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1Department of Sports Sciences, University of Beira Interior, Covilhã, Portugal, 2Research Centre in
Sports, Health and Human Development (CIDESD), Covilhã, Portugal, 3Research Centre for Active
Living and WellBeing (LiveWell), Bragança, Portugal, 4Department of Sports Sciences, Instituto
Politécnico de Bragança, Bragança, Portugal
The aim of this study was to conduct a scoping and bibliometric review of
articles using artificial intelligence (AI) in tennis. The analysis covered various
aspects of tennis, including performance, health, match results, physiological
data, tennis expenditure, and prize amounts. Articles on AI in tennis published
until 2024 were retrieved from the Web of Science database. A total of 389
records were screened, and 108 articles were retained for analysis. The
analysis identified intermittent gaps in publication output during certain
intervals, notably in the years 2007–2008 and 2012–2013. From 2012 onward,
there was a clear upward trend in publications and citations, peaking in 2022.
The theme was led by China, the United States, and Australia. These countries
maintain their status as the top contributors in terms of publications. The
analysis of author collaborations revealed multiple clusters, with notable
contributions from researchers in China, Australia, Japan, and the United
States. This bibliometric review has elucidated the evolution of AI research in
tennis, highlighting the countries and authors that have significantly
contributed to this field over the years. The prediction model suggests that the
number of articles and citations on this topic will continue to increase over
the next decade (until 2034).
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1 Introduction

Tennis has experienced significant changes in recent decades (1). This globally

practiced sport enjoyed both recreationally and competitively, requires players to

continually develop and master essential technical skills for effective performance

during matches. As the world’s second most popular sport, trailing only soccer, tennis

is played in 195 countries and boasts an estimated 87 million fans — individuals who

have played tennis at least once — representing about 1.17% of the global

population (2, 3).

Historically, tennis was primarily a technical sport, with a strong emphasis on specific

skills such as stroke techniques. However, it has evolved into a more dynamic and

explosive sport, characterized by increased serve and stroke velocities, and significantly

higher physical demands (4, 5). The physical fitness levels of tennis players are now

critical in determining match outcomes, particularly in competitions where players have

closely matched skill levels (6, 7). To compete at the highest level, athletes now require

a holistic combination of speed, agility, and power, coupled with moderate to high

aerobic capacity (1). Supporting these physical demands are critical cognitive and

psychological processes (8, 9). Players must exhibit exceptional reactive abilities,
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anticipation skills, and decision-making skills while maintaining

mental fortitude to cope with fatigue, the pressure of high-stakes

points, and the draw of significant extrinsic rewards like ranking

and lucrative endorsements (10–12). The stop-and-start nature of

tennis competitions further adds to the complexity (5).

Computational intelligence has developed into a powerful

instrument in recent years for optimizing athletic performance in

a variety of sports. With huge possibilities for future growth in

the upcoming years, interest in AI and its subcategories is

expanding at an exponential rate (13).

Applied scientists find machine learning (ML) to be an effective

instrument in this dynamic and data-rich environment (14, 15). In

terms of both research and practical application, the USA has been

recognized as a leader in the application of AI in sports. Artificial

intelligence has been utilized for player and game analysis for

several years, mostly in baseball and American football (16).

AI and its subcategories, ML and deep learning have both seen

significant growth in recent years. Therefore, the term AI is used

even when referring to ML or deep learning in individual

publications (17). The vast majority agree that AI is just a

machine-implemented form of human intelligence. An approach to

AI called ML describes computer systems that can learn from

experiences or examples without explicit programming. In the

domain of automatic feature discovery through representation

learning, deep learning has also become a key methodology for ML

implementation as an artificial neural network-based method (17).

The availability (i.e., quality and quantity) of data, which has a

significant impact on the performance of AI models, has been one

of the causes supporting the exponential growth of AI in recent

years, as has the ongoing enhancement of the related techniques

(18). Additionally, many people are finding it easier and more

accessible to create ML models thanks to user-friendly open-

source programming libraries like PyTorch (19) and scikit-learn

(20). These factors have made it possible for AI to gradually

make progress into sports contexts and applications, opening up

an array of new possibilities (21, 22).

A significant bibliographic dataset has resulted from the

research situation about AI technologies in sports, which makes

manual examination unfeasible. To identify and justify new

research necessities, the relevant research and structures must be

thoroughly examined to uncover existing knowledge, challenges,

and research shortcomings.

Bibliometric analysis is a promising method that is growing to

become increasingly significant in many areas of research. For

instance, bibliometric analyses are used to investigate the

intellectual structures of specific fields based on their respective

literature bases, as well as to identify new trends, collaborative

features, and research aspects (23, 24). While traditional review

approaches must concentrate on a reasonable amount of

literature, bibliometric techniques (together with meta-analyses)

are particularly promising and appropriate to assist in

understanding of the massive quantity of material (25).

Furthermore, although bibliometric analysis depends more on

quantitative approaches than conventional systematic literature

reviews, it can prevent or at least lessen the impact of scholarly

interpretation bias (24).
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Although AI has changed various aspects of sports science, a

bibliometric review regarding the applications of AI in tennis

remains an under-explored topic. While several systematic

reviews have explored various applications of ML in tennis

(26–31), no bibliometric review has specifically examined the

applications of AI in tennis. Therefore, the aim of this study was

to conduct a comprehensive scoping and bibliometric review of

articles on AI in tennis. The objectives were to analyze the

chronological distribution of publications and citations, to map

the network of contributing countries/regions and institutions,

and to identify the most influential journals and authors in this

research domain. This review aims to provide a clearer

understanding of the trends, collaborations, and key contributors

in the field of AI applications in tennis.
2 Methods

2.1 Data source and search strategy

With over 250 fields covered, the Web of Science (WoS)

incorporates reliable worldwide citation databases spanning all

areas of research (32). For several journals chosen according to

the index, the WoS list offers comprehensive details on

definitions, coverage remarks, and the most significant impact

factor score (32). Numerous bibliometric studies, particularly

those on sports, have made extensive use of it (33, 34). For this

reason, the database used in this bibliometric review is the WoS

Core Collection (WoS by Clarivate Analytics).

The search spanned until June 1, 2024, and several strategies

were developed to account for the recent emergence of the topic.

Utilizing a comprehensive approach, the search strategy entailed

combining the term “tennis” with various AI-related

terminologies using the Boolean operator “AND/OR” (35). These

terminologies encompassed “artificial intelligence”, “machine

learning”, “deep learning”, “neural network”, “support vector

machine”, “nearest neighbor”, “random forest”, “Bayesian logistic

regression”, and “predictive modeling”. This search strategy

aimed to capture all relevant studies investigating the application

of AI and its subfields, including machine learning, within the

domain of tennis.
2.2 Inclusion and exclusion criteria

The following inclusion criteria were applied: (i) written in

English; (ii) articles involving tennis; (iii) articles with data

analyzed with ML algorithms, deep learning, or other AI

techniques; (iv) articles related to, but not limited to,

performance, health, match results, physiological data and other

relevant aspects; (v) articles focused on tennis players, including

humans and robots. Exclusion criteria were: (i) articles written in

languages other than English; (ii) articles lacking information on

critical information to ascertain the use of AI techniques; (iii)

articles focused on other sports (i.e., football, basketball, etc.).
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2.3 Screening process

Two reviewers examined the titles and abstracts of the selected

papers independently. When an article’s eligibility was

questionable, the entire text was obtained. The same two

reviewers evaluated the eligibility requirements and checked

through the articles published in the integral. These reviewers

conducted two independent rounds of evaluation for each article.

The article’s complete content was assessed after the title and

abstract were assessed. Disputes involving eligibility were settled

by conversation and, if required, with the help of a third reviewer.

The WoS search yielded 389 records, of which 111 were

duplicates and were therefore excluded. Additionally, 18 articles

were excluded by automation tools (filtered to identify only

articles written in English). The remaining 260 studies were then

assessed by reading the relevant sections. 152 studies that did not
FIGURE 1

Flowchart of the review.
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meet the inclusion criteria (104 articles were focused on other

sports, 36 articles used other statistical methods and 12 articles

were in another language) were excluded. Finally, a total of 108

articles met the defined criteria and were included in the review.

Figure 1 shows the identification, screening, and inclusion of the

articles from the WoS database for the review. When full-text

publications were accessible, further information was retrieved

for an in-depth study, including the approach and results.
2.4 Analytical methods and tools

The bibliometric data was extracted and analyzed using

specialized software. The measurement program VOSviewer

(https://www.vosviewer.com), created by Van Eck and Waltman,

is based on Java and is intended for use in the creation and
frontiersin.org
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display of bibliometric networks (36). These networks can be built

based on citation, bibliographic coupling, co-citation, or co-

authorship links, and they comprise journals, researchers, or

individual publications. As a result, in the cooperative network

visualization and the co-sponsorship network visualization,

distinct clusters were visually represented by different colors, and

collaborative relationships were indicated by lines linking nodes.

Specifically, the average publication year graph’s colors designate

distinct years, making temporal analysis easier. The various

densities are also reflected in the color spectrum, especially on

density graphs where denser locations are shown by redder colors.

The assessment of individuals (primarily authors, institutions,

journals, and countries) based on bibliographic information is

included in the first category. Scientific mapping, which is the

second category, examines the connections across disciplines,

fields, specializations, individual articles, and authors through a

geographical visual representation of bibliometric networks.

Therefore, by examining the earlier categories in the VOSviewer

program, a comprehensive evaluation of the applications of ML

in tennis was completed.

The number of years after a document was published has a

substantial correlation with its citation count (37). A manuscript

that was published earlier will often have had more time to gain

citations than one that was released recently. Consequently, raw

citation counts are not a valid indicator of publication impact.

For this reason, the citation analysis in this study was normalized

to take into consideration variations in the years of publication,

enabling a more precise evaluation of the influence of academic

publications. To reduce the bias brought on by variations in

publication dates in citation practices, normalization is crucial in

bibliometric analysis (38). As a result, each article’s total number

of citations was divided by the publication’s age, which was

determined by subtracting the present year from the year of

publication. Additional information regarding the calculation of

the metric can be found in (39).

Additionally, using Excel’s exponential smoothing, the

number of papers expected to be published in the next ten

years (until 2034) was estimated based on historical publication

trends using “=FORECAST.ETS” function (Microsoft, Microsoft

365, Washington, USA) (40). This makes it possible to evaluate

time-series data and generate forecasts or predictions based on

previous trends.
3 Results

3.1 Progression of publications by year

Between 2006 (the year of the first publication with ML in

tennis) and 2024, the WoS database contained a total of 108

articles related to AI in tennis. Figure 2A shows the publication

output regarding AI in tennis research during the period from

2006 to 2024. Figure 2B shows the citation output regarding AI

in tennis research during the period from 2006 to 2024. The

yearly publication trends reveal intermittent gaps in certain time

intervals with no publications, particularly in the years 2007–
Frontiers in Sports and Active Living 04
2008 and 2012–2013. Despite these gaps, there is an overall

upward trend in publications on the topic until 2022. After 2022,

however, there is a noticeable decline in annual publications,

with 24 records in 2022, 18 in 2023, and 5 in 2024. Notably, the

largest number of articles was published in 2022, with 24 articles

focusing on AI in tennis.

Regarding the yearly citation trends demonstrate intermittent

gaps in certain time intervals with no citations, particularly in

2008. Despite these gaps, there is a clear upward trend in

citations on the topic until 2023. After 2023, however, there is a

marked decrease in annual citations, with 176 citations in 2023

and 54 in 2024. Notably, the largest number of citations was

recorded in 2022, with 140 citations related to ML in tennis.

The exponential smoothing estimation model showed an

average of 13.36 ± 2.74 articles per year (95% confidence

intervals: −5.30; 32.01) that may be published between 2025 and

2034. For citations, the estimation model indicated an average of

139.14 ± 20.88 citations (95% confidence intervals: 69.47; 208.82)

per year between the same time periods.
3.2 Web of science (WoS) categorization

The study field can be categorized, and potential

interdisciplinary linkages might be found by examining the

categories within the WoS. Figure 3 presents the analysis of the

WoS categories. The top-ranking fields are Engineering Electrical

Electronic (n = 33 publications), Computer Science Artificial

Intelligence (n = 31 publications), Sports Sciences (n = 18

publications), Computer Science Information Systems (n = 15

publications), Computer Science Theory Methods (n = 14

publications), Telecommunications (n = 11 publications),

Computer Science Interdisciplinary Applications (n = 9

publications), Engineering Multidisciplinary (n = 9 publications),

Instruments Instrumentation (n = 7 publications), Materials

Science Multidisciplinary (n = 7 publications).
3.3 Analysis of countries/regions and
institutions

A total of 34 countries and regions have contributed to ML in

tennis research, according to the country of the corresponding

author. In particular, the historical perspective highlights the

development of global research. In the first five years after the

publication of the first article, ML in tennis was led by only six

countries (People’s Republic of China, Singapore, France,

Slovenia, Thailand and Tunisia).

Over the next five years, however, researchers from eight

countries/regions (England and India), along with the

aforementioned People’s Republic of China, Singapore, France,

Slovenia, Thailand and Tunisia, significantly expanded their

involvement.

The distribution of the number of articles by country/region is

shown in Figure 4. The top ten countries and regions were People’s

Republic of China (n = 46 publications) with 39% of the total
frontiersin.org
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FIGURE 2

Publication output on AI in tennis by year and estimated number of articles for the next 10 years. The red solid line represents the estimate, and the red
dashed lines represent the 95% confidence intervals (A); Citation outputs related to AI in tennis research by year and the estimated number of citations
for the next 10 years. The red solid line represents the estimate and the red dashed lines the 95% confidence intervals (B).
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publications, followed by Australia (n = 11 publications), Japan (n = 8

publications), England (n = 6 publications), USA (n = 6 publications),

Poland (n = 4 publications), Singapore (n = 4 publications), India

(n = 3 publications), Iran (n = 3 publications), and New Zealand

(n = 3 publications).

Co-authorship cluster analysis, which determines the

relatedness of articles based on the number of co-authored

documents, was performed on 11 countries/regions that

produced at least 3 articles from the 34 countries/regions that

published articles about AI in tennis and had international

collaboration among their authors.
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Figure 5 shows the visualization map of the collaboration

network created by VOSviewer (panel A) and the visualization

map of the timeline network created by VOSviewer (panel B).

According to the results of the clustering analysis, six different

clusters were formed: cluster 1: Australia, England, Peoples r China,

and Singapore; cluster 2: Japan, New Zealand and USA; cluster 3:

India; cluster 4: Iran; cluster 5: Poland and cluster 6: Slovenia. In

addition, the total link strength scores were calculated, indicating

the strength of cooperation among the countries. The top 10

countries/regions with the highest total link strength scores were:

Peoples r China = 5, Singapore = 4, Australia = 3, England = 2,
frontiersin.org
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FIGURE 4

The top ten countries/regions in AI and tennis research.

FIGURE 3

Top 10 Web of science categories for AI in tennis research.
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Japan = 2, New Zealand = 2 and USA = 2. The remaining countries/

regions have a total link strength of 0, indicating that they do not

form a cluster with other countries.
3.4 Analysis of journals and conferences
chapters

A total of 121 journals and conferences were involved in

publishing about AI in tennis. The top ten journals and

conferences chapters are: Applied Sciences Basel (n = 5

publications), Sensors (n = 4 publications), Computational

Intelligent and Neuroscience (n = 3 publications), IEEE Access

(n = 3 publications), Journal of Sports Sciences (n = 3

publications), Lecture Notes in Computer Science (n = 3

publications), Soft Computing (n = 3 publications), Wireless
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Communications Mobile Computing (n = 3 publications),

Advances in Nano Research (n = 2 publications), and IEEE

Computer Society Conference On Computer Vision And Pattern

Recognition Workshops (n = 2 publications).
3.5 Analysis of authors

Since 2006, 310 researchers have contributed to the advancement

of research in this specific topic. The use of visualization maps can

provide valuable insights into potential collaborators, helping

researchers to establish productive partnerships.

Using a threshold of 2 documents per author, Figure 6

allows the visualization of eigth distinct clusters. As shown in

the figure, the research landscape in this domain is mainly

a divided network of small clusters. The presence of two
frontiersin.org
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FIGURE 5

The cooperation network visualization map of institutions based on VOSviewer (A); The cooperation network visualization map of institutions based on
VOSviewer with the timeline (B).

FIGURE 6

The cooperation network visualization map of authors based on VOSviewer (A); The cooperation network visualization map of authors based on
VOSviewer with timeline (B).
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clusters constituted by seven members participating in the

collaboration is noteworthy.

The top 10 most active authors, based on the number of

documents, are Reid M. (n = 8), Gu SS. (n = 3), Kovalchik S. (n= 3),

Powroznik P. (n= 3), Skublewska-paszkowska M. (n= 3), Bacic

B. (n = 2), Chen XY. (n= 2), Duffield R. (n = 2), Fan MJ. (n = 2) and

Gao W. (n= 2).
3.6 Analysis of keywords

In combination keyword clustering can be used to

identify hot spots in the field of study as well as new

trends and patterns in a topic’s development. It can provide
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insight into an academic field’s internal structure as well as

its research frontier.

The co-occurrence keyword analysis is displayed in Figure 7.

Different clusters can be seen if a threshold of four occurrences

per keyword is applied. More occurrences and more

representativeness of the hotspots in the field are indicated by

larger dots. The more lines that indicate the number of times

two keywords occur in the same article, the stronger the

relationship is between the nodes. The various colors stand for

various clusters, or study topics, and the blue to yellow color

scale indicates the appearance time. Therefore, the clusters

emerged with the following keywords: cluster 1 (classification,

machine learning, neural network, performance, racquet sports,

sport and tennis); cluster 2 (action recognition, computer vision,
frontiersin.org
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FIGURE 7

Keywords clustering map based on VOSviewer (A); Keywords clustering map with the timeline based on VOSviewer (B).
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deep learning, support vector machine and tracking); cluster 3

(biomechanics, internet of things, sports and wearable sensors).

Table 1 shows the link strength of each keyword and the number

of occurrences.
3.7 Analysis of references

Since 2006, publications in this area have been cited 627

times in total without self-citations. The top five normalized

cited references are detailed in Table 2, which shows the

average citations per year for each article. Notably, the

article with the highest normalized citation value is by the

author Whiteside et al. with the article entitled “Monitoring

Hitting Load in Tennis Using Inertial Sensors and Machine

Learning” (41).
TABLE 1 Keyword’s link strength and number of occurrences in AI and
tennis research.

Keyword Occurrences Total Link Strength
Classification 4 5

Machine learning 14 20

Neural network 5 4

Performance 6 8

Racquet sports 6 2

Sport 6 7

Tennis 15 17

Action recognition 4 6

Computer vision 6 7

Deep learning 17 18

Support vector machine 6 5

Tracking 5 4

Biomechanics 5 5

Internet of things 4 10

Sports 6 7

Wearable sensors 5 7
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4 Discussion

4.1 Comprehensive analysis

The aim of this study was to conduct a comprehensive

scoping and bibliometric review of articles using AI in tennis.

From the bibliometric analysis of the use of AI in tennis, it is

evident that there has been an unstable yet overall upward

trend in research publications and citations. The analysis

identified intermittent gaps in publication output during certain

intervals, notably in the years 2007–2008 and 2012–2013, which

reflects variability in research activity. Despite these gaps, the

peak in publication numbers occurred in 2022 with 24 articles,

while citation activity reached in 2023 176 citations. This

suggests increased research interest and recognition of the

importance of AI in tennis during these years. The subsequent

decline in both publications and citations post 2022 indicates a

potential change. However, the exponential smoothing

estimation model predicts an average of 13.36 ± 2.74 articles per

year and 139.14 ± 20.88 citations per year between 2025 and

2034, suggesting sustained interest in AI research in tennis in

the coming years.

Additionally, the Web of Science categorization reveals that AI

in tennis research spans multiple disciplines, with the most

prominent fields being Engineering Electrical Electronic,

Computer Science Artificial Intelligence, and Sports Sciences.

This interdisciplinary approach underscores the comprehensive

impact of AI technologies in various aspects of tennis, from

performance analysis to equipment innovation.

Furthermore, a total of 34 countries have contributed to

research, showcasing a global collaborative effort. Notably, China

has emerged as a leading contributor, with significant input also

from countries such as Australia, Japan, and the United States.

This geographic distribution highlights the global recognition of

the potential benefits of AI in enhancing tennis performance

and strategy.
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TABLE 2 Top five cited references in AI and tennis research detailing the citation index.

Rank Title First author
(year)

Citation
Index

1. Monitoring Hitting Load in Tennis Using Inertial Sensors and Machine Learning (41) Whiteside et al. (2017) 8.43

2. Deep historical long short-term memory network for action recognition (42) Cai et al. (2020) 7.25

3. Differentiating movement styles in professional tennis: A machine learning and hierarchical clustering approach (43) Giles et al. (2023) 7

4. A machine learning approach for automatic detection and classification of changes of direction from player tracking
data in professional tennis (44)

Giles et al. (2020) 6.75

5. RNN-Based Quadratic Programming Scheme for Tennis-Training Robots with Flexible Capabilities (45) Jin et al. (2023) 6
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4.2 Keywords analysis and research
hotspots

This bibliometric review offers critical insights into the

evolving landscape of AI research in tennis, focusing on

identifying emerging research hot spots through a comprehensive

keyword analysis. The analysis identifies three primary clusters,

each representing a significant concentration of research efforts

and advancements in AI applications within tennis. These

clusters not only map the current research landscape but also

indicate promising directions for future studies, marking them as

research hot spots.
4.2.1 Performance analysis and optimization
(cluster 1)

The first cluster is characterized by keywords such as

classification, ML, neural network, performance, racquet sports,

sport, and tennis. This cluster underscores the pivotal role of AI

in performance analysis and optimization. Research in this area

leverages sophisticated ML algorithms and neural networks to

classify player movements, predict performance outcomes, and

refine training regimens (46–48). The specific focus on tennis

highlights the tailored application of these technologies to

enhance athlete performance. Studies within this cluster

emphasize the development of data-driven insights and

personalized training strategies, essential for maintaining a

competitive advantage in the sport (49, 50). The advancements

in this area are crucial for developing more precise and effective

performance enhancement techniques, enabling athletes and

coaches to optimize training programs based on evidence and

predictive analytics.

Recent developments in AI, particularly in ML and neural

networks, have allowed for more detailed and accurate

performance analysis (51–53). The ability to classify and analyze

specific movements and techniques offers invaluable feedback for

athletes, enabling them to refine their skills and strategies.

Additionally, the predictive capabilities of AI can help anticipate

performance trends and outcomes, allowing for proactive

adjustments in training and competition strategies.
4.2.2 Technological integration and innovation
(cluster 2)

The second cluster is defined by keywords such as action

recognition, computer vision, deep learning, support vector
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machine, and tracking. This cluster focuses on the integration of

advanced AI technologies into tennis. Research aims to develop

sophisticated systems for action recognition and tracking,

employing techniques like support vector machines to improve

accuracy and efficiency (54–57). These innovations enable real-

time analysis of player movements and game dynamics,

providing critical feedback for performance enhancement. The

application of cutting-edge technologies such as computer vision

and deep learning reflects the sport’s adaptation to modern

advancements, bridging traditional methods with progressive

AI solutions.

In particular, computer vision technology has revolutionized

the way player movements and game dynamics are analyzed. By

processing video footage in real-time, these systems can track

player positions, movements, and interactions with unprecedented

precision. This capability not only enhances performance analysis

but also facilitates the development of strategic insights that can

be applied during matches. Deep learning algorithms further

enhance these systems by improving the accuracy and reliability

of action recognition and tracking (58–60). The integration of

these technologies into training and competition settings

represents a significant advancement in the sport, providing

players and coaches with powerful tools to enhance performance

and strategy.
4.2.3 Biomechanics and wearable technology
(cluster 3)

The third cluster is characterized by keywords such as

biomechanics, sports, and wearable sensors. This cluster

highlights the connection between biomechanics and wearable

technology. Research in this area focuses on the use of wearable

sensors to collect detailed biomechanical data, which is then

analyzed to monitor player performance (61, 62). This cluster is

particularly relevant for injury prevention and rehabilitation, as

well as for optimizing training techniques based on

biomechanical insights. The advancements in this field signify a

move towards more comprehensive and real-time monitoring of

athletes, enhancing both performance and safety.

Moreover, wearable technology has become increasingly

sophisticated, with sensors capable of capturing a wide range of

biomechanical data, including movement patterns, muscle

activity, and joint angles (63). This data provides a detailed

understanding of the physical demands and stresses placed on

athletes during training and competition. By analyzing this
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information, researchers and trainers can identify potential injury

risks and develop targeted interventions to prevent injuries and

enhance recovery. This holistic approach to performance

monitoring and injury prevention is essential for maintaining

athlete health and longevity in the sport.
5 Implications for the future

The identification of these clusters through keyword analysis

underscores the dynamic and evolving nature of AI applications

in tennis. As the sport continues to bridge tradition with

advancement, the insights from these clusters offer several key

implications for the future.

First, the ongoing research in performance analysis and

optimization will continue to provide athletes and coaches with

valuable data-driven insights, fostering personalized and effective

training methodologies. The advancements in ML and neural

networks will enhance the ability to classify and predict

performance, enabling more precise and effective training

interventions. The integration of computer vision and deep

learning technologies will pave the way for innovative solutions

that enhance real-time performance monitoring and feedback,

transforming traditional training and game analysis. These

technologies will provide players and coaches with actionable

insights that can be applied during matches, improving strategic

decision-making and performance outcomes.

A continued exploration of these identified hot spots will

further solidify the role of AI in tennis, supporting

interdisciplinary collaborations and the development of novel

applications in sport. The integration of AI technologies into

tennis represents a significant advancement in the sport, offering

new opportunities for research and innovation that align with

the sport’s history.
6 Conclusions

This bibliometric review allowed us to understand the

evolution of articles published on the use of AI in tennis.

Although the research activity has shown intermittent gaps, there

has been a consistent increase in publications and citations,

particularly peaking in 2022 and 2023. The prediction model

indicates that the number of articles and citations on this topic
Frontiers in Sports and Active Living 10
will continue to grow until 2034. Three main research clusters

were identified (Performance Analysis and Optimization,

Technological Integration and Innovation, and Biomechanics and

Wearable Technology). These clusters highlight AI’s pivotal role

in enhancing performance, integrating advanced technologies,

and improving biomechanics. The ongoing research in these

areas will continue to drive innovation and interdisciplinary

collaboration in tennis.
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