin levels with post-
WB-EMS lactate concentration. Individual data points are shown. ****, significant correlation using bivariate Spearman correlation coefficient (r).
(B) Time-course of CK levels identifies two distinct WB-EMS responder profiles. Mean CK values at the respective time points are shown. Curves
were modelled using nonlinear fourth order polynomial regression. #, significant between-group interaction effect using two-way repeated-
measures ANOVA, p < 0.0001. *, significantly different at time point, p < 0.05.
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responses to exercise: low responders defined as <500 U/L, medium

responders between 500 and 2,000 U/L, and high responders as

>2,000 U/L (18). However, WB-EMS is known to substantially

increase CK and Mb levels—by as much as 100-fold and 40-fold,

respectively (3, 4)—when specific quality criteria are not met

(15). This suggests that conventional response categories may not

be entirely appropriate for WB-EMS application.

The current report not only provides further evidence that low

and high responders to WB-EMS exist in terms of muscle damage,

but our observation revealed two distinct groups based on time-

dependent CK increases. The FR (fast responder) group

exhibited a direct increase of CK and Mb immediately after WB-

EMS (subjects 01, 02, 05, 09, 10; see Figure 1), suggesting a

heightened sensitivity or reactivity to the WB-EMS stimulus. In

contrast, the SR (slow responder) group demonstrated a delayed

progression, with serum concentrations remaining constant for

up to 24 h and showing ∼80% lower peak levels (subjects 03, 04,

06, 07, 08, 11, 12; see Figure 1). These temporal patterns may

depend on various factors, including genetic and epigenetic

factors, fiber type composition, and environmental or behavioral

aspects (6, 19, 20). Notably, CK and Mb levels in our study

appeared to be independent of sex, age and SMM.

In addition, we found that post-exercise lactate concentrations

could serve as a predictor of the subsequent development of muscle

damage markers. Thus, measuring capillary lactate levels during

and immediately after an initial WB-EMS session may serve as

valuable tool to (1) prevent excessive WB-EMS intensity, (2)

provide individualized post-WB-EMS information on potential

development of muscle damage, and (3) tailor personalized

recovery strategies before the next WB-EMS session.
Perspectives and significance

The inter-individual differences in muscle damage response

highlight the importance of tailored training regimes. With two

distinct response profiles—slow and fast responders—post WB-

EMS lactate levels have shown promise as a predictive indicator

of muscle damage. Routine monitoring of lactate concentration

during and/or after WB-EMS may provide a simple, cost-

effective method to adjust training intensity, particularly for

newcomers. This monitoring approach ensures tailored recovery

periods and regeneration strategies and minimizes the risk of

injury from overuse. Further research should investigate whether

acute lactate concentrations, comparable to CK levels, decrease

over time with repeated WB-EMS sessions, potentially indicating

improved muscle adaptation and tolerance to strain.
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