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The application of Artificial Intelligence (AI) and Computer Vision (CV) in sports
has generated significant interest in enhancing viewer experience through
graphical overlays and predictive analytics, as well as providing valuable
insights to coaches. However, more efficient methods are needed that can be
applied across different sports without incurring high data annotation or
model training costs. A major limitation of training deep learning models on
large datasets is the significant resource requirement for reproducing results.
Transfer Learning and Zero-Shot Learning (ZSL) offer promising alternatives to
this approach. For example, ZSL in player re-identification (a crucial step in
more complex sports behavioral analysis) involves re-identifying players in
sports videos without having seen examples of those players during the
training phase. This study investigates the performance of various ZSL
techniques in the context of Rugby League and Netball. We focus on ZSL and
player re-identification models that use feature embeddings to measure
similarity between players. To support our experiments, we created two
comprehensive datasets of broadcast video clips: one with nearly 35,000
frames for Rugby League and another with close to 14,000 frames for Netball,
each annotated with player IDs and actions. Our approach leverages pre-
trained re-identification models to extract feature embeddings for ZSL
evaluation under a challenging testing environmnet. Results demonstrate that
models pre-trained on sports player re-identification data outperformed those
pre-trained on general person re-identification datasets. Part-based models
showed particular promise in handling the challenges of dynamic sports
environments, while non-part-based models struggled due to background
interference.

KEYWORDS

artificial intelligence, computer vision, transfer learning, zero-shot learning, player
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1 Introduction

Interest in Artificial Intelligence (AI) and Computer Vision (CV) to transform how

viewers experience sports has increased over the past decade. Various downstream tasks

have benefited from these methods, including predictive analysis (1, 2) and broadcast

commentary (3, 4), and have provided informative insights to help coaching staff
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predict or prevent injuries (5, 6). However, there is a need for more

efficient methods that can be applied to any sport, regardless of the

budget and viewership of the governing body. CV techniques have

influenced many major sporting leagues for decades, such as MLB,

where CV tools (radar guns and LiDAR scanners) have been used

for 15 years to estimate game statistics such as ball velocity, spin

rate, and movement as part of their Statcast system (7). Similarly,

the NBA just launched Spiderverse-like cinematics using

NBA-voice-trained generative AI tools to supplement basketball

game experience (8) for the viewers, or in the National Football

League (NFL), where graphical overlays are placed on-screen

based on helmet detection models (9).

Smaller sporting leagues may be unable to compete with these

experiences because of the data acquisition (e.g., 12 cameras per

pitch field for Statcast) and development cost, including the time

and cost required to annotate large datasets. This is also a trend

within the wider area of Deep Learning, where alternative

methods include transfer learning, in which models are trained

on large datasets from one domain and then applied to another

similar domain, potentially with fine-tuning (10, 11). This is

common for object detection, in which many models are pre-

trained using very large datasets, such as the MS COCO dataset

(12). This is relevant to sports where downstream applications,

such as performance analysis (13–16), injury prevention (5, 17),

tactical analysis (18–21), video event annotation (22), and video

summarization (23) to name a few, rely on simple underlying

action recognition and re-identification models, which have been

widely researched in the CV community.

Compared to generic video footage, videos of sporting events

typically benefit from background homogeneity. The background,

such as a field or court for many team sports, remains constant,

with fewer distractors during the video. This simplifies

distinguishing or segmenting individuals from the background

compared with other applications. However, other aspects of

sports make the transfer of models from other tasks challenging.

An example of this is re-identification methods that may rely

on the clothing worn by individuals to match individuals

between observations. Re-identification in sports is particularly

challenging due to the dynamic nature of the environment and

the frequent occlusions that occur during gameplay. Players’

movements are rapid and often unpredictable, leading to

significant variations in pose and appearance. Furthermore, while

team uniforms provide some consistency, they can also introduce

ambiguity as all players on a team wear similar attire, making it

difficult to distinguish between them using clothing alone. Sports

videos often involve multiple cameras with varying angles,

resolutions, and lighting conditions, adding another layer of

complexity to the re-identification task. The problem is further

compounded by the fact that players frequently interact closely,

which can result in partial occlusions and overlapping body

parts, making it difficult to extract clear and distinct features for

each player.

Another alternative method is Zero-Shot Learning (ZSL), a

Machine-Learning technique that recognizes objects, categories,

or instances without seeing any labeled examples of those objects

during the training phase. Instead of relying on labeled training
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data for each specific category, ZSL leverages auxiliary

information to transfer knowledge from seen classes (those with

training data) to unseen classes (those without training data)

(24). This approach is particularly valuable when collecting

labeled data is impractical or infeasible. One specific method of

ZSL that is particularly relevant to our study is the use of feature

embeddings derived from pre-trained models for similarity

measurement. In this approach, a model is first trained on a

large dataset with labeled instances to learn rich feature

representations. These learned feature embeddings capture

essential characteristics and can be used to measure the similarity

between new instances and known categories. For ZSL, the pre-

trained model’s feature embeddings of seen classes are used to

represent unseen classes by mapping them into a common

embedding space. The similarity between an unseen instance and

the known instances is then calculated using metrics such as

Cosine Similarity or Euclidean distance.

This study investigates the effectiveness of ZSL for player re-

identification in sports, using Rugby League and Netball as case

studies. We test multiple existing methods to determine the

effectiveness of different models pre-trained on out-of-domain

datasets for our unseen datasets. In our ZSL testing environment,

the re-identification models pre-trained on sports data

(specifically, soccer) excelled in the task of Rugby/Netball player

re-identification, while the models pre-trained on the person re-

identification datasets were less effective. We also observed that

part-based re-identification models outperformed the non-part-

based models (regardless of the dataset content they were pre-

trained on).

The rest of the paper is organized as follows: Section 2 details

the principles of re-identification with a focus on sports

applications, namely player re-identification. The next section

describes the creation of our datasets, player IDs, action

annotations, the re-identification models, and the metrics used

for comparative results. Section 4 summarizes the results of our

experiments. We conclude the study in Section 5.
2 Player re-identification

Re-identification of human characters has long been a major

research area, with the first real-time approaches relying mostly

on Markov Random Field models or Kalman filtering for real-

time (15 to 30 frames per second) pedestrian detection and

tracking for re-identification tasks (25, 26). Player re-

identification, in the context of sports, is a crucial task involving

recognizing and matching individual players’ observations across

various video frames or camera views. This capability is vital for

more complex analysis [such as player and team’s behaviour

(27)]. It has become an integral part of many processing

pipelines aiming to improve team and individual player

performance, prevent injuries, and develop infotainment and

game analysis applications, to name a few. The use of Global

Positioning Systems (GPS) tags (28, 29) and an instrumented

mouthguard (30) in Rugby League and Rugby Union provides

readily available positioning in the field of all players and
frontiersin.org
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FIGURE 1

Player-crop examples in our Rugby League and Netball sub-datasets. Using these crops, we have created two re-identification datasets for ZSL
evaluation purposes.
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valuable information on impacts; such systems are typically

too expensive to deploy outside professional leagues. GPS data

is generally treated as confidential within teams and seldom

shared beyond specific studies, as it offers direct access to

team strategies and detailed individual player performance.

Consequently, visual information captured by a single camera or

multiple cameras placed around the playfield often becomes the

primary available source, presenting several challenges:

• Visual Similarity: Players on the same team typically wear

identical uniforms, making it difficult to distinguish between

them based on appearance alone. While jersey numbers and

names can help, they are often not visible in all video frames

due to motion blur or occlusions.

• Occlusions and Interactions: Players frequently overlap,

especially in close-contact sports, leading to partial or

complete occlusions of individual players. Additionally, it

becomes challenging to separate individual players from the

group when many players are clustered together.

• Dynamic Movements: Rapid changes in player position due to

running, jumping, or other movements cause significant

variations in appearance and motion blur, reducing the clarity

of the player’s features in the video frames.

• Varying Conditions: Variations in lighting conditions, whether

due to indoor vs. outdoor settings or changing weather

conditions, affect the visibility and clarity of players.

Furthermore, differences in camera angles, zoom levels, and

resolutions across different games or venues introduce

variability that models must handle effectively.

Several reviews of state-of-the-art methods for player re-

identification (for sports applications) have been published

recently (19, 31). Current methods can be categorized as using

(i) vision transformers which capture both global and local

features, thus improving accuracy despite inherent motion blur

and occlusions (15, 16); (ii) Convolutional Neural Networks

(CNNs) for multi-object tracking across sports (20, 21); (iii)

self-supervised learning targeting players with nearly identical

visual features (13); (iv) and attention mechanisms for refined

feature extraction (18). While the study (32) reports improved

robustness and accuracy in player positioning using multiple

camera views, the need for exact synchronization of 2D video

feeds across the field and inherent inaccuracies in triangulation
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techniques may diminish the overall benefits. A promising

framework integrating the above methods for various

applications, e.g., live analytics and automated broadcasting

commentary, is ZSL, where a given class of objects/actions is

categorized without prior examples of such objects/actions being

used during the machine learning training stage. This is

particularly suited for sports video feeds where players do tend

to appear or disappear suddenly and where actions may change

in a supposedly unpredictable manner. In the case of players’

re-identification, ZSL can take advantage of a dataset where

semantic (players’ respective position and actions) and visual

information (in the bounding box surrounding a player) can be

used to discriminate between known and unknown classes, e.g., a

new player entering the field of view (16).

Looking at an ideal but demanding environment for testing

ZSL re-identification models, we created two re-identification

datasets of Rugby League and Netball broadcast videos (see

Figure 1). The uniform appearance of players, frequent physical

interactions leading to occlusions, rapid and varied player

movements, and changing camera viewing angles contributed to

the complexity of accurately identifying players’ tasks. These

datasets allowed us to effectively assess the robustness of ZSL

using pre-trained re-identification models (whether trained on

person re-identification datasets or sports-specific datasets). This

rigorous testing environment ensured that the benchmark

methods/models tested were generalizable to other sports or

scenarios with similar complexity. We also extended these

re-identification datasets to have corresponding masked versions

to analyze the models’ behavior in the presence or absence of the

background for player identification purposes. By masking out

the background, we aimed to isolate the player features and

determine how background context influences the model’s ability

to correctly re-identify players. This approach allowed us to

investigate the robustness of the models further in scenarios

where background information could either aid or hinder the re-

identification process, providing deeper insights into model

generalization across varying environments.

Before presenting the state-of-the-art methods for player

re-identification, it is essential to understand the general

principles of person re-identification. In general, person

re-identification is critical in distributed multi-camera

surveillance systems, which aims to identify if a particular
frontiersin.org
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individual, referred to as the query person, has been recorded in

another location at a different time, either by a different camera

or the same camera at a separate time. As an instance-level

recognition problem, person re-identification encounters two

primary challenges. Firstly, there is significant intraclass variation

due to changes in camera viewing conditions. Secondly, there are

minimal interclass variations, as individuals in public spaces

often wear similar clothing. From a distance, as typically

observed in surveillance videos, they can appear remarkably

similar to Zhou et al. (33). Earlier methods primarily focused on

low-level attributes, including color, shape, and local descriptors

(34). In recent years, Deep Learning has revolutionized the

domain of person re-identification. CNNs have become the

cornerstone of this field, excelling in feature extraction through

end-to-end training and diverse metric learning losses (35–37).

Many approaches rely on a global strategy to tackle person re-

identification, which involves learning a global representation of

the individual as a single feature vector (38, 39). However, these

global methods struggle with occlusion challenges due to two

main reasons (40):
1. The global representation may capture misleading appearance

information from surrounding objects and individuals,

leading to inaccurate identification.

2. When dealing with occluded images, comparing only the

visible body parts in both images is crucial. Global methods

fall short in this aspect, as they utilize the same overall

feature for every comparison, preventing effective part-to-

part matching.
TABLE 1 Player states defined in Rugby League and Netball datasets.

Sport State #Annotations
(%)

Description

Rugby Stationary 27,701 (38.63%) The player is stationary and can be
in any posture as long as no
motion is clear.

In motion 36,848 (51.39%) The player is moving at any speed,
jogging, walking or sprinting.

Being
tackled

7,154 (9.98%) The player (the ball carrier) makes
contact with one or more players.

Netball Stationary 9,367 (31.72%) The player is stationary and can be
in any posture as long as no
motion is clear.

In motion 12,090 (40.95%) The player is in motion.

Has ball 8,070 (27.33%) The player is holding onto the ball.
Due to the limitations of global-learning-based approaches,

recent research has increasingly focused on part-based person re-

identification (40–45). This approach divides the target person’s

appearance into distinct parts. By focusing on specific body parts

visible in both images, part-based methods can effectively

mitigate the issues caused by occlusions and ensure more

accurate matches.

Building on these advancements in person re-identification,

its principles have also been applied to player re-identification

in sports (31). When it comes to player re-identification,

the challenges become even more pronounced. The dynamic

and fast-paced nature of sports activities leads to frequent and

severe occlusions, with players constantly moving and interacting

with each other and with various elements of the playing

field. For this reason, part-based person re-identification

models like BPBreID (40) have been used for sports data and

player re-identification purposes. For instance, PRTreID (46)

is a multi-purpose part-based person representation method

designed to perform role classification, team affiliation, and re-

identification tasks using a single backbone. The technique

employs the BPBreID model (40) with an HRNet-W32

backbone (47) to extract body-part-based features from soccer

videos, incorporating additional objectives for team affiliation

and role classification.
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3 Materials and methods

3.1 Data collection

We collected two datasets for professional Rugby League and

Netball games to test ZSL for player re-identification, focusing on

National Rugby League (NRL) games that are online (a total of

211 clips were collected for Rugby League and 152 for Netball.).

We incorporated negative matches based on similar actions to

create re-identification datasets encompassing many complex

scenarios. By doing so, we aimed to challenge the ZSL

approaches. This involves selecting negative instances where

players perform the same or similar actions but are different

individuals. By accessing the actions, we can ensure that the

datasets include positive matches, where the same player is

identified with a different action, and carefully curated negative

matches with nearly the same actions, making them more

challenging and realistic. As such, possible Rugby League and

Netball game actions (see player’s states in Table 1 and game

actions in Figures 2 and 3) were created, listing the name and

textual description of the actions. For example, “playing the ball”

in Rugby League refers to when a tackled ball carrier, after

regaining their feet, plays the ball backward using their foot

(heeled) (see Figure 4).
3.2 Annotation

We manually annotated a total of 34,473 frames for Rugby

League and 13,771 frames for Netball. On each frame, a player

can described by a state and a possible action; this results in

more than one annotation per frame when more than one player

is involved in the action. For Rugby League data, we annotated

718 players, resulting in a total of 71,703 state annotations and

16,781 action annotations. For Netball data, we annotated 299

players, including a total of 29,527 state annotations and 1,679

action annotations. Figures 2, 3, and Table 1 contain a detailed

ethogram for actions and states annotated in both datasets.

Five annotators labeled all videos in our dataset, typically all

key players related to the actions of interest (either carrying,
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FIGURE 2

Distribution of the Rugby League player actions. The pie chart illustrates the distribution of the player actions in the dataset, with each segment
representing the percentage of occurrences for each action. Action descriptions are also provided.

FIGURE 3

Distribution of the Netball player actions. The pie chart illustrates the distribution of the player actions in the dataset, with each segment representing
the percentage of occurrences for each action. Action descriptions are also provided.
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passing, or receiving the ball, or involved in actions that would

interfere with the ball movement) in these clips using the CVAT

annotation platform (48). Bounding box tracks were annotated

for each player involved in the play of interest. The process

could be described as selecting a bounding box around a

player, typically first choosing the player carrying the ball at

the start of the clip (See Figure 5 center image), and the

action displayed as listed in the tabulated list of actions (see

Figure 5 right image). Each player found to be interacting with

the ball was added to a temporary list, and a new label,

bounding box, and action were attached to them. Players were

marked as occluded when they became unrecognizable, and

the bounding boxes persisted through changes in camera view,

common in sports feeds. Once all relevant bounding boxes to

the short video clip game are labeled, a refinement process

would go frame by frame through the image to adjust both

bounding box size, location, and attached action. The whole

process can take 10 to 30 minutes for 30 s clips or about

1,000 images.
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3.3 Re-identification dataset

A widely adopted approach for assessing player re-identification

techniques involves dividing the test dataset into two distinct parts:

query images and a gallery set. This approach compares each query

image against the gallery set to identify potential matches. The

gallery observations are ranked based on their similarity or distance

to the query image, allowing for identifying the most likely

matches. This ranking process helps evaluate the effectiveness of

re-identification models by determining how accurately they can

match players across different images. To construct our re-

identification dataset, we gathered 100 samples, each consisting of a

query image paired with a gallery set of ten images. Within each

gallery set, nine images represent negative matches, while one is

positive. To create a challenging environment for evaluating

ZSL re-identification approaches, we carefully selected negative

matches where the players performed the same or similar actions

and wore jerseys of similar colors to the query player. We used

images of the same individual performing different actions for the
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FIGURE 4

An example of the actions in the Rugby League dataset: “playing the ball” refers to when a tackled ball carrier, after regaining their feet, plays the ball
backward using their foot (heeled).

FIGURE 5

Snapshots of the annotation process on CVAT; top: annotation speed-up option, center: the current frame in the video clip, and right: The tabulated
list of actions.
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positive match, ensuring that the re-identification models are

rigorously tested under varied and demanding conditions. To

further evaluate the behavior of pre-trained re-identification

models, we also created masked versions for the Rugby League and

Netball datasets. This additional analysis allows us to investigate

how the models perform when the background is present or

removed. Masking the background is particularly useful for

evaluating re-identification models because it isolates the players,

forcing the models to rely more heavily on the players’ appearance
Frontiers in Sports and Active Living 06
and actions rather than on contextual cues such as the field,

lighting, or surrounding players. This helps determine how well the

models generalize to varying environments and situations,

ultimately providing a more robust assessment of their ability to

focus on player-specific features. We used the bounding boxes

around the players to generate the masks as inputs to a YOLOv9

(49) segmentation model. While YOLO provided a strong initial

estimate for the masks, it struggled in cases where multiple players

were occluded or when they were closely packed within the crop.
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These occlusions led to imperfect segmentation, requiring us to

refine the masks in such cases to ensure accuracy manually.

Figure 6 illustrates several examples from our re-identification

datasets, showing both the original images and their corresponding

masked versions.
3.4 Evaluation metrics

We used Top-k and mean Average Precision (mAP) to evaluate

the performance of the re-identification models. Top-1 measures

the proportion of times the correct match (i.e., the positive

match) is the highest-ranked result in the gallery set. Top-3

assesses the frequency with which the correct match appears

within the top 3 ranked results.Top-5 assesses the frequency with

which the correct match appears within the top 5 ranked results.

mAP is a summary metric that combines precision and recall to

evaluate the overall performance of the re-identification model. It

considers the ranking of all correct matches and provides a single

score that reflects the quality of the entire ranking list.
3.5 Experimental design

For ZSL based on similarity, especially in re-identification, the

key strategy is to map the test datasets (our re-identification

datasets) into a common feature space for effective similarity

measurement. We compare seven re-identification models pre-

trained on person re-identification datasets and six pre-trained

on sports re-identification datasets. Each dataset sample

comprises a query and a gallery set. For a given query, its feature

vector is compared against the feature vectors of the gallery set

using Cosine Similarity. The ranking process is based on the

obtained distances, with the smallest distance receiving the

highest rank. The focus is applying knowledge transfer

techniques to analyze sports video data, particularly Rugby

League and Netball footage, using ZSL without further training.

Transferring knowledge and mapping visual features to a shared

feature space aims to improve the re-identification of players (in

unseen video clips that were never used for training the original

model). The following shows descriptions of the models used in

our study.

3.5.1 Person re-identification models
MuDeep (50): z multi-scale Deep Learning model designed for

re-identification aims to learn discriminative feature representations

at various scales while automatically determining the optimal

scale weighting for their integration. The MuDeep network

architecture is built upon a Siamese network, enhancing its ability

to learn and evaluate features at different scales for effective cross-

camera matching.

HACNN (51): it is a lightweight network architecture for jointly

Deep Learning attention selection and feature representation to

optimize person re-identification. This model innovatively combines

the joint learning of soft pixel attention and hard regional attention

with the simultaneous optimization of feature representations,
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specifically designed to enhance person re-identification in

uncontrolled and misaligned images.

PCB (42): a person re-identification model to learn

discriminative part-informed features. The network has two main

components: (1) a part-based convolutional baseline module,

which processes an input image to produce a convolutional

descriptor composed of several part-level features, and (2) a

refined part pooling module to address the issue of uniform

partitioning, which often results in outliers within each part that

are more similar to other parts. The part pooling module

reassigns these outliers to their most similar parts, enhancing

within-part consistency and improving the overall feature

representation.

MLFN (52): it is a multi-level factorization network designed to

learn identity-discriminative and view-invariant visual factors

across multiple semantic levels. The network comprises multiple

blocks, each containing several convolutional layers. The output

vectors at various blocks provide compact latent semantic

features at their corresponding levels. MLFN enhances

performance by concatenating these multi-level semantic features

into a Factor Signature feature and combining it with the final-

layer deep feature, which is then subjected to a training loss.

OSNet (33): a person re-identification model focusing on

omni-scale feature learning. The core innovation lies in its

residual block design, featuring multiple convolutional streams

that each capture features at distinct scales. A significant

aspect of OSNet is the unified aggregation gate, which

dynamically merges multi-scale features through input-

dependent channel-wise weights. The architecture employs

pointwise and depthwise convolutions to learn spatial-channel

correlations while preventing overfitting effectively. By layering

these blocks, OSNet achieves a highly lightweight structure

capable of being trained from scratch on existing re-

identification benchmarks.

OSNet-AIN (53): it is an omni-scale model capable of learning

feature representations that are both discriminative (to differentiate

between similar-looking individuals), and generalizable (to be used

across various datasets without needing adaptation). Similar to

OSNet (33), OSNet-AIN aims to capture features at multiple

spatial scales and integrate them into omni-scale features. Its

core building block consists of several convolutional streams,

each targeting features at a specific scale. A unified aggregation

gate dynamically combines these multi-scale features with

channel-wise weights, enabling omni-scale feature learning. To

further enhance the generalizability of feature learning, OSNet-

AIN integrates instance normalization (IN) layers into OSNet,

addressing cross-dataset inconsistencies.

BPBreID (40): a model for occluded person re-identification

that employs a body part attention module and a global-local

representation learning module. Using feature maps extracted

from a ResNet-50 backbone (54), the Body Part attention module

generates attention maps to highlight body parts, utilizing a

pixel-wise part classifier trained with body part attention loss.

The global-local representation learning module produces holistic

and part-based features, facilitating part-to-part matching

during inference.
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FIGURE 6

Randomly selected samples from our re-identification datasets (including their masked version). In each row, the first image is the query, the next nine
player images are negative matches, and the last image shows a positive match for the selected query.
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TABLE 2 The parameter configurations for all the selected models.

Model name Input size Output size #Params #Flops model_version
Person Reid MuDeep 256 � 128 1� 4096 134,943,377 3,349,749,761 mudeep

HACNN 160� 64 1� 1024 4,507,928 546,321,164 hacnn

PCB 256 � 128 1� 12288 23,508,032 4,053,270,528 pcb_p6

MLFN 256 � 128 1� 1024 32,473,024 2,771,421,376 mlfn

OSNet 256 � 128 1� 512 2,193,616 978,878,352 osnet_x1_0

OSNet-AIN 256 � 128 1� 512 2,193,616 978,878,352 osnet_ain_x1_0

BPBreID 256 � 128 1� 512 34,862,150 8,000,211,968 bpbreid

Player Reid ResNet-50 256 � 128 1� 512 24,558,144 4,054,319,616 resnet50_fc512

OSNet-soccer 256 � 128 1� 512 2,193,616 978,878,352 osnet_x1_0

DeiT-Tiny 224 � 224 1� 192 5,523,840 1,078,819,008 deit_t_16

ViT-B 224 � 224 1� 512 57,692,928 11,279,979,008 vit_b_16

ViT-L 224 � 224 1� 512 303,876,097 59,739,064,832 deit_l_16_ls

PRTreID 256 � 128 1� 512 34,862,150 8,000,211,968 bpbreid

1Torchreid is a library for deep-learning person re-identification, written in

PyTorch.
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3.5.2 Sports player re-identification models
We selected six different network architectures (31)

pre-trained on ImageNet and then trained/fine-tuned on the

train split of the SoccerNet Re-Identification Challenge 2022

dataset (55).

ResNet-50 (54): it consists of stacked residual blocks that use a

bottleneck architecture, making it computationally efficient while

still being powerful. The used model has an extra fully connected

layer of 512 output channels trained for player re-

identification purposes.

OSNer-soccer (33): it is similar to the person re-identification

model discussed above but trained on the soccer data. For this

reason, we rename it OSNer-soccer in this study.

DeiT-Tiny (56): it is based on the transformer architecture,

which was originally developed for natural language processing

(NLP). In DeiT, images are split into fixed-size patches (16x16

pixels), then linearly embedded and fed into the transformer as

tokens. DeiT introduces a novel distillation token for knowledge

distillation, where a teacher model guides the learning of the

transformer. We used its smallest variant followed by dense

layers to get the final feature vector for re-identification purposes.

ViT-B (57): ViT applies the transformer architecture to CV

tasks by treating images as sequences of patches. Unlike

traditional CNNs, ViT splits an image into fixed-size patches,

embeds them linearly, and feeds these embeddings into a

standard transformer encoder. Its base version has 12

transformer layers, 12 attention heads, and a hidden size of 768,

which serves as a benchmark model. We used this architecture

followed by dense layers to get the final feature vector for re-

identification purposes.

ViT-L (57): it is a larger variant of ViT-B with 24 layers, 16

attention heads, and a hidden size of 1,024. We used this

architecture followed by dense layers to get the final feature

vector for re-identification purposes.

PRTreID (46): it is a multi-task learning model that addresses

three core challenges in sports video analysis: player re-

identification, team affiliation, and role classification. By

integrating these tasks into a single neural network with a shared

backbone, the model generates rich, multi-purpose embeddings,

improving the overall performance across tasks. It uses the
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discussed BPBreID model (40), with HRNet-W32 backbone (58),

to extract body-part-based features for players in soccer videos

and adds two objectives for training the model: team affiliation

and role classification.

Table 2 shows the parameter configurations for all the

selected models.
3.5.3 Feature extraction
The selected re-identification models were employed to

extract features from our prepared Rugby League and Netball

datasets for ZSL purposes. All person re-identification models

were pre-trained on the Market-1501 (59) and CUHK03 (60)

datasets. We utilized the Torchreid1 library (33, 53, 61) to

build the models and load the corresponding weights,

extracting features effectively. Specifically, we applied MuDeep,

HACNN, PCB, MLFN, OSNet, and OSNet-AIN to obtain the

corresponding feature vectors directly. For BPBreID, a part-

based re-identification model, the process is more intricate as

it outputs multiple feature vectors. These include holistic

features (fg , fc, fc) and part-based features ( f1, . . ., fk), where fg
represents the global feature vector, ff denotes the local feature

vector, fc is the concatenated feature vector, and k indicates

the number of selected body parts (we kept the default setting,

k ¼ 5). Given that fg and fc might incorporate information

from occluding objects (40), we opted to concatenate

ff , f1, . . ., fk as the final feature vector to mitigate this issue.

The sports player re-identification models were also pre-

trained on soccer video footage. We leveraged the repository

provided by Comandur (31) on GitHub to load the weights

and extract the features necessary for our analysis. Regarding

the other part-based re-identification model, PRTreID, we did

the same as BPBreID for the output feature vectors.
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TABLE 3 Numerical evaluations on the Rugby League (in green) and Netball (in yellow) re-identification datasets, including Top-k, mAP, and runtime
shown by t per each sample (the query and gallery set). The runtimes exclude the time needed to load the models.

Model name Top-1 (%) Top-3 (%) Top-5 (%) mAP (%) t (s)
Person Reid MuDeep 23 31 46 46 62 62 40.32 46.01 0.195 0.181

HACNN 30 40 52 54 65 72 47.08 54.18 0.176 0.182

PCB 36 29 59 52 69 67 51.81 46.36 0.144 0.126

MLFN 23 34 52 63 68 78 43.49 53.37 0.259 0.241

OSNet 22 21 47 54 64 62 40.41 41.70 0.258 0.240

OSNet-AIN 30 25 42 50 65 66 44.25 43.26 0.284 0.265

BPBreID 47 40 71 65 85 80 62.76 56.52 0.113 0.134

Player Reid ResNet-50 48 32 70 52 78 68 62.30 47.86 0.090 0.112

OSNet-soccer 48 30 67 59 78 70 61.36 48.46 0.091 0.043

DeiT-Tiny 42 25 75 51 84 65 61.06 43.38 0.152 0.110

ViT-B 42 25 65 49 76 58 57.69 42.33 0.245 0.244

ViT-L 54 40 76 57 84 67 67.01 54.37 0.522 0.439

PRTreID 50 47 81 68 84 81 65.81 61.51 0.128 0.104
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4 Experiments

Given the prepared Rugby League and Netball re-identification

datasets, we extracted feature vectors for each player image,

including query sets and their corresponding gallery sets. All

experiments used Intel(R) Core(TM) i7-9800X CPU with a single

NVIDIA GeForce GTX 1,660 Ti GPU. For each query feature

vector, we calculated the Cosine Similarity distance to each

feature vector in the corresponding gallery set and ranked them

accordingly. A feature vector in the gallery set receives the

highest rank if it has the minimum distance to the query feature

vector, contributing to the overall Top-1 score. Furthermore, the

top three and five ranked feature vectors contribute to the Top-3

and Top-5 scores, respectively. Table 3 presents the numerical

evaluations for each model utilized in our ZSL approaches. We

first discuss the results for each dataset separately.

• Rugby League: regarding the Top-1 scores, the ViT-L model

stands out with the highest score of 54%, indicating its

capability for accurate initial re-identification compared to the

other models. Close contenders are PRTreID, OSNet-soccer,

and ResNet-5 models with scores of 50%, 48%, and 48%,

respectively. On the lower end, OSNet has the lowest Top-1

score of 22%, making it the least effective model in this

evaluation. We have almost the same trends for the other

scores: Top-3, Top-5, and mAP. Overall, the results show that

the re-identification models pre-trained on soccer data

excelled in the task ZSL Rugby League re-identification. In

contrast, the pre-trained models on the person re-

identification datasets were less effective (except BPBreID, a

part-based re-identification model).

• Netball: the PRTreID model emerged with the highest

performance across all metrics, achieving the best scores for

Top-1 (47%), Top-3 (68%), Top-5 (81%), and mAP (62%).

Following closely, the BPBreID model also demonstrated

strong results. This indicates that part-based re-identification

models outperformed other models for the Netball dataset.

Considering the Rugby League and Netball datasets, several key

observations emerge. For the Rugby dataset, non-part-based
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re-identification models like ViT-L, OSNet-soccer, and ResNet50

performed better compared to when they were tested on the

Netball dataset. This could be attributed to the fact that these

models were pre-trained on soccer data, which shares similarities

with Rugby League regarding background, allowing the models

to utilize background features for similarity measurements.

However, part-based methods did not perform significantly on

the Rugby dataset, as we excluded the background features for

the ZSL and similarity measurements. This trend aligns well with

the results from the Netball dataset, where the background

differs significantly from soccer. As a result, the ZSL based on

non-part-based models could not benefit from background

similarity, and therefore, part-based models outperformed them

on the Netball dataset.

To further support the above discussion and analyze the

behavior of the models in both the presence and absence of

background features, we conducted additional tests using the

masked versions of our datasets. By excluding the background,

we can better evaluate how each model responded to features

specifically related to the players. This additional analysis

provides deeper insights into the strength of part-based vs. non-

part-based ZSL methods across two different sports. Figure 7

illustrates the comparisons. The same trend was observed across

both part-based and non-part-based models: removing the

background and providing only the masked players to the

models reduced the performance of the ZSL approaches. This

reduction was particularly significant for non-part-based models

trained on person re-identification datasets. This outcome

suggests that these models were not focused solely on the players

but also extracted features from the background. Consequently,

when the features were compared for similarity measurements,

they all had black-background-related features, reducing accuracy

in identifying positive matches. Part-based methods, however,

were less affected by this issue, as in the ZSL approach, we

explicitly excluded background features for the similarity

measurements. Despite this, the decrease in similarity scores for

the part-based models may be attributed to their training on

different re-identification datasets, which could still introduce a

level of inconsistency when applied to these specific sports datasets.
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FIGURE 7

Comparasion between out selected ZLR approaches in terms of Top-k and mAP, where k [ {1, 3, 5}, on (a) Rugby League and (b) Netball datasets.
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We selected ResNet-50 from our benchmark models for further

analysis, primarily due to its suitability as a non-part-based re-

identification model and pre-training on soccer data. Specifically,

we applied the model to a randomly selected sample from the

Rugby League re-identification dataset to investigate the impact

of background features on the model’s attention. This was done

by analyzing the attention maps generated just before the final

dense layers in both the presence and absence of background

pixels. Figure 8 illustrates the results. In Figure 8a, the selected

sample (including both the query and gallery set) is presented

with and without background, alongside their corresponding

attention maps. Figure 8b further isolates the background heat

maps for the masked and unmasked versions to facilitate a more

explicit comparison. The findings reveal that, even when

background features are removed, the model continues to focus

on areas that align with background information. This behavior

can be attributed to how the model was pre-trained, where

background-related features were inherently integrated into the

final output embeddings.

Given the challenging testing environment we established for

ZSL evaluations, our findings suggest that pre-trained, non-part-

based re-identification models may inadvertently incorporate
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background features into the final embedding. This is

problematic in sports datasets, where players often share similar

or identical backgrounds, such as fields or courts. This

unintended background “leakage” can undermine the model’s

ability to accurately distinguish between players, as it can

artificially inflate similarity scores based on irrelevant

environmental cues rather than player-specific features. This is

where part-based re-identification models (such as BPBreID and

PRTreID) demonstrate their superiority. These models are

designed to decompose the input into distinct regions or parts,

allowing the final embedding to separate foreground (player-

specific) features from background information, which makes

them the best choice for ZSL re-identification purposes.

Moreover, our results highlight the potential of these models

for fine-tuning in a Few-Shot Learning (FSL) paradigm. The

FSL model is fine-tuned with only a few labeled samples,

leveraging prior knowledge to generalize effectively with limited

data. The ability of part-based re-identification models to capture

more discriminative, player-specific features while minimizing

background noise makes them highly effective for FSL, where

limited training data amplifies the importance of relevant

feature extraction.
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FIGURE 8

The ResNet50 heat maps on a randomly selected sample from the re-identification Rugby League dataset. Each row shows heatmaps on the player
crops, from left to right: the query, nine negative matches, and positive match, where (a) shows the heatmaps on the original and masked player crops
in the first and second rows, respectively and (b) shows the heat maps only for the backgrounds where first row belongs to the original crops and the
second row is related to the masked version. In (a), “CS” stands for Cosine Similarity, and the scores for the corresponding player and the query are
shown under the player crops.
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5 Conclusion

In this study, we annotated two sports-specific datasets for

Rugby League and Netball, containing 34,473 frames and 13,771

frames, respectively. Each frame was meticulously annotated with

player IDs, actions, and bounding boxes for players involved in

the action. To support the rigorous evaluation of ZSL techniques,

we created two sub-datasets with standard and masked versions

to focus on player re-identification under challenging conditions

(we used the annotated actions to create a challenging testing

environment). These conditions include visual similarities

between players, frequent occlusions, dynamic movements, and

varying lighting and camera angles, making the datasets ideal for

ZSL analysis. A range of pre-trained re-identification models,
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including both CNNs and Vision Transformers architectures, were

selected for evaluation. These models included part-based and

non-part-based methods, pre-trained on two datasets, including

person re-identification and sports player re-identification data.

The results demonstrated that part-based models are promising to

improve ZSL and Transfer Learning performance in player re-

identification tasks, particularly for sports video data. They could

also be highly effective for Few-Shot Learning (FSL), as they

allow for more precise feature extraction from limited data,

reducing the reliance on background information. In contrast,

non-part-based models struggled due to background leakage,

where background elements, often shared across players, were

mistakenly incorporated into the final embeddings, skewing the

model’s performance.
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Potential future improvements include expanding player

labeling to capture off-ball movements and strategic positioning,

which may contribute to team tactics, even when players are not

directly involved in the action. Additionally, the datasets and re-

identification methods, particularly ZSL, could serve as a

foundation for Zero-Shot Action Recognition, which will be the

focus of our future work.
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