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Cluster sets lead to better
performance maintenance and
minimize training-induced
fatigue than traditional sets
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Objective: The aim of this study was to examine the acute effects on
mechanical, neuromuscular, metabolic, and muscle contractile responses to
different set configurations in full-squat (SQ).
Methods: Twenty-two men performed three SQ sessions that consisted of 3 sets
of 12 repetitions with 60% 1RM with 4 minutes inter-set rests: a) traditional set
(TS): no rest within the set; b) cluster-6 (CS6): a 30 seconds intraset rest after
the 6th repetition of each set; and c) cluster-2 (CS2): a 30 seconds intraset
rest every 2 repetitions. Mechanical (i.e., force, velocity, and power) and
electromyography (EMG) values were recorded for every repetition. A battery
of tests was performed: a) tensiomyography (TMG), b) blood lactate c),
countermovement jump (CMJ), d) maximal isometric SQ, and e) performance
with the load that resulted in a velocity of 1 m·s−1 at baseline (V1-load).
Repeated measured ANOVA analyses were used to compare the 3 protocols.
Results: As the number of intraset rests increased (TS < CS6 < CS2), mechanical
performance was better maintained (p < 0.01) and EMG variables were less
altered (p = 0.05). At post, CS2 and CS6 displayed lower lactate concentration,
lesser reductions in CMJ height, and smaller alterations in TMG-derived
variables than TS (p < 0.05).
Conclusion: The introduction of short and frequent intraset rest periods during
resistance exercise alleviates training-induced fatigue, resulting in better
maintenance of performance. This approach can be applied during the in-
season period when minimizing fatigue is a priority.
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1 Introduction

In resistance training (RT) settings, traditional sets (TS) have been prescribed by

performing consecutive repetitions without rest between them, and with inter-set rest

periods (1, 2). However, as the number of repetitions increases within the TS

configuration, it leads to higher fatigue development, causing declines in force
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production, and, as a result, decreased barbell velocity and power

output (3, 4). Although certain fatigue development is required

to maximize strength gains (5), minimizing RT-induced fatigue

may be beneficial in certain contexts. Cluster training (CS)

introduces brief rest periods, typically 10–45 s, either

between repetitions or blocks of repetitions (6, 7). This approach

is effective at maintaining performance during RT sessions

(8–11). Notably, CS displays reduced muscle damage, blood

lactate concentrations, and hormonal responses compared to TS

with workload-matched protocols (11, 12). The inclusion of rest

intervals within sets during CS is believed to contribute to the

recovery of bioenergetic components like phosphocreatine (PCr)

and adenosine triphosphate (ATP) (13). Consequently, CS could

emerge as an advantageous strategy as it enables the completion

of the same workload with less fatigue development (2).

Electromyography (EMG) may provide a better understanding

of the mechanisms behind the changes in mechanical performance,

such as muscle activation and neuromuscular fatigue accumulated

throughout the training session, which allows researchers and

coaches to quantitatively assess the neuromuscular behavior

during specific tasks (14). Despite its significance, research

exploring the effects of various set configurations on EMG

activity remains limited. To date, only one study has delved into

the impact of CS configuration on EMG activity during lower-

body exercises (15). In this particular study, two conditions were

compared: 6 sets of 6 reps at 20% 1RM in the loaded

countermovement jump (CMJ) exercise either continuously (i.e.,

TS) or with a 30-s pause every 2 repetitions (i.e., CS) (15). Their

findings revealed that the CS configuration led to greater root

mean square (RMS) values in the vastus lateralis (VL) and rectus

femoris muscles when compared to the TS configuration, but not

in the vastus medialis (VM) (15). Additionally, a progressive

decline in median frequency (MDF) over time was noted,

although no differences were observed between the two set

configurations (15).

Tensiomyography (TMG) is an effective technique used for

assessing passive muscle contractile properties in vivo by

measuring how muscle bellies respond in terms of time and

radial deformation to a single twitch stimulus (16). TMG is

commonly used in evaluating changes in muscle contractile

properties resulting from fatigue induced by RT sessions (17, 18).

Among the main parameters obtained from a TMG assessment

highlight: maximum radial displacement (Dm), contraction time

(Tc), delay time (Td), and velocity of muscle deformation (Vd)

(19). Dm is defined as the transverse deformation of the muscle

(20). A long-term reduction in Dm is interpreted as an increase

in muscle stiffness, and vice versa (20); however, Dm may also

acutely decrease due to exercise-induced fatigue (21). Td

represents the time it takes for the analyzed muscle structure to

reach 10% of the total displacement observed after stimulation

(10% of Dm). Naturally, its value depends on the dominant fiber

type in the muscle, its fatigue state, and its level of potentiation

and activation (22). Tc is the time that elapses from Td (10% of

Dm) until 90% of Dm is reached. A strong relationship has been

observed between Tc and fiber type distribution (23). Likewise,

Vd reduction indicates muscle fatigue, meaning a decline in the
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rate at which the muscle contracts in response to a stimulus (21).

The fact that TMG analyzes muscle function non-invasively and

selectively is especially valued by coaches, and sports scientists,

who prefer precise and practical assessment methods that do not

disrupt their professional routines. However, there is limited

research on the acute effects of different set configurations on

TMG (19, 20). One study highlighted greater impairments in Vd

following a protocol consisting of 3 × 8 with 75% 1RM in full-

squat (SQ) compared to the 6 × 4 protocol (20).

Although CS is widely used in training, there is a lack of

understanding of how different set configurations, such as CS

and traditional sets, impact neuromuscular responses and

fatigue. Current assessments like EMG and TMG are

underutilized in evaluating these configurations, creating a

knowledge gap. Addressing this is critical for optimizing

training outcomes, ensuring athlete safety, and enabling

personalized adaptations. Therefore, the purpose of this study

was to analyze the acute integral response, including

mechanical, neuromuscular, metabolic, and muscle contractile

properties during and following different SQ set configurations.

We hypothesized that CS would better preserve mechanical

performance compared to TS, due to the reduced fatigue

associated with CS.
2 Materials and method

2.1 Study design

A randomized cross-over within-participant design was

implemented to explore the acute responses in mechanical

performance, neuromuscular activity, muscle mechanical

properties, and metabolic stress to three resistance exercise

protocols differing in the set configuration in a Smith Machine:

(a) traditional set (TS): no rest within the set; (b) cluster-6

(CS6): a 30 s intraset rest after the 6th repetition of each set; and

(c) cluster-2 (CS2): a 30 s intraset rest every 2 repetitions. The

relative intensity (60% 1RM), volume (3 sets of 12 repetitions),

between-set rest time (4 min), and exercise (SQ) were matched

between protocols. The protocols were separated by 1 week, with

a random order of presentation. A battery of tests was performed

before (Pre) and after (Post) each protocol in this order: (a)

blood lactate, (b) TMG (c) CMJ; (d) maximal voluntary

isometric contraction (MVIC) in 90° SQ, and (e) performance

with the load that elicited a ∼1 m·s−1 velocity at baseline

measurements (V1-load) in SQ (Figure 1). Furthermore, kinetic,

kinematic, and EMG data were recorded for every repetition.

One week preceding the beginning of the study a loading SQ test

was conducted to establish the individual load-velocity

relationship for each subject. Protocols were conducted in a

research laboratory under the direct supervision of researchers,

with the same environmental conditions (20 °C and 60%

humidity), and at the same time of day (±1 h) to avoid likely

inferences with circadian cycles. Participants received strong

verbal encouragement to exert their maximum effort during all

protocols.
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FIGURE 1

Schematic representation of the study design for the resistance exercise protocols analyzed and the timeline of the battery of tests conducted before
and after the protocols. CMJ, countermovement jump; TMG, tensiomyography; SQ, full-squat; MVIC, maximal voluntary isometric contraction;
V1-load: test against the load that elicited a ∼1 m·s−1 velocity at baseline SQ measurements. EMG, kinetic, and kinematic data were recorded
during the training sets.
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2.2 Participants

Sample size was calculated using GPower (version 3.1.9.4,

Düsseldorf, Germany) (24) introducing the following parameters: a 3

(protocol) × 2 (Pre vs. Post) repeated measures ANOVA, expected

effect size (ES) between protocols (0.5), error probability (0.05) and

power (0.95), which resulted in a sample size of 18 participants. For

that, we decided to recruit 22 moderately resistance-trained men (age

25.3 ± 4.4 years; height 1.77 ± 0.08 m; body mass 75.4 ± 8.5 kg;

relative 1RM SQ= 1.37 ± 0.19 kg per body mass, from 1.5 to 4 years

of RT background) assuming the likely loss of data in some of the

analyzed variables. Exclusion criteria included presenting any physical

limitation, health problem, or musculoskeletal injury that could affect

their performance in the tests. Participants received information

regarding the procedures, potential benefits, and associated risks

before providing written informed consent. Participants were

instructed to maintain their regular diet and refrain from engaging in

strenuous physical activity for 72 h before each protocol. The study

was approved by the Research Ethics Committee (Ref: 03-819) and

adhered to the guidelines outlined in the Declaration of Helsinki.
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2.3 Testing procedures

2.3.1 Progressive loading test
A progressive loading test was performed using a Smith

machine (Multipower Fitness Line, Peroga, Murcia, Spain) to

determine the individual load-velocity relationships in the SQ

exercise. The SQ was performed with participants starting from

the upright position with the knees and hips fully extended and

stance approximately shoulder-width apart, and the barbell

resting across the back at the level of the acromion. The

movement involved descending at a controlled mean velocity

(∼0.50–0.65 m·s−1) as low as possible (∼35–40° knee angle),

followed by an immediate return to the upright position (full

knee extension 180°). Unlike the eccentric phase, participants

executed the concentric phase at their maximal intended velocity.

Velocity data were recorded with a linear velocity transducer

(T-Force System Ergotech, Murcia, Spain). The test commenced

with a 20 kg load, progressively increasing in 10 kg increments.

When the mean propulsive velocity (MPV) dropped below

0.60 m·s−1, increments were adjusted to 5 kg until the MPV fell
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below 0.50 m·s−1. For light loads, (≥1.00 m·s−1) three repetitions

were executed, two for medium loads (1.00–0.80 m·s−1), and one

for the heavier loads (≤ 0.80 m·s−1), with 3 min of recovery

between sets. The repetition achieving the highest MPV for each

load was selected for subsequent analysis. MPV corresponds to

the portion of the concentric phase during which the measured

acceleration exceeds the acceleration due to gravity (‒9.81 m·s−2)

(25). On average, the participants completed 8.9 ± 1.2 loads

during the test.

2.3.2 Blood lactate concentration
Lactate was measured using a portable lactate analyzer

(Lactate Pro 2, Arkray, Kyoto, Japan) following the

manufacturer’s indications. This system has shown high

reliability for a physiological range of 0.5–25.0 mmol·L−1 (26).

Blood capillary samples were obtained from the middle finger.

2.3.3 Tensiomyography
TMG has been validated for the assessment of in vivo passive

muscle contractile properties in response to single-twitch

stimulation (27). The VL contractile properties of the left leg were

evaluated using a TMG (TMG-100 system electro-stimulator,

TMG-BMC, Ljubljana, Slovenia). The electric stimulus was evoked

through two self-adhesive electrodes (5 cm × 5 cm, Dura-Stick®

premium, Cefar-Compex, Hanover, Germany) separated by 5 cm

on the VL muscle of the left leg following SENIAM indications

(28). The muscle contractile response was assessed with a digital

Dc-Dc transducer Trans-TekR (GK 40, Ljubliana, Slovenia) located

perpendicular to the muscle belly and at an equal distance from

the self-adhesive electrodes. Measurements were acquired in a

supine position and the left knee joint was fixed at an angle of

∼140° using a wedge cushion located below the popliteal fossa.

Electrical stimulation was applied with an initial amplitude of

40 mA and a pulse duration of 1 ms, increasing 10 by 10 mA

every 10 s until the maximum output of the stimulator (100 mA)

(29). The following variables were examined in the present study:

Tc, Dm, Td, and Vd. Dm was defined as the peak amplitude in

the displacement-time curve of the twitch response; Tc was

obtained by determining the time interval from 10% to 90% of

Dm; Td was defined as the time between the electrical stimulus

and 10% of Dm (19); and Vd was calculated as Dm · (Tc + Td)−1

(30, 31). All measurements were carried out by the same

investigator and the curve with the highest Dm value was

considered for further analysis.

2.3.4 Countermovement jump
Jump height was measured using an infrared timing system

(OptojumpNext, Microgate, Bolzano, Italy) previously validated

(32). Three attempts with a 20 s rest were performed and the

average height was recorded for further analyses. Participants

were instructed to maintain both hands resting on the waist and

try to attain their maximal vertical height after a fast downward

movement close to 90° of knee flexion. All participants were

instructed to land in an upright position and to bend their knees

after landing. The warm-up consisted of jogging for 5 min, 2 sets

of 10 SQ without external load, and 5 plus 2 submaximal CMJs.
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2.3.5 Maximal voluntary isometric contraction test
This test was performed on a Smith machine with height-

adjustable movable supports to standardize the individual test

position, which was established at 90° knee flexion in SQ.

Participants were instructed to push as fast and hard as possible

for 5 s after the cue “Ready, set, go!” Two attempts, separated by

a 1 min rest, were performed. EMG data were recorded as

described below. Kinetic data were collected at a sampling rate of

1,000 Hz with an 80 × 80-cm dynamometric platform (FP-500,

Ergotech, Murcia, Spain). Raw force-time data were automatically

processed (4th order low-pass Butterworth filter with no phase

shift using a 200 Hz cut-off frequency) with the custom software

(T-Force System, Ergotech). Maximal isometric force (MIF),

maximal rate of force development (RFDmax), which was

established as the maximum slope in the force-time curve with

20 ms time intervals, and the average tangential slope of the

force-time curve obtained over different time intervals (50, 100,

150, 200 and 400 ms) from the onset of force production (RFD0–50,

RFD0–100, RFD0–150, RFD0–200, and RFD0–400, respectively) were

subsequently calculated. The onset of the force signal was

established when the values were raised above 2 standard deviations

(SDs) from the baseline signal. The average value of each variable

in the two attempts was recorded for further analysis. The warm-up

consisted of 2 attempts at 70% and 90% of the perceived effort

with 30 s rest between them.
2.3.6 V1-load test
This test consisted of performing 3 SQ repetitions with the V1-

load (∼60% 1RM), which was the load that elicited a 1 m·s−1 at the

Pre-test (33). The execution technique is described in the

“Progressive loading test” section. Mean propulsive force,

velocity, and power (MPF, MPV, and MPP) were recorded with

a linear velocity transducer synchronized with a dynamometric

platform (T-Force System Ergotech, Murcia, Spain). The highest

value of each variable was used for further analysis. EMG data

were recorded as described below. The warm-up consisted of 6-

6-4 repetitions with 20 kg, 40%, and 50% 1RM, respectively, with

a 3-min rest between sets.
2.3.7 EMG signal acquisition
After skin preparation and following the SENIAM

recommendations (28), surface EMG electrodes were placed on

the right leg of the VM and VL muscles. A parallel-bar, bipolar

surface electromyographic sensor Trigno
TM

wireless EMG system

(Delsys, Inc., Natick, MA, USA), with an interelectrode distance

of 10 mm, common mode rejection ratio >80 dB, and bandwidth

filter between 20 and 450 Hz ± 10% was used to measure EMG

signal. The baseline noise was <5 µV peak-to-peak and the

sampling rate was 2,000 Hz. The raw data from the EMG were

stored in digital format using EMG Works Acquisition software

(Delsys, Inc, MA, USA). From each contraction, the highest

(over sliding windows of 500 ms with an overlap of 499 ms) root

mean square (RMS) and median frequency (MDF) values for

each muscle were recorded. RMS and MDF values were averaged

from both muscles in each repetition for further analysis. EMG
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TABLE 1 Reliability at baseline of the different variables under study.

ICC (95% CI) CV (%)

TMG variables
Dm 0.98 (0.97–0.99) 6.1%

Tc 0.94 (0.90–0.96) 5.1%

Td 0.97 (0.95–0.98) 2.1%

Vd 0.99 (0.98–0.99) 5.7%

CMJ 0.99 (0.98–0.99) 2.1%

MVIC variables
MIF 0.95 (0.91–0.97) 5.9%

RFDmax 0.91 (0.80–0.96) 8.1%

RFD0–50 0.77 (0.40–0.91) 23.8%

RFD0–100 0.76 (0.19–0.93) 21.4%

RFD0–150 0.82 (0.55–0.93) 18.2%

RFD0–200 0.74 (0.46–0.97) 14.5%

RFD0–400 0.74 (0.47–0.87) 12.2%

Páez-Maldonado et al. 10.3389/fspor.2024.1467348
signal was recorded for every repetition during RT protocols,

MVIC, and V1-load tests. The signal from MVIC at the Pre-test

of each protocol was used to normalize the EMG parameter.

Therefore, RMS and MDF obtained from MVIC at Pre-test

were 100%.

2.3.8 Resistance exercise protocols
All participants remained in the lying position for 10 min

before starting the baseline data acquisition (blood sample and

TMG measurement) to minimize the effects of any previous

activity. While participants were in a supine position, electrode

locations for TMG and EMG were marked. Then, blood lactate,

TMG, CMJ, MVIC, and V1-load tests were performed (Pre).

After taking baseline values, the RT protocol was performed. The

SQ execution technique in all protocols was the same as

described in the “Progressive Loading test” section. All

participants performed on a Smith machine three SQ sessions

matched in intensity (60% 1RM), volume (3 sets of 12

repetitions), and inter-sets rest time (4 min). The independent

variable was the set configuration: (a) TS: no rest within the set;

(b) CS6: a 30 s intraset rest after the 6th repetition of each set;

and (c) CS2: a 30 s intraset rest every 2 repetitions (i.e., after the

2nd, 4th, 6th, 8th, and 10th repetition of each set). Relative loads

were determined MPV at which every%1RM was attained, which

was obtained from the individual second-order load-velocity

relationship (R2 = 0.996 ± 0.004) derived from the progressive

loading test. The absolute loads (in kg) were individually

adjusted in every session to the corresponding MPV matched

(±0.03 m·s−1) associated with the prescribed%1RM. We used a

range of 0.03 m·s−1 since it has been shown that this value is the

smallest detectable change in MPV when using the T-Force

System in the SQ exercise on a Smith machine (34). A force

platform (FP-500, Ergotech, Murcia, Spain) synchronized with a

linear velocity transducer (T-Force System, Ergotech, Murcia,

Spain) was installed on the Smith machine to record MPF, MPP,

and MPV for each repetition. Besides, EMG data were recorded

throughout the 36 repetitions. After the last repetition of the

third set, the battery of tests was repeated at Post as follows: (1)

TMG (at 60 s); (2) blood lactate (at 90 s); (3) CMJ (at 120 s); (4)

MVIC (at 180 s) and (5) V1-load (at 300 s).
V1-load variables
MPF 0.98 (0.97–0.99) 3.6%

MPV 0.88 (0.82–0.92) 5.3%

MPP 0.89 (0.84–0.93) 7.5%

EMG variables
RMS 0.98 (0.97–0.99) 9.3%

MDF 0.96 (0.93–0.97) 5.2%

ICC, intraclass correlation coefficient; CI, confidence interval; CV, coefficient of variation;

TMG, tensiomyography; Dm, muscle displacement; Tc, contraction time; Td, delay time;

Vd, velocity of deformation; CMJ, countermovement jump; MVIC, maximal voluntary
isometric contraction; MIF, maximal isometric force; RFDmax, maximal rate of force

development; RFD0–50, rate of force development from the onset of force production to

50 ms; RFD0–100, from the onset of force production to 100 ms; RFD0–150, from the onset

of force production to 150 ms; RFD0–200, from the onset of force production to 200 ms;
RFD0–400, from the onset of force production to 400 ms; V1-load, load representing the

60% 1RM at pre-testing; MPF, mean propulsive force; MPV, mean propulsive velocity;

MPP, mean propulsive power; RMS, root mean square averaged from the vastus medialis

and vastus lateralis muscles; MDF, median frequency averaged from the vastus medialis
and vastus lateralis muscles.
2.4 Statistical analyses

Values are reported as mean ± SD. The Shapiro–Wilk test of

normality was conducted to ensure normal data distribution at

Pre. Test–retest reliability was measured by the standard error of

measurement (SEM; root mean square of the intrasubject total

mean square), which was expressed in relative terms through the

CV. Relative reliability was calculated by the intra-class correlation

coefficient with 95% confidence intervals [ICC (95% CI)], which

was calculated with the one-way random effects model. CV and

ICC were obtained from the three baseline values obtained from

each condition. The reliability of EMG values was calculated from

the MVIC test. A one-way repeated measures analysis of variance

(ANOVA) was used to compare the average values achieved
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during each protocol. A 3 (protocol) × 2 (Pre vs. Post) repeated

measures ANOVA was performed to analyze the acute responses

to each protocol. A 3 (protocol) × 36 (repetitions) repeated

measures ANOVA was conducted to compare the differences

between protocols in the various repetitions. Bonferroni’s post hoc

comparisons were used as necessary, and statistical significance was

set at p≤ 0.05. Pre-post effect size (ES) values were calculated

using Hedge’s g on the pooled SD (35). The ES of post hoc

comparisons was calculated using Cohen’s d, which was

interpreted as a low (<0.50), moderate (0.50–0.79), or large effect

(>0.80) (36). For CV, values below 10% were considered

acceptable, indicating low variability, and ICC) values were

interpreted as follows: poor reliability (<0.5), moderate reliability

(0.5–0.75), good reliability (0.75–0.9), and excellent reliability

(>0.9) (37). All statistical analyses were performed using SPSS

version 25.0 software (SPSS, Inc., Chicago, IL, USA), in addition to

Microsoft Office Excel 2007 for calculating ES and CV.
3 Results

The reliability values of the different tests conducted are shown

in Table 1.
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3.1 Descriptive characteristics of the
resistance exercise protocol

According to the schedule, no differences between protocols were

observed in the fastest velocity at which the absolute load was lifted

(p = 0.51). There was a significant “protocol” effect for the rest of
TABLE 2 Mechanical and neuromuscular characteristics of each resistance ex

TS C
MPV-best (m·s−1) 0.92 ± 0.09 0.92 ±

MPV-loss (%) 31.5 ± 10.4CS6, CS2 28.0 ±

MPV (m·s−1) 0.77 ± 0.11CS6, CS2 0.80 ±

MPF (N) 677.3 ± 91.0CS2, CS6 687.3 ±

MPP (w) 498.5 ± 88.0CS6, CS2 518.1 ±

RMS (%) 114.2 ± 25.6CS2 101.6

MDF (%) 85.0 ± 10.3CS6, CS2 93.0 ±

Data are mean ± SD, n = 22. TS, traditional sets; CS6, cluster sets of 6 repetitions; CS2, cluster sets

MPV-loss, averaged velocity loss within each set calculated as the relative difference between the
power; RMS, root mean square from electromyography (EMG) data; MDF, median frequency

Statistically significant differences with a CS6 protocol: CS6 (p < 0.05).

FIGURE 2

Evolution of mechanical parameters throughout the 36 repetitions for ea
propulsive velocity; and (C) mean propulsive power. Data are expressed as
protocol (i.e., cluster sets of 2 repetitions) at the corresponding time poin
(i.e., cluster sets of 6 repetitions) at the corresponding time point (p
corresponding protocol and time point: *p < 0.05.
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the variables analyzed, except for RMS (Table 2). The velocity loss

within the set increased as the number of intraset rest periods

decreased (TS > CS6 > CS2). MPV and MPP progressively increased

as the number of intraset rests increased (TS < CS6 < CS2).

Likewise, CS2 showed greater MPF (p < 0.05) than TS. MDF

decreased as decreased the number of intraset rest (TS < CS6 < CS2).
ercise protocol (average of 36 repetitions).

S6 CS2 Protocol p-value
0.09 0.92 ± 0.10 F = 0.69; p = 0.51

9.8CS2 17.3 ± 7.1 F = 86.3; p < 0.001

0.10CS2 0.84 ± 0.10 F = 96.1; p < 0.001

90.8CS2 699.8 ± 105.0 F = 17.8; p < 0.001

76.8CS2 551.4 ± 88.2 F = 60.7; p < 0.001

± 14.7 97.4 ± 15.1 F = 5.14; p = 0.16

14.5CS2 102.5 ± 10.8 F = 20.4; p < 0.001

of 2 repetitions; MPV-best, best mean propulsive velocity (MPV) within the training session;

best and the last MPV within each set; MPF, mean propulsive force; MPP, mean propulsive
from EMG data. Statistically significant differences with a CS2 protocol: CS2 (p < 0.05).

ch resistance exercise protocol. (A) mean propulsive force; (B) mean
mean ± SD (N= 22). CS2 indicates significant differences with the CS2

t (p < 0.05). CS6 indicates significant differences with the CS6 protocol
< 0.05). Statistically significant differences with repetition 1 at the
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FIGURE 3

Evolution of neuromuscular parameters throughout the 36 repetitions for each resistance exercise protocol. (A) Root mean square averaged from the
vastus medialis and vastus lateralis muscles; (B) median frequency averaged from the vastus medialis and vastus lateralis muscles. Data are expressed
as mean ± SD (N= 22). CS2 indicates significant differences with the CS2 protocol (i.e., cluster sets of 2 repetitions) at the corresponding time point (p
< 0.05). CS6 indicates significant differences with the CS6 protocol (i.e., cluster sets of 6 repetitions) at the corresponding time point (p < 0.05).
Statistically significant differences with repetition 1 at the corresponding protocol and time point: *p < 0.05.

TABLE 3 Effects of different resistance exercise protocols on muscles’ contractile properties assessed by tensiomyography.

TS CS6 CS2 ANOVA

Pre Post ES Pre Post ES Pre Post ES Time
effect

Protocol
effect

Protocol ×
time

Tc (ms) 24.6 ± 3.5 26.6 ± 5.3CS2 0.44 24.9 ± 3.8 24.3 ± 2.8 −0.18 24.3 ± 3.7 23.3 ± 3.4 −0.28 F = 0.14;
p = 0.71

F = 3.60;
p = 0.05

F = 3.11;
p = 0.07

Td (ms) 24.3 ± 1.9 22.7 ± 2.5** −0.66 23.9 ± 2.6 23.0 ± 3.3 −0.30 24.6 ± 2.9 21.9 ± 2.6*** −0.96 F = 24.0;
p < 0.001

F = 0.14;
p = 0.87

F = 5.95;
p = 0.01

Dm (mm) 5.89 ± 1.43 3.59 ± 1.07***CS2 −1.78 5.47 ± 1.97 4.26 ± 1.29**CS2 −0.71 6.18 ± 2.25 5.69 ± 2.55 −0.20 F = 19.3;
p < 0.001

F = 3.70;
p = 0.04

F = 10.2;
p = 0.001

Vd
(mm·ms−1)

0.121 ± 0.027 0.074 ± 0.024***CS2 −1.81 0.113 ± 0.045 0.090 ± 0.027*CS2 −0.61 0.128 ± 0.048 0.128 ± 0.060 0.00 F = 11.4;
p < 0.003

F = 4.89;
p < 0.02

F = 13.9;
p < 0.001

Data are mean ± SD, n = 22. TS: protocol consisted of performing 3 sets of 12 repetitions with 60% of 1RM; CS6: protocol consisted of performing 3 sets of 12 repetitions with 30 seconds intra-

set rest after 6 repetitions with 60% of 1RM; CS2: protocol consisted of performing 3 sets of 12 repetitions with 30 seconds intra-set rest after 2 repetitions with 60% of 1RM; Tc, contraction time;

Td, delay time; Dm, muscle displacement; Vd, Velocity of deformation radial (Dm/(Tc+Td); ES = within-protocol effect size from Pre to Post. Intra-protocol significant differences from Pre to

Post: *p< 0.05, **p< 0.01, ***p< 0.001. CS2indicates significant differences with the CS2 protocol at the corresponding time-point.
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Regarding the evolution of performance (MPF, MPV, and

MPP) throughout the 36 repetitions, significant “protocol ×

repetitions” interactions (all p < 0.01) were observed (Figure 2).

Performance was better maintained as increased the number of

intraset rests (TS < CS6 < CS2).

Concerning the evolution of neuromuscular characteristics

throughout the 36 repetitions, a significant “protocol × repetitions”

interaction was observed for RMS (p = 0.05) (Figure 3). TS resulted in

significant increases in RMS and decreases in MDF throughout the
Frontiers in Sports and Active Living 07
36 repetitions, while CS2 maintained the values in these variables

without significant changes.
3.2 Tensiomyography

Significant “protocol × time” interactions were found for Td,

Dm, and Vd (p < 0.05) (Table 3). TS and CS6 protocols evoked

higher impairments in Dm and Vd than CS2. Furthermore, TS
frontiersin.org
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FIGURE 4

Mechanical responses during the maximal isometric voluntary squat contraction test to the different resistance exercise protocols. (A) maximal
isometric force; (B) maximal rate of force development (RFDmax); (C) RFD0–50: rate of force development (RFD) from the onset of force
production to 50 ms; (D) RFD0–100: RFD from the onset of force production to 100 ms; (E) RFD0–150: RFD from the onset of force production to
150 ms; (F) RFD0–200: RFD from the onset of force production to 200 ms; and (G) RFD0–400: RFD from the onset of force production to 400 ms.
Data are mean ± SD, n= 22. TS, traditional sets; CS6, cluster sets of 6 repetitions; CS2, cluster sets of 2 repetitions; Pre, baseline measure; Post,
after exercise; ES, effect size. Intragroup significant differences from Pre- to Post-training: *p < 0.05 **p < 0.01, ***p < 0.001.
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resulted in greater increases in Tc than CS2. Interestingly, a

significant reduction in Td was observed for TS and CS6 protocols.
3.3 Neuromuscular and mechanical
response during maximal voluntary
isometric contraction

No “protocol × time” interactions were noted for any

mechanical variable (Figure 4). A “protocol × time” interaction

was observed for RMS (p = 0.05). CS6 and CS2 protocols elicited

significant declines in RMS while TS did not (Table 4).
3.4 Metabolic response, jump performance,
and V1-load test

Significant “protocol × time” interactions were observed for

blood lactate, CMJ height, and performance against the V1-load

(MPF, MPV, and MPP), but not for neuromuscular variables

(RMS and MDF) (Table 5). Blood lactate concentration increased

as decreased the number of intraset rests (TS > CS6 > CS2). TS

resulted in higher impairments of CMJ and MPF, than CS2.

Likewise, TS also showed lower MPV and MPP values at Post

than CS6.
4 Discussion

The main findings of this study were: (1) CS demonstrated

enhanced performance maintenance (i.e., MPF, MPV, and MPP)

and exhibited reduced neuromuscular alterations (i.e., RMS and

MDF) throughout repetitions compared to TS. (2) Post-exercise

tests demonstrated that CS led to lesser impairments in

mechanical performance (such as CMJ height, MPF, MPV, and
Frontiers in Sports and Active Living 08
MPP) and mitigated alterations in blood lactate and muscle

contractile properties (Dm, Vd, and Tc) when contrasted with TS.
4.1 Changes in performance across
repetitions and metabolic response

All protocols induced declines in performance parameters;

however, adding more frequent rest periods between repetitions

demonstrated superior performance maintenance while exhibiting

less pronounced blood lactate responses. Consistent with our

findings, previous research has noted enhanced performance

maintenance by incorporating intra-set rests during squat (11, 38–

40) and bench-press (41) exercises. The observed higher lactate

concentrations with longer set configurations suggest an increased

reliance on anaerobic glycolysis for energy production and an

impaired replenishment of ATP and PCr stores (42, 43). It has

been proposed that within-set rest intervals, characteristics of CS,

facilitate the recovery of bioenergetic components like PCr and

ATP (13). Consequently, longer set configurations may result in

reduced PCr store maintenance, increased muscle metabolite levels,

and partial ATP resynthesis (7, 42). These findings underscore the

effectiveness of CS in mitigating fatigue development by minimizing

metabolic by-product accumulation, thereby potentially enhancing

the ability to sustain mechanical performance.
4.2 Changes in neuromuscular properties
across repetitions

The preservation of mechanical performance may be

linked to neuromuscular activity (44). Our findings reveal that

more frequent rest periods between repetitions resulted in

less neuromuscular fatigue during dynamic contractions,
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TABLE 4 Neuromuscular responses during the maximal isometric voluntary squat contraction test to the different resistance exercise protocols.

Neuromuscular response

TS CS6 CS2 ANOVA

Pre Post ES Pre Post ES Pre Post ES

Time effect Protocol effect Protocol × time
RMS (%) 100.0 ± 0 100.0 ± 34.6 0.00 100.0 ± 0 85.7 ± 24.1* −0.82 100.0 ± 0 78.3 ± 31.3** −0.96 F = 6.10; p = 0.02 F = 3.60; p = 0.05 F = 3.60; p = 0.05

MDF (%) 100.0 ± 0 96.3 ± 9.0 −0.57 100.0 ± 0 105.5 ± 16.0 0.47 100.0 ± 0 105.5 ± 13.9 0.55 F = 2.38; p = 0.14 F = 2.93; p = 0.08 F = 2.93; p = 0.08

Data are mean ± SD, n = 22. TS, traditional sets; CS6, cluster sets of 6 repetitions; CS2, cluster sets of 2 repetitions; RMS, root mean square from EMG data; MDF, median frequency from EMG data; Pre, baseline measure; Post, after exercise; ES, effect size. Intragroup
significant differences from Pre- to Post-training: *p< 0.05 **p< 0.01.

TABLE 5 Metabolic, mechanical, and neuromuscular response to the different resistance exercise protocols under study.

TS CS6 CS2 ANOVA

Pre Post ES Pre Post ES Pre Post ES Time Effect Protocol effect Protocol × time

Metabolic response
Lactate (mmol·L−1) 1.5 ± 0.4 12.8 ± 3.0***CS6, CS2 5.18 1.6 ± 0.4 10.2 ± 4.4***CS2 2.70 1.7 ± 0.5 4.1 ± 2.3*** 1.41 F = 189.1; p < 0.001 F = 69.2; p < 0.001 F = 67.8; p < 0.001

Mechanical response
CMJ (cm) 36.1 ± 9.4 27.5 ± 7.3***CS2 −1.00 37.0 ± 4.4 30.2 ± 4.1*** −1.57 35.5 ± 9.2 30.6 ± 7.6*** −0.50 F = 111.7; p < 0.001 F = 6.19; p = 0.008 F = 11.9; p < 0.001

MPF (N) 788.4 ± 119.8 710.1 ± 101.9CS2*** −0.69 781.5 ± 120.2 735.8 ± 108.0** −0.39 783.9 ± 108.6 735.5 ± 98.9*** −0.46 F = 35.1; p = 0.001 F = 0.66; p = 0.005 F = 7.13; p = 0.005

MPV (m·s−1) 0.98 ± 0.08 0.83 ± 0.12CS6*** −1.44 0.98 ± 0.08 0.87 ± 0.10*** −1.19 0.98 ± 0.07 0.88 ± 0.10*** −1.06 F = 86.9; p < 0.001 F = 3.2; p = 0.06 F = 4.44; p = 0.27

MPP (w) 700.0 ± 118.1 550.6 ± 109.6, CS6*** −1.29 694.1 ± 118.9 594.6 ± 119.6*** −0.82 687.2 ± 104.8 592.7 ± 93.3*** −0.93 F = 61.2; p < 0.001 F = 1.4; p = 0.27 F = 7.1; p = 0.005

Neuromuscular response
RMS (%) 123.8 ± 25.4 111.4 ± 30.1 −0.43 117.0 ± 33.4 94.9 ± 23.3** −0.75 115.6 ± 29.8 107.3 ± 28.0 −0.28 F = 16.7; p = 0.001 F = 0.80; p = 0.47 F = 1.49; p = 0.26

MDF (%) 95.0 ± 9.2 92.6 ± 10.4 −0.24 97.6 ± 10.4 92.5 ± 13.9 −0.40 97.0 ± 7.7 91.6 ± 19.4 −0.35 F = 2.98; p = 0.11 F = 0.05; p = 0.95 F = 0.24; p = 0.79

Data are mean ± SD, n = 22. TS, traditional sets; CS6, cluster sets of 6 repetitions; CS2, cluster sets of 2 repetitions; CMJ, countermovement jump height; MPF, mean propulsive force; MPV, mean propulsive velocity; MPP, mean propulsive power; RMS, root mean square
from electromyography (EMG) data; MDF, median frequency from EMG data. Both mechanical and neuromuscular data were obtained from the test against the load that elicited a ∼1 m·s−1 velocity at baseline measurements in full-squat. Pre, baseline measure; Post,

after exercise; ES, effect size. Statistically significant differences with a CS2 protocol: CS2 (p<0.05). Statistically significant differences with a CS6 protocol: CS6 (p<0.05). Intragroup significant differences from Pre- to Post-training: *p< 0.05 **p< 0.01, ***p< 0.001.
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evidenced by lower RMS and higher MDF values, compared to

TS. These findings align with Piqueras-Sanchiz et al. (21),

noting lower MDF values in a 3 × 8 protocol compared to

6 × 4 at 75% 1RM in SQ. Similarly, Ortega-Becerra et al. (41)

demonstrated that intra-rest periods of 30 s in CS protocols

minimized neuromuscular fatigue and improved mechanical

performance. Increased EMG amplitude (i.e., RMS) observed

during longer set configurations may indicate greater

muscle activation involving higher-threshold motor units,

increased firing frequency, and changes in intrinsic muscle

properties to compensate for force loss in the fatigued state

(45, 46). Additionally, longer set configurations induced lower

MDF values linked to decreased action potential conduction

velocity, reduced firing rate of fatigued fast motor units (46),

lowered intramuscular pH (47), and changes in action

potential shape (48). Metabolic by-product accumulation

could disrupt muscle function and impair neuromuscular

signaling (45).
4.3 Changes in muscle contractile
properties

Our study indicates that the CS methodology may mitigate the

exercise-induced impairments in muscle twitch contractile

responses, as evidenced by less pronounced alterations in

TMG parameters for shorter set configurations. Regarding

Vd, consistent with previous research (21), shorter set

configurations were linked to lesser reductions in Vd. Reduced Vd

may stem from decreased Dm and increases in Tc and Td (30,

31). Longer set configurations induced higher reductions in Dm

and increases in Tc (Table 3). The decline in Dm observed

following RT is associated with impaired muscle function (49),

potentially influenced by exercise-induced muscle damage and

muscle swelling (50). The longer post-exercise Tc observed for TS

compared to CS2 reinforces the hypothesis of greater loss of

muscle velocity of deformation following longer set configurations.

However, unexpectedly, Td decreased for both TS and CS2,

suggesting that the time to begin the contraction was shortened

for both protocols. This has been attributed to improved

neuromuscular coordination, increased muscle recruitment, and

enhanced muscle fiber excitability (19). However, the causes

behind why only the TS and CS2 protocols resulted in decreased

Td are unknown. Further investigation is warranted to

comprehensively explore this finding, and examine the underlying

mechanisms and potential implications for training methodologies.
4.4 Changes in performance tests following
the protocols

While past studies (10, 12) have primarily emphasized

sustaining performance levels during RT sessions, limited

knowledge exists about the residual fatigue resulting from

different set configurations. Although no significant differences

between protocols were observed for the isometric performance,
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our study revealed that more frequent rest periods between

repetitions led to reduced residual fatigue in the dynamic tasks

(i.e., lower loss of CMJ height, along with MPF, MPV, and MPP

during the V1-load test). A recent review conducted by Jukic

et al. (2) highlighted the potential of CS in mitigating residual

fatigue induced by RT. However, it is noteworthy that while CS

showed efficacy in reducing fatigue accumulated within RT sets,

its impact on residual fatigue appeared comparatively lower (27).

In this regard, a recent study (51) has shown that a CS protocol

reduced fatigue within the set and resulted in quicker rates of

recovery than the TS protocols. This approach holds practical

relevance for strength and conditioning professionals, particularly

in scenarios where competitions occur weekly or every 3–4 days.

It enables athletes to recover faster and be better prepared

for subsequent training sessions or competitions within a

condensed timeframe.

In short, utilizing short and frequent intra-set rest intervals

proved effective in sustaining mechanical performance, reducing

metabolic stress, and mitigating alterations of neuromuscular

markers of fatigue and muscle contractile properties. As such, CS

emerges as an effective strategy to alleviate neuromuscular fatigue

development and minimize the accumulation of metabolic

by-products, ultimately enhancing the capacity to sustain

mechanical performance.

Several limitations should be considered when interpreting our

results. First, the TMG’s maximum intensity may not evoke a

maximal twitch for the participants. This may present problems

for the fatigue-related deductions about the muscle. Second,

EMG has been analyzed pooled in both muscles (i.e., VL and

VM). Although this approach may represent the superficial

vastii activity, the response may be slightly different if both

muscles were analyzed separately. Future studies should

examine the long-term effects of these protocols on mechanical,

neuromuscular, and hypertrophic adaptations.
5 Practical applications

Strength and conditioning coaches should consider integrating

short, frequent intra-set rest periods into the training sessions

when fatigue development is undesired. This strategy maximizes

force production, velocity, and power output while alleviating

metabolic stress, neuromuscular fatigue, and adverse alterations in

muscle contractile properties. This may be implemented during

the in-season period when fatigue development is undesired. In

time-constrained scenarios, splitting into two halves of the set,

such as CS6, can effectively manage fatigue during and after RT

without significantly extending the total training duration.
6 Conclusion

Utilizing short and frequent intra-set rest intervals proved

effective in sustaining mechanical performance, reducing metabolic

stress, and mitigating alterations of neuromuscular markers of

fatigue and muscle contractile properties. As such, CS emerges as
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an effective strategy to alleviate neuromuscular fatigue development

and minimize the accumulation of metabolic by-products,

ultimately enhancing the capacity to sustain mechanical performance.
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