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Sprint performance is a critical factor in soccer. While previous studies have
extensively explored the biomechanical, physiological, and metabolic
determinants of sprinting, the impact of anthropometric variables in team
sports contexts, especially soccer, remains underexplored. This study aims to
investigate the influence of anthropometric and mechanical variables on sprint
performance in young soccer players. Fifty-eight young soccer players were
evaluated in anthropometry and a 30-meter (m) sprint using radar technology.
Split times in 5, 15, and 30 m were determined, in addition to the assessment
of the force-velocity profile proposed by Morin and Samozino. Results: Key
anthropometric variables associated with improved sprint performance
included lower-limb muscle mass at distances 5 and 15 m (R2 = 0.08 and
R2 = 0.09, respectively, both with small effects). Additionally, body
composition, particularly a lower % body fat, was crucial across all sprint
distances (ES: large). Among the mechanical variables, max power (R2 = 0.997,
ES: large) and maximum velocity (R2 = 0.553, ES: large) are the mechanical
variables that were most strongly associated with sprint performance over
distances greater than 30 m. Soccer coaches, athletic trainers, and strength
and conditioning specialists working with young athletes can apply the
findings of this study to their training programming.
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1 Introduction

Successful soccer performance is influenced by various modifiable physical,

physiological, biomechanical, and tactical factors (1). During a soccer match, players

must repeatedly alternate between low- and high-intensity efforts, covering large

distances with frequent multidirectional movements. These movements often include
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http://crossmark.crossref.org/dialog/?doi=10.3389/fspor.2024.1480973&domain=pdf&date_stamp=2020-03-12
mailto:hugorck@gmail.com
https://doi.org/10.3389/fspor.2024.1480973
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspor.2024.1480973/full
https://www.frontiersin.org/articles/10.3389/fspor.2024.1480973/full
https://www.frontiersin.org/articles/10.3389/fspor.2024.1480973/full
https://www.frontiersin.org/articles/10.3389/fspor.2024.1480973/full
https://www.frontiersin.org/journals/sports-and-active-living
https://doi.org/10.3389/fspor.2024.1480973
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Bustamante-Garrido et al. 10.3389/fspor.2024.1480973
sprints, jumps, changes of direction, lateral displacements, and

quick decelerations (2). Sprinting actions, in particular, are

crucial for soccer performance. On average, professional soccer

players perform between 27 and 35 sprints per match (3), each

lasting 2–4 s (4). These sprints are decisive for critical moments

in the game, such as counter-attacks, pressing, and positional

advantages (5), and can significantly affect match outcomes.

Accelerating and reaching top speed depends on a complex

interplay of physiological, biomechanical, metabolic, and

morphological factors (6). Strength, power, and impulse are

key biomechanical contributors (6–10). Morphological factors

such as body stature and muscle mass influence a player’s

sprinting capacity (11–13). Additionally, factors like muscle

fiber composition (14) and anaerobic capacity (15) affect an

athlete’s ability to perform repeated high-intensity efforts.

While genetic traits, sex, and age inevitably shape physical

capacities, combining these unmodifiable factors with

trainable attributes ultimately determines performance in

soccer. These and other factors encompass a range of
FIGURE 1

Kinetics: horizontal and vertical force applied (6–9, 16, 17); propulsive and bra
22), kinematics: angular acceleration (17, 23, 24), technical determinants: st
(18); timing of the contralateral arm and leg swing, asymmetry between the r
body mass (11, 12), less fat mass (26), cross-sectional area of leg muscle
somatotype (33); physiologic determinants: muscle fiber ratio or the expre
35–37), anaerobic metabolism (15).
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variables contributing to sprint performance, as schematically

represented in Figure 1. However, research on the impact of

morphological factors on speed and acceleration performance

still needs to be conducted.

Regarding anthropometric variables affecting sprint

performance, most studies have focused on track and field

sprinters rather than team sports athletes (see Figure 1 for

references related to morphological determinants). A few studies

have identified the anthropometric variables that affect sprinting

in team sports such as soccer. For example, body mass (BM),

body mass index (BMI), and height (13, 38) have been variables

associated with sprint performance. This presents a significant

gap in the literature, particularly for soccer, in which the specific

demands and context differ markedly from individual sprint

events. Our study addressed this gap by examining

anthropometric variables influencing young soccer players’ sprint

performance. By doing so, we hope to provide insights that will

inform training and development strategies tailored to the unique

needs of soccer athletes.
king impulses (10, 18–20); stiffness (21, 22); stretch-shortening cycle (21,
ep length, rate, and distance, stride frequency and foot contact duration
ight and left swing side leg (25), morphological determinants; height (13),
s (27–30), length of muscle fascicles (31), strength calf muscles (32),
ssion of the ACTN3 gene (14, 34); sex differences and maturation (13,
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2 Materials and methods

2.1 Experiment approach

The assessments were conducted on cadets from Chile’s first-

division professional soccer teams. These evaluations were part of

the battery of tests performed by the staff, and the players signed

informed consent and permission for their data to be published.

The assessments were carried out following the Declaration of

Helsinki standards.
2.2 Participants

Fifty-eight male cadet players (age: 16.05 + 1.46 years,

height: 175.14 + 7.10 cm, body mass: 65.78 + 8.26 kg) participated

in this study. Goalkeepers were discarded due to the specificity of

their positions.
2.3 Anthropometric assessments

All athletes were evaluated in the morning after fasting for 12 h.

The assessment of body mass was conducted using a Tanita

precision scale, model Bc-601, with a resolution of 0.1 g. Height

evaluation was performed using a SECA brand stadiometer with

1 mm precision. A Lufkin brand metal tape measure with an

accuracy of 1 mm was employed to measure the body

circumferences. Diameter measurements were obtained using a

Rosskraft caliper, while skinfold thickness was assessed using a

Harpenden caliper. The assessments were performed following the

protocols established by ISAK (39) by a certified level II professional.
2.4 Speed-acceleration evaluation 30 m

The 30 m acceleration evaluation was performed on a natural

grass soccer field with specific footwear for this surface type. For

this, Stalker ATS II model radar (Applied Concepts, Dallas, TX,

USA; accuracy + 1.61 km/h, sampling 46.9 Hz) was located on a

tripod 10 m from the starting line and at the height of 1 m to

align with the location of the center of mass (CM) of the subject

(5). The athletes were instructed to initiate a 30 m maximal sprint

starting from the standing starting position. Two attempts were

performed with 5 min rest between them. Sprint performance

metrics (split times at 0–5, 0–15, and 0–30 m) and mechanical

outputs were analyzed based on the best time trial performance.
2.5 Horizontal force-velocity profile (FVP)

The speed-time data obtained via radar were processed using the

Excel® spreadsheet developed by Morin and Samozino (40). This

tool facilitates the computation of the maximum horizontal force

exerted during the sprint (F0), maximum velocity (V0), and peak

horizontal power output (Pmax). Furthermore, we determined the
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proportion of the total lower limb force applied horizontally to the

ground (RFmax) and the rate of decline in horizontal force with

increasing velocity (DRF). This approach relies on the

fundamental principles of motion to establish the force-velocity

relationship utilizing athlete velocity and body mass (41). Radar

validity for these purposes was confirmed through comparison

with force platforms (absolute bias of 3%–7%) (42). In terms of

reliability, the mean typical error remained small (CV≤ 8.4%)

across all kinetic and kinematic variables (43), confirming its

utility as a field tool for assessing these parameters.

To model the net horizontal anteroposterior ground reaction

force (FH) applied to the body’s center of mass (CM) over time,

we employed the following equation (43):

FH(t) ¼ m�aH(t)þ Faero(t)

here, m denotes the runner’s body mass in kilograms, and Faero(t)

represents the aerodynamic drag to be overcome during sprinting,

proportional to the square of the air velocity relative to the runner:

Faero(t) ¼ k�(vH(t)� vw)2

where vw is the wind velocity (if applicable), and k is the runner’s

aerodynamic friction coefficient. In the vertical direction, during the

acceleration phase, the runner’s body CM ascended from the initial

to an upright running posture and remained constant between the

complete strides. Thus, by utilizing fundamental dynamics laws in

the vertical plane, the mean net vertical ground reaction forces

(FV) applied to the body CM during each complete stride can be

modeled over time as equal to the body weight:

FV(t) ¼ m�g

here, “g” denotes the gravitational acceleration (9.81 m/s2).

The mechanical effectiveness of force application during

running can be quantified in each support phase or stride by the

ratio (RF in%) of FH to the corresponding total resultant ground

reaction forces (FRes, in N) and throughout the entire

acceleration phase by the slope of the linear decrease in RF with

increasing velocity (DRF, in %/s/m). Since the starting block

phase (push-off and subsequent airborne time) lasts between 0.5

and 0.6 s (44, 45), occurring for an average duration of ∼0.3 s,
RF and DRF values can be computed from FH and FV values

modeled for t > 0.3 s.
3 Statical analysis

Stepwise linear regression analysis was performed to identify the

determinants of sprint performance. Before these analyses, a

collinearity diagnostic procedure was implemented to reduce

possible multicollinearity problems among predictor variables.

Three linear regressions were performed: anthropometric variables

vs. time, mechanical variables vs. time, and a combination of
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anthropometric and mechanical variables vs. time. The latter was

performed to determine the relative contribution of each factor.

The effect size (ES) for multiple linear regressions was calculated

using Cohen’s f2 (46). The following threshold values for ES

reported as f2 were employed: ≥0.02 as small, ≥0.15 as medium,

and ≥0.35 as large (47). Stata (Release 18. College Station, TX:

StataCorp LLC) software was used for these analyses.
4 Results

The results of our study indicate that the mean and standard

deviation times to cover 5, 15 and 30 m were: 1.42 ± 0.10, 2.83 ± 0.12

and 4.66 ± 0.20 s respectively. The variables derived from the FVP

were F0 (N/kg) 7.07 ± 0.82, V0 (m/s2) 9.18 ± 0.54 and Pmax (W/kg)

16.23 ± 2.19. The applied linear regressions showed that body mass

index (BMI, 21.39 ± 1.85), % muscle mass (%MM, 50.20 ± 5.82), %

body fat (%BF, 21.07 ± 3.30), maximal hip circumference (MHC,

94.27 ± 4.89) and TCC (thigh circumference corrected, 55.86 ± 4.53)

are the anthropometric variables that affect the sprint.
4.1 Anthropometric variables determining
sprint

When examining the anthropometric variables influencing 5 m

sprint times, BMI and TCC were identified as the main factors.

The stepwise linear regression model explained 8% of the variability

in 5 m sprint times (R2 = 0.08), reaching statistical significance

(p = 0.0384) with an F-value of 3.46. The model’s RMSE is 0.09523,

indicating an acceptable fit. Analysis of anthropometric variables for

the 15 m sprint highlighted MHC as a significant determinant. The

stepwise linear regression model accounted for 9% of the variability

in the 15 m sprint times (R2 = 0.09), with statistical significance

(p = 0.0128) and an F-value of 6.62, confirming the model’s

reliability. The model, with an R2 of 0.32, showed that BMI, %

MM, and % BF collectively explained 32% of the variability in the

30 m sprint times (p < 0.001, F = 10.08). Table 1 presents the results
TABLE 1 Anthropometric variables that determine sprints.

Variable Coefficient (B) Standar error t-value p-valu

5 m time
Intercept 1.62320 0.2020348 8.03 0.000

BM 0.0074796 0.0028567 2.62 0.011

TCC −0.0138922 0.006688 −2.08 0.042

15 m time
Intercept 3.599001 0.2998898 12.00 0.000

MHC −0.0081717 0.0031768 −2.57 0.013

30 m time
Intercept 3.410726 0.6823492 5.00 0.000

BMI −0.311523 0.0127759 −0.244 0.018

% MM 0.0190374 0.0066525 2.86 0.006

% BF 0.0454014 0.0123178 3.69 0.001

BM, body; TTC, thigh circumference corrected; MHC, maximum hip circumference; % MM, m
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of the stepwise linear regression analyses’ results examining

anthropometric variables’ influence on the 5-, 15, and 30 m sprint

times. For each distance, the table displays each predictor variable’s

non-standardized coefficient (B), standard error, t-value, p-value,

95% confidence interval, f2 and ES.
4.2 Mechanical variables determining sprint

Stepwise linear regression identified the relative Pmax as the

primary mechanical variable that influenced the time to run 5 m.

The model explained 16.8% of the variability in 5 m sprint times

(R2 = 0.168). This coefficient suggests that higher values of

relative Pmax are associated with shorter 5 m sprint times. For

the 15 m distance, relative Pmax was also identified as the

primary mechanical variable explaining sprint time (97.57%;

R2 = 0.9757). The analysis identified V0 as the primary

mechanical variable influencing the time to run at 30 m. The

model explains 55.34% of the variability (R2 = 0.5534). Table 2

presents the results of stepwise linear regression.
4.3 Mechanical and anthropometric
variables determining sprint

Analysis of themechanical and anthropometric variables affecting

5 m sprint times revealed significant results. The model explained

36.01% (R2 = 0.3601) of the variance in 5 m sprint times

(p < 0.0001, F = 11.69). The coefficients indicated that a higher

Pmax was associated with shorter 5 m sprint times, whereas an

increase in MCH was related to longer sprint times. For 15 m, no

anthropometric variable was added, leaving only Pmax as the most

determining variable of this distance. Our model explained 59.75%

of the variability in the 30 m sprint times (R2 = 0.5975, p < 0.0001,

F = 29.20). The coefficients indicate that a higher V0 and a larger

TCC are associated with reduced sprint times, whereas an increased

MHC is linked to longer sprint times. Table 3 presents the results of

stepwise linear regression for 30 m.
e 95% expected for B R2 Cohen’s f2 ES

Upper limit Lower limit

1.218403 2.028176 0.08 0.09 Small

0.0017545 0.0132046

−0.00272952 −0.0004893

2.99825 4.199753 0.09 0.10 Small

−0.0145357 −0.0018077

2.042698 4.778753 0.32 0.47 Large

−0.567665 −0.005382
0.0056999 0.032375

0.0207057 0.0700971

uscle mass percentage; % BF, body fat percentage.
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TABLE 2 Mechanical variables that determine sprints.

Variable Coefficient (B) Standar error t-value p-value 95% expected for B R2 Cohen’s f2 ES

Upper limit Lower limit

5 m time
Intercept 1.737302 0.0897863 19.35 0.000 1.557439 1.917166 0.168 0.20 Medium

Pmax −0.0194284 0.005485 −3.54 0.001 −0.0304152 −0.0084406

15 m time
Intercept 3.731035 0.0190149 196.22 0.000 3.692944 3.769127 0.975 32.3 Large

Pmax −0.0556175 0.0011616 −47.88 0.000 −0.0579445 −0.0532905

30 m time
Intercept 7.065933 0.2852099 24.77 0.000 6.494589 7.637277 0.553 1.24 Large

V0 −0.262549 0.031024 −0.46 0.000 −0.3246975 −0.2004004

Pmax, maximal horizontal power; V0, maximal theoretical velocity.

TABLE 3 Anthropometric and mechanicals variables that determine sprints.

Variable Coefficient (B) Standar error t-value p-value 95% expected for B R2 Cohen’s f2 ES

Upper limit Lower limit

5 m time
Intercept 1.245035 0.2224322 5.6 0.000 0.7992692 1.690802 0.360 0.56 Large

Pmax −0.0237657 0.005567 −4.27 0.000 −0.0349222 −0.0126093
MHC 0.0059681 0.005567 2.40 0.020 0.000986 0.109502

30 m time
Intercept 6.632695 0.3762495 17.63 0.000 5.87836 7.38703 0.597 1.48 Large

MHC 0.0182737 0.0073609 2.50 0.015 0.0036243 0.0329232

TCC −0.0296856 0.0104207 −2.85 0.006 −0.0505779 −0.0087933
V0 −0.2416436 0.0341626 −7.07 0.000 −0.3101354 −0.1731517

Pmax, maximal horizontal power; MHC, maximum hip circumference; TTC, thigh circumference corrected; V0, maximal theoretical velocity.
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5 Discussion

Our study aimed to identify the key anthropometric and

mechanical variables influencing sprint performance.

Understanding these factors is crucial because the ability to

execute such high-speed actions significantly enhances the

likelihood of success in both offensive and defensive football actions.
5.1 Anthropometric variables related to
sprint performance

Regarding anthropometric variables related to sprinting, our

results align with those of previous studies (48–50), where higher

BMI values were negatively associated with performance in the 5

and 30-meter sprints (small and large ES, respectively). Thus, the

most critical indicator is body composition, where lower-limb MM

is associated with better sprint performance (51). Our results

support this: TCC and MHC are anthropometric variables

associated with better performance at 5 and 15 m (ES: small),

respectively. Chelly et al. (52) report significant correlations between

thigh muscle volume and 5 m sprint performance in young soccer

players (r = 0.43, p = 0.05), and Tottori et al. (53) identified the

cross-sectional area of the gluteus maximus as a predictive variable

in 100-m performance in adults sprinters. Similar to other studies

(54–56), our results showed a negative association between% BF
Frontiers in Sports and Active Living 05
and short-distance sprint times and % MM. This result contradicts

our hypothesis, which can be explained by the contribution of MM

to the total BM. These results provide valuable insights into MM

gain, specifically in the lower limbs, reduction of %BF, and optimal

BM to enhance sprint performance in football players.
5.2 Mechanical variables related to sprinting

Our results indicate that the relative Pmax is the variable that best

explains the time to cover 5 and 15 m (medium and large ES). At the

same time, V0 is the mechanical variable that has the most significant

influence on the 30-meter sprint time (ES: large). These findings are

consistent with those of Haugen et al. (57), who found an almost

perfect inverse correlation (r = 1 ± 0.01) between the time to cover

short distances (10 m) and relative Pmax. They also observed that

the V0 variable correlated more significantly as distance increased.

Samozino et al. (58) emphasized that the Pmax and FV profile of

each athlete were the most significant variables in short-distance

sprints (>30 m). Other studies have reported that F0 and V0 are

the variables that contribute most to the time over short distances

(59, 60). While these studies may seem contradictory, we must

clarify that mechanical power is the product of applied force and

velocity (61). This means that Pmax is a composite variable that

reflects the capacity to generate force and achieve a high velocity.

Therefore, the results were similar at first glance. Pmax integrates
frontiersin.org
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the ability to effectively apply force during the initial acceleration and

the capacity to maintain a high maximum velocity over longer

distances. The results suggest that optimizing Pmax can improve

the initial acceleration and achieve higher maximum speeds.
5.3 Anthropometric and mechanical
variables that determine times over short
distances

An analysis that considered anthropometric and mechanical

variables was conducted to determine their relationship with sprint

performance. Our results enhanced the accuracy over distances of 5

and 30 m. Pmax, V0, and TCC negatively affected the time to

cover 5 m (higher values, shorter times; ES: large). The impact of

Pmax on short distances has been discussed in the previous section.

For 30 m, V0 and TCC contribute to reducing time (ES: large),

while MHC slightly increases it. The latter may seem contradictory,

as this variable has been shown to increase V0. Studies have

highlighted the inconsistency in the relationship between sprint

performance and hip extensors (62), emphasizing that they relate to

the sprint phase (acceleration, maximum velocity, and deceleration).

According to our results, MHC is an essential variable in the initial

meters of the sprint (>15 m) but not in longer sprints.
6 Practical applications and limitations

The results provide valuable information for trainers, and

strength and conditioning specialists working with young athletes

as they can apply this study’s findings directly, by incorporating

exercises that target lower-limb muscle development, improve

body composition, and enhance mechanical power output,

coaches can design programs specifically tailored to strengthen

sprinting ability, which may enhance overall soccer performance

and increase the likelihood of athletic success.

It is important to highlight that the biological age of the

participants could not be identified, which could have provided

additional information regarding their physical development and

maturation. Additionally, the sample size was determined by

convenience, as we included all athletes in the available category,

limiting the generalizability of the results to a broader population.
7 Conclusion

This study investigated the relationship between anthropometric

and mechanical variables and sprint performance among young

soccer players. Our findings provide valuable insights into

optimizing training programs to improve this population’s sprinting

ability. Key anthropometric variables associated with improved

sprint performance included lower-limb MM at short distances

(5 and 15 m). Additionally, body composition, particularly a lower

% BF, was crucial across all sprint distances. Among the mechanical

variables, Pmax and theoretical V0 were most strongly associated

with sprint performance (<30 m), as well as with distances greater
Frontiers in Sports and Active Living 06
than 30 m. This provides valuable information for youth soccer

coaches and physical trainers. A notable result from our research is

the negative relationship between MCH and the 30 m time. Future

research should further explore the relative contribution of

perimeter during different phases of sprinting.
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