
TYPE Review
PUBLISHED 30 January 2025| DOI 10.3389/fspor.2024.1512010
EDITED BY

Pedro Forte,

Higher Institute of Educational Sciences of the

Douro, Portugal

REVIEWED BY

António Miguel Monteiro,

Instituto Politécnico de Bragança, Portugal

Soukaina Hattabi,

University of Jendouba, Tunisia

*CORRESPONDENCE

M. S. Mahmud

mdshaad.mahmud@unh.edu

RECEIVED 16 October 2024

ACCEPTED 19 December 2024

PUBLISHED 30 January 2025

CITATION

O’Mara B and Mahmud MS (2025) Addressing

grading bias in rock climbing: machine and

deep learning approaches.

Front. Sports Act. Living 6:1512010.

doi: 10.3389/fspor.2024.1512010

COPYRIGHT

© 2025 O'Mara and Mahmud. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Sports and Active Living
Addressing grading bias in rock
climbing: machine and deep
learning approaches
B. O’Mara and M. S. Mahmud*

Remote Sensing Laboratory, Department of Electrical and Computer Engineering, University of New
Hampshire, Durham, NH, United States
The determination rock climbing route difficulty is notoriously subjective. While
there is no official standard for determining the difficulty of a rock climbing
route, various difficulty rating scales exist. But as the sport gains more
popularity and prominence on the international stage at the Olympic Games,
the need for standardized determination of route difficulty becomes more
important. In commercial climbing gyms, consistency and accuracy in route
production are crucial for success. Route setters often rely on personal
judgment when determining route difficulty, but the success of commercial
climbing gyms requires their objectivity in creating diverse, inclusive, and
accurate routes. Machine and deep learning techniques have the potential to
introduce a standardized form of route difficulty determination. This survey
review categorizes machine and deep learning approaches taken, identifies the
methods and algorithms used, reports their degree of success, and proposes
areas of future work for determining route difficulty. The primary three
approaches were from a route-centric, climber-centric, or path finding and
path generation context. Of these, the most optimal methods used natural
language processing or recurrent neural network algorithms. From these
methods, it is argued that the objective difficulty of a rock climbing route has
been best determined by route-centric, natural-language-like approaches.
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1 Introduction

Rock climbing’s popularity as a recreational sport is growing dramatically. It is a

unique activity for both the body and the mind. In a puzzle-solving manner, climbers

strategically scale vertical natural or artificial rock routes–a series of rock features–using

their hands and feet. People are drawn to rock climbing because it is an activity in

which one can improve physical fitness, problem-solving skills, and self-confidence

(1, 2). It is estimated that the rock climbing gym market size was valued at 3 billion

USD in 2023 (1), and this projected to double by 2032 (1). In the last five years, the

establishment of rock climbing gyms in the US has grown by 6.46% per year (3).

Within this time frame, three of the disciplines of rock climbing: sport climbing,

bouldering, and speed climbing made their debut appearance at the 2020 Tokyo

Olympics. More recently, it reached global audiences again at the 2024 Paris Olympics.

Of the three disciplines, bouldering has the largest share of the rock climbing gym

market (1, 2). This is because bouldering is the most accessible discipline of climbing,

as it requires little equipment and technical knowledge. Recent trends in gym

establishment highlight the increasing accessibility to bouldering. In the past decade,
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50% of the gyms established in the United States and Canada are

only bouldering gyms (3). To capitalize on this popularity,

accessibility is crucial for climbing gym success.

Climbing accessibility is highly dependent on route setters. Route

setters produce climbing routes, the central service of a climbing gym.

They are responsible for producing routes that are varied yet consistent

in difficulty. Gyms vary their route difficulties to capture the largest

audience possible (1), catering to a range of climber experience levels

from novice to advanced. However, the grading scales used to rate

climbing route difficulty are often subjective according to the region,

the gym, and the setter of the route (2). General factors considered

when determining route difficulty are rock hold types, the number

of rock holds on a route, the distance between the rock holds, and

the angle of ascent (3). Therefore, it seems that the positioning and

sequencing of holds are critical to route difficulty. But holds may be

positioned and sequenced in an almost infinite number of ways.

Setting a route is like composing a song (4, 5); there are constraints

that govern its composition, but the liberty to operate within those

constraints is quite large. When operating within these constraints, a

route can be developed in a multitude of ways. This wide variance of

route generation is a challenge for generalizing route difficulty.

without a large sample size, route setters introduce their own biases

when determining route difficulty, which then inadvertently affects

the climber (i.e., the customer).
2 Motivation

Route setters are in an awkward position. The act of setting

routes is inherently subjective, but the success of a climb depends

on the ability of the setter to objectively set routes. This is the

Grading Bias Problem: the setter of a route introduces their

biases when declaring a route’s difficulty.

Reporting the objective grade of a climbing route is critical in the

climbing community and can be aided by machine and deep learning

technology (5). Increasingly, machine learning and deep learning

techniques are being used to objectively classify the route difficulty.

The objectives of this review article are to (1) understand how

today’s route setters maintain objectivity in their setting, (2) to

review the state-of-the-art approaches in determining climbing

route difficulty with machine learning and deep learning, and (3) to

suggest new areas for research. Together, these objectives are

intended to address how climbing gyms can integrate machine and

deep learning systems to streamline route setting and eliminate

route difficulty bias for greater consistency and accessibility.
3 Document layout

The Grading Bias Problem will be thoroughly explored in

subsequent sections of this paper. Section 4 provides context on

rock climbing grade scales and how route setters currently set

routes with the goals of objectivity and accessibility. Section 5

details the survey methodology and inclusion criteria. Section 6

identifies the approaches and methods of various deep and

machine learning techniques to determine the climbing route
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difficulty and their success rates. Section 7 discusses the trends,

performance, and shortcomings of current machine learning and

deep learning techniques. In addition, it is argued that a route-

centric approach with a natural language-like model is most

optimal. Section 7 continues by proposing future areas for research,

in which some proposals are based on works auxiliary to the survey.
4 Background: route grading systems
and setting

Climbing route difficulty can be graded on a variety of scales

(Figure 1). The grade scale depends greatly on the discipline,

subdisciplines, and climbing systems. In free climbing, the climber

ascends a route without any artificial aid. The climber ascends a

route by only the natural or artificial features of the rock. But a free

climber can still use safety equipment (e.g., rope) in the event that

they fall. In the subdisciplines of traditional (trad), sport, and ice

climbing, of which the climber ascends a vertical face that is typically

greater than 4 meters, the climber’s main tool for protection is a

belay system consisting of rope, harness, and either temporary or

permanent anchor points. The grading scales of these three “roped”

disciplines account for risk to the climber in addition to the technical

difficulty of climbing movement. Risk to the climber is most apparent

in trad and ice climbing. In both trad and ice climbing, the climber

sets and removes protection in rock crevices as they ascend. This

protective gear is more prone to fail because they are not intended to

be permanent fixtures in the rock or ice face. For ice climbing, it is

particularly critical to gauge risk to the climber because the

conditions of ice is greatly dependent of weather factors such as

temperature, humidity, and precipitation. Although risk to the

climber is still a concern in sport climbing, it is greatly reduced

because protection gear is permanently fixed into the rock face.

Furthermore, this predetermined protective gear reduces the

cognitive strain on the climber because it outlines the intended route

for the climber. How the risk and the technical difficulty of a route

varies between grading systems.

Grading systems use is predominantly based on region. From

the United Kingdom, the English Adjectival and Technical

System is most notable for incorporating risk and technical

difficulty. It uses a combination of a risk adjective (e.g., Easy)

and a technical difficulty number (ranging from 4a,4b,4c,5a,

…,7c) to classify route difficulty (8). For example, a moderate-

risk, technically demanding route may have an adjective rating of

M (Moderate) with a technical grade of 7a. This combines to a

grade of M-7a. The use of a technical difficulty score developed

as climbers increasingly ascended more difficult routes and the

need for more granularity between difficulties increased.

A similar evolution occurred with the Yosemite Decimal System

(YDS). The YDS scale is used in United States, and it ranges from 1.0

to 5.15d. The number in the one’s place denotes the class of incline

and recommended equipment to minimize risk during ascent. Class

1 indicates walking on an even plane where no additional equipment

is needed (8). Class 5 indicates a vertical wall ascent where the use of

rope and other protection equipment is strongly encouraged to avoid

severe injury or death in the event of a fall (8). Appending a decimal
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FIGURE 1

Climbing skill level across popular rock climbing route grading systems adapted from (5). The International Rock Climbing Research Association (IRCRA)
established the IRCRA Reporting Scale for reporting the grade of a route as an integer value in rock climbing research. It may also be used as a reference
for converting from one grading system to another. Note that the value of the IRCRA Reporting Scale has been increased by one since the first ascent of
the V17 (9A) boulder route Burden of Dreams. Reprinted with permission under Copyright Clearance Center License Agreement. Boldface denotes the
IRCRA Reporting Scale is a standardized scale recognized by rock climbing researchers internationally. Future researchers should consider reporting
rock climbing route difficulties according to the IRCRA Reporting Scale to promote collaboration and ease of conversion to local/national climbing grades.
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grade only occurs with Class 5. This decimal, ranging from 0.1-0.15d,

further indicates the technical difficulty to ascend the route. More

specifically, this decimal usually represents the difficulty of the most

challenging part of the route. Like the English Adjectival and

Technical System, the need for greater technical granularity increased

as climbers kept ascending harder routes.

The French Sport System is widely used used in Europe. This

system’s originates from mountaineers of the Alps (8). It, ranging

from 1a to 9c (easiest to hardest) characterizes the overall technical
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difficulty of a route (8). This is unlike the English Adjectival and

Technical, and the YDS scales because it (1) accounts mainly the

technical difficulty of a route, and it (2) accounts for the overall

difficulty of a pitch. A route is a set sequence of pitches. A route

could be as short as one pitch, which is often defined by a rope length.

A newer scale used in Australia, New Zealand, and South

Africa (9) is the Ewbank Scale. Its development stems from the

English Adjectival and Technical System. This scale sought to

simplify the characterization of route difficulty by assigning
frontiersin.org
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FIGURE 2

A categorical structure of approaches, objectives, and methods in determining rock climbing route difficulty.

TABLE 1 The Risk-Intensity-Complexity “RIC” scale used by route setters
to ensure variety and consistency in route-setting (10).

Route description Risk Intensity Complexity Average
Crimpy, slab face
demanding balance and
forethought

3 2 5 3.33

Straight, over-hang vertical
ascent with strong pinches

2 4 1 2.67

1Strength and technique are two different aspects of movement. For

example, a climber with four points of contact (two hands and two feet)

may shift most of his body weight to his left leg by bending the left knee

and stretching the right leg straight. This would gauge technique. Now,

when the climber seeks to move upward, the climber will unbend their left

knee as the muscles of the left leg push upward. This would gauge

the strength.
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integer difficulty values starting at 1. The greatest numeric difficulty

rating on this scale is currently 39; but, the intention of assigning

integer difficulty values is so that the scale can continiuously

evolve as climbers ascend harder routes.

Bouldering is not a “roped” discipline. Climbers ascend faces that

are typically less than 4 meters in height. Protection usually comes in

the form of foam padding at the base of the climb. When

determining route difficulty, a key distinguishment between trad/

sport and bouldering is that the bouldering grade systems only

account for the technical difficulty of the climbing movement. The

Vermin “V-Scale” is used in the United States and North America.

This scale ranges from VB/V0 (easiest) to V16 (hardest). Plus and

minus superscripts are sometimes appended to the V-rating to

provide more granularity. In Europe, the most common bouldering

scale is the Fontainebleau “Font-Scale” system. Similarly to the

French Sport System, the Font Scale ranges from 1A to 9C; however,

these are not one-to-one translations of route difficulty between the

two systems. For example, a difficult beginner route on the Font-

Scale, 6A, would translate to a French Sport System 6c+. This Font-

Scale difficulty, 6A,may also be translated to theV-Scale, V3 (Figure 2).

Although bouldering grading systems are based on technical

movement skill, route setters often take into account risk, intensity,

and complexity (RIC). The RIC scale (10) is employed to ensure

both variety and consistency at a specific route difficulty according to

any bouldering grading system, and it serves to quantify risk to a

climber. Each RIC metric is measured on an integer scale from 1–5

(Table 1). An RIC score for a route is then determined by taking the

average of these metrics. This allows two (or more) routes of the

same difficulty level to vary in risk, intensity, and complexity. So, the

RIC scale may be used to generalize route characteristics across

grading scales, and it may be used to identify differences between

routes of the same difficulty grade.
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The first metric, Risk, gauges mental focus and commitment in a

movement (10). This relates to how “scary” or how unsafe a move

may feel to a climber (10); these moves can feel “low percentage,”

meaning that the climber may not successfully make the move

often. Intensity gauges the physical strength required to achieve the

move (10). Finally, complexity gauges the technique and bodily

awareness required to achieve a move (10). Technique differs from

strength such that technique is dependent on the ability to shift and

balance body weight, whereas strength is dependent on the muscles’

and tendons’ ability to execute a move.1 With these three metrics,

let’s compare two V3 routes (Table 1). Route 1 has an R-I-C of
frontiersin.org
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3-2-5, where its average RIC score is 3.33. Route 2 has an R-I-C of

2-4-1, a 2.67 RIC average score. Route 1 demands more problem

solving and mental commitment from the climber, whereas Route 2

demands more physical strength. Overall, Route 1 may be a more

difficult V3 than Route 2 because its RIC score is higher. The RIC

scale allows route planners to create a variety of different routes at

the same bouldering grade difficulty.

Route setters have an immense amount of responsibility. They

have control over routes, the primary service of a climbing gym.

They create routes for an intended climbing community, which

can vary widely. To be a successful gym, its setters must be

aware of their climbing community–the customer–and their

demands (4, 11, 12). Mostly, setters should focus on producing

routes that are accessible to 80% of their community (11).

“Primarily…climbs should be equitable to all sizes of climbers in

a given category” (11). This becomes especially important in

competitions, such as the Olympics. How can objectively varied

routes be fairly provided to athletes of varying physical abilities?

What should be the measure of success in this personal sport, in

which the true competitor is the climbing route itself?

Given the subjectivity and variety between climbing routes of

the same difficulty between climbers, it is clear that the route

difficulty could be customized to the climber. But the community

adheres to standardized grading systems that attempt to

objectively define climbing route difficulty.

In most cases, the difficulty of a climbing route is decided by

whomever accomplished the first ascent. This is a well-respected

practice among the climbing community; however, the opinion

of a single climber or a few will inherently have bias. This bias

leads to differences in perceptions of climbing difficulty

between regions, gyms, and climbers. To mitigate this bias,

some gyms have implemented ways for the community to

input their ideas. Route setters will set for an intended

difficulty grade (e.g., V3). Then they either (1) leave routes

unrated until collecting difficulty grading input from climbers,

or (2) rate a route and receive input from climbers. With this

approach, the determination of route difficulty is based on a

distribution, which opens opportunities for statistical and

empirical substantiation. These approaches have lead

researchers to use machine and deep learning techniques in

determining rock climbing route difficulty.
5 Survey methodology

5.1 Search focus

The essence of rock climbing difficulty is multifaceted. Route

difficulty is dependent on numerous factors pertaining to both

the climbing environment and the climber. This survey

investigates how these factors may be quantified with machine

and deep learning techniques to provide a more objective

determination of rock climbing route difficulty. The remainder of

this section presents the conduct of this survey in detailing the

inclusion and exclusion criteria, databases accessed, search

queries asked, and identification of relevant works.
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5.2 Inclusion and exclusion criteria

The base criterion to be included in this survey is that the study

attempted to quantify the difficulty of a rock climbing route. These

quantified factors may be derived from qualitative or quantitative

measures. For example, a qualitative measure would be a

climber’s perceived difficulty of a route while an quantitative

measure would be the sequence of holds in a route. A study was

included if route difficulty was indirectly quantified for an

alternative end goal, such as finding an optimal route path or

generating a new route. Said study would also need to explain

the methodology of their route difficulty quantization.

Understanding indicators of climber performance is a

burgeoning field of study within sports science. As the sport

becomes more popular, researchers are seeking to formulate

methods for improving climber skill. Although this survey

focuses on the technology used in determining climbing route

difficulty, references are made to climbing sports science to

provide context for definitions of rock climbing difficulty,

indicators of climbing performance, and how the sensing

technology used to quantify climber performance can also be

used to quantify climbing route difficulty. Overall, many works

within climbing sports science were excluded because they did

not directly attempt to quantify climbing route difficulty.
5.3 Search query

Eight databases were accessed: arXiv, IEEE Xplore, ACM DL,

Semantic Scholar, Engineering Village, ScienceDirect, EBSCO

Host. These databases were selected because they host articles

pertaining to machine and deep learning and climbing sports

science. Keywords and phrases searched in article document

titles, abstracts, and bodies were: “rock climbing,” “grade,” “route

difficulty,” “bouldering,” “classification,” “machine learning,”

“deep learning,” and “bias.” Abstracts of resulting articles were

read and then filtered if its content met the inclusionary criteria.

The references section of those articles which met the

inclusionary criteria were also reviewed. Twenty-two articles in

total met the inclusion criteria.

These queries ended on July 2nd, 2024.
6 Machine and deep learning
approaches, objectives, and methods
in determining climbing route difficulty

It is critical to understand the different route grading systems

when aiming to determine climbing route difficulty with machine

and deep learning methods. Grading systems consider different

factors when assigning a route grade. The YDS scale considers

factors affecting both risk to the climber and necessary technical

skill while the V-Scale only considers factors affecting technical

skill. A YDS route dataset may then include feature data such as

temperature, humidity, and available protection gear to account
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for risk to the climber, but this feature data would not be useful for

a V-Scale route dataset. So, the performance of a machine and or

deep learning model within one grading system may not be

generalizable to another. If it a model were to be generalizable

across grading systems, the grading systems must consider the

same or similar factors in determining route grade.

The use of the words “determining” and “difficulty” are

intentional in the phrase of “determining climbing route

difficulty.” Both words are broad generalizations that capture the

overarching goal of the work reported in this survey: to

objectively quantify the amount of challenge a climbing route

poses to a climber. “Difficulty” of a climbing route is an

abstraction of its grade. Because there are various grading

systems and granularity of challenge (i.e., the number of grades

within a grading system), “difficulty” is used to describe the

general challenge of a route. “Determining” is an abstraction of

the outcome. Methods reported were aimed at either predicting

or classifying climbing route difficulty, or generating climbing

paths or climbing routes at a specified difficulty. In this survey,

these aims of determining climbing route difficulty are categorized

into a hierarchy of approaches, objectives, and methods.

• Approach: a general description of the data features used as

contextual information for determining difficulty of a climbing

route.

• Objective: the resulting output of the model(s) and or algorithm

(s) (i.e., prediction, classification, or generation).

• Method: the model(s) and or algorithm(s) used to determine

difficulty of a climbing route in the context of an approach.

Traditionally, the top hierarchical category for defining

machine and deep learning models is by their objective, such as

prediction or classification. But in this review, it was more

appropriate to categorize works at the highest level by their

approach; for, the feature data of one model may be used for

prediction, whereas similar feature data of another would be used

for classification. Three main approaches were identified: route-

centric, climber-centric, and path finding or generation, where

the latter is often a hybrid of the former two.

• Route-centric: an approach whose feature set is dependent on the

qualities of the route (e.g., hold types).

• Climber-centric: an approach whose feature set is dependent on

the qualities of the climber (e.g., highest grade climbed).

• Path Finding/Generation: an approach whose feature set is

dependent on both the qualities of the route and the movement

of a climber.

With these definitions, the methods were appropriately

categorized. Figure 2 shows the organization of machine and

deep learning methods in determining the difficulty of the rock

climbing route according to the approach and objective. Flowing

from the categories identified in Figure 2, Sections 6.1, 6.2, and

6.3 compare the methods for each approach in terms of their

similarities, differences, and efficacy.
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7 Discussion

7.1 The route-centric approach

The majority of route-centric models utilized features

engineered from the MoonBoard route database. Its database

contains over 30,000 bouldering routes created by users and

MoonBoard itself. MoonBoard “is a standardized interactive

training wall that connects a global community of climbers

through shared problems and competitive performance rankings”

(13). Users of the MoonBoard can upload bouldering routes and

their difficulty grade on the standardized rock climbing wall of

198 possible holds2 arranged on a 18� 11 grid. With each grid

index denoting a rock hold, routes with an associated difficulty

label are subsets of the 198 holds. In addition to providing route

sequence data, MoonBoard also provides standardized images of

a route on its app. Each image denotes the starting, intermediate,

and end holds. Given that rock climbing gyms routinely set new

routes by changing the holds themselves, the standardization of

the MoonBoard and its route database size makes it a good

launching point for machine and deep learning applications. The

researchers (7, 14–18) used this launch pad to determine the

difficulty of the rock climbing route with a route-centric approach.

Methods utilizing MoonBoard route data are among

algorithms commonly used within the natural language

processing (NLP) domain. If a route is defined by a set of holds,

then a solution to the climbing route may be defined by the

sequence of the holds and or the movement sequence of the

climber about the holds. Phillips, Becker, and Bradley (6) laid the

foundation for using NLP algorithms in describing climbing

routes as a sequence of holds/movements with their route

variation generator, Strange Beta. In their Climbing Route

Descriptive Language (CRDL), they define how beta (instructions

on climbing a route) may be parsed, sequenced, and given a

difficulty rating. Their work is further discussed in the path

finding and Route Generation Section. But it is necessary to

indicate that their work was the primary inspiration for the

ensuing NLP, route-centric approaches.

Dobles, Sarmiento, and Satterthwaite (14) were the first to

attempt classification of bouldering grades with MoonBoard 2016

route data. Of the three methods tested, their ordinal regression

Convolutional Neural Network (CNN) classifier had the best

performance. Although its classification accuracy, 34.0% across

13 different grades, was slightly less than the Naive Bayes and

Softmax Regression models, the CNN generalized better to the

distribution of route difficulty. There is a large class imbalance in

the MoonBoard dataset, as it is skewed toward easier routes. The

use of MoonBoard route image data was improved upon by Duh

and Chang (7) with a Long Short-Term Memory (LSTM)
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FIGURE 3

Duh and Chung’s (7) route pre-processor “BetaMove.” Reprinted with permission under CC BY-NC-SA 4.0.
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Recurrent Neural Network (RNN). The key improvement in their

approach was their pre-processor BetaMove (Figure 3), which

sequenced route holds before passing through their grade

classifier, GradeNet. GradeNet’s accuracy of 46.7% was an

improvement from the CNN, but GradeNet was only classifying

across ten different grades instead of 13. When allowed to have

an error of +1 grade, the classification improved to 84.7%,

which was on par with human prediction accuracy.

While sequencing individual moves improved the accuracy,

Petashvili and Rodda (17) demonstrate that similar performance

can be achieved without this sequence pre-processing step.

Instead, each route was one-hot encoded as a 18� 11 feature

vector (i.e., a route is a set of holds on the 18� 11 grid; if

present, that grid position is coded “1”). When passed through a

4-layer convolutional neural network (2DCNN) with a spatial-

learning architecture, grade classification reached 42.0% accuracy

across 12 grades, and it reached 84.0% accuracy when +1 grade

is permitted. Also similar to Dobles, Sarmiento, and

Satterthwaite, Petashvili and Rodda found that their 2DCNN was

less susceptible to class imbalances than classical regression

models. This finding is significant for trying to improve the

generalization of MoonBoard route difficulty prediction. Likewise,

Tai, Wu, and Hinojosa (15) found generalization improvement

with their using an graph convolutional network (GCN) over

standard logistic regression. Their GCN, using one-hot encoded

representations of routes, made neighbor comparisons to classify

difficulty grade. Compared between neighbors were the route

holds and grade. Some holds on the MoonBoard are associated

with easier or harder grades; so, hold qualities can be key

features for classifying route difficulty. With a Bayesian Network

classifier, hold qualities such as incut depth features have

achieved 71.0% accuracy across three difficulty grades (18). In

continuation of building NLP-like models that classify climbing
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route difficulty, it is necessary to incorporate route-centric

features concerning holds and movement between them.

The effectiveness of a machine and deep learning model is

dependent on the quantity and quality of its dataset.

MoonBoard’s crowd-sourcing approach makes its route database

desirable for machine and deep learning applications. But crowd-

sourcing data makes it difficult to control the quality of the data.

Users introduce their own grading bias, and they may upload

routes that clearly defy their claimed difficulty. But these

undesirable affects on quality may be mitigated. To reduce

grading bias, selection of routes should be limited to those whose

difficulty has been determined by the community (7, 14). To

reduce the affect of inaccurately graded routes, these routes

should be removed (7). Then, when splitting the dataset into

training and testing data, researchers can utilize the “benchmark”

routes provided by MoonBoard. These benchmark routes are

used as ground truth in (17) because they are uploaded by route

setting professionals. While even professionals setters may

introduce their own grading bias, it is they who possess some

authority in determining the difficulty of a route.

The sequencing reminiscent of Strange Beta and BetaMove play

a pivotal role in defining routes and their difficulty beyond the

MoonBoard dataset. The sequence of hold and the movements

between holds are intuitive features in an NLP solution within

the route-centric approach. Climbers will often give advice on

how to “solve” a route “problem” by giving sequenced movement

instructions. Instructions or a set of instructions is called “beta.”

Beta will be composed of two, sometimes three elements: which

limb to move, which holds to move the limb, and sometimes a

descriptor of the type of move (Figure 4). Using Strange Beta’s

Phoenix grammar structure and parser (Figure 5), Kempen (19)

modified this route generator to be used as a route difficulty

classifier. This is an intuitive strategy, because climbers can infer
frontiersin.org

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.3389/fspor.2024.1512010
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


FIGURE 4

A route represented by a sequential instruction listing that is parsable
and user-transcribed presented by Kempen (19) and adapted from
Phillip’s et al. (6). A line describes one move by its sequence
number, a left or right hand tag, and a free-form description.
Reprinted with author permission from (19).
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the difficulty of a route just from its beta description. CRDL utilizes

these colloquial descriptions of climbers on hold types, hold sizes,

movements, and movement distances to classify the difficulty of the

route. However, Kempen’s decomposed context tree weighting (CE-

CTW) variable-ordered Markov Model (VOMM) only had 64.38%

classification accuracy between two difficulties: easy or hard. It is the

later emergence of a nonlinear probability distribution route grade

prediction function that demonstrated accurate and granular

performance on sequence-based, route-centric feature data.

Hold sequences demand effort from the climber. In between long

sequences, some holds afford the climber the ability to rest and regain

energy. Taking inspiration from the online classification calculator,

DARTH GRADER,3 Ansel (20) built a probability-based model to

predict the grade of the route. This model is based on the assertion

that the perceived climbing difficulty of a route is non-linear (21);

expounding on this relationship, Equation 1 states that there is a

nonlinear relationship between the grade of the route and the energy

expended by climbing to ascend the route on the following “energy

of reference” (20):

E ¼ 1:212n (1)

where n is the integer translation of a route grade (20). The integer

value for route grade, n, can be determined by the individual route

sequences and quality of rests as defined by Equation 2:

gnRgk (2)

where gn is the grade of one sequence, gk is the grade of the following

sequence, andR is the quality of the rest in between the sequences (20).

This method had great success in predicting the probability of

official sample grades. The predictions of the grades were highly

concentrated on their official grade, as seen in Figure 6.

Furthermore, a meta-analysis of the model’s classification
3https://darth-grader.net.
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accuracy demonstrates that the model has a high accuracy of

91.75%. Although the sample size of the meta-analysis was small,

these results suggest that hold and movement sequence are

critical to classifying or predicting route difficulty using a route-

centric approach.

The route-centric approach refers to feature data of the route.

Common route features to consider were holds, hold types,

movements between holds, good and bad qualities of holds and

movements, and graded sections of route. But the most

important factor in producing high performing models was to

sequence this feature data. This is an intuitive method because

this is how human climbers would assess the difficulty of the

route. Climbers often preview routes (22) to break down their

structure (holds), required movements, and the sequencing of

movements between hold positions. As climbers do in

previewing, researchers should explore computer vision

techniques to extract specific route-centric features. Then, these

may be fed through an NLP model to classify a route’s difficulty.

For further comparison between route-centric methods, see the

summary of each method in Table 2. It highlights key model

information, such as feature set, granularity, and performance.
7.2 The climber-centric approach

It may seem that shifting the focus from the route to the

climber is a move toward greater subjectivity. However, the

characteristics of climber performance and the performance

history are indicators of the difficulty of the route.

“It can be said with certainty that an evaluation of the

difficulties, in any part of the world be defined, is used to

quantify the ’performance’ that a mountaineer or climber

must express in order to overcome a wall, a step, a block” (8).

Two main themes emerge in the climbing-centric features. The

first is the use of wearable sensors and or recording climber bio-

metrics. These metrics, such as electromyography (EMG) (23)

and acceleration (24), gauge the physical performance necessary

to ascend a route. The second theme departs from the first in

that the utilized features are from past performances of the

climber. These past performances, often recorded in a logbook

(21, 25, 26), can help infer the rating of the difficulty of the

route. But for both themes, portable smart devices play an

important role in collecting data. As with activities such as

running, cycling, and swimming, fitness products and apps may

soon be instrumental in tracking climbing activity and skill

progression. Furthermore, they may be instrumental in

determining rock climbning route difficulty through a climber-

centric approach.

Although understanding of high-skill climbing performance

indicators is an evolving sport science, that knowledge base has

given insight to determining route difficulty from a climber

perspective. To base route difficulty on climber skill, the

assumption is made that climber skill performance degrades at

difficulties beyond the climber expertise. Ebert (27) observed the
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FIGURE 6

Probability of route grade p(gn) predicted by the model presented by Ansel (20). The route names indicate the official route grade whereas the
histograms indicate the probability of each respective route grade. Reprinted with permission under CC BY 4.0.

FIGURE 5

Strange Beta’s CRDL parser of route beta into machine symbols presented by Phillips et al. (6). Reprinted from (6), with the permission of AIP Publishing.
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following indicators of skill degradation: inaccurate gripping,

increased use of strength during transition periods, trembling

during rest periods. Such metrics indicate the degradation of the

“core” climbing abilities: power (transfer of isometric strength

into a move), control (smooth transitions between holds),

stability (maintained composure), and speed (rate of ascent) (28).
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In automatically classifying climbing route difficulty, Ebert

(27) hypothesized that as the difficulty of a route increases, so

does the difficulty in maintaining the four aforementioned

climber abilities. Across 153 ascents, 13 different bouldering

routes, and 3 different difficulty ratings, human acceleration

and rotation data collected from the limbs and chest were
frontiersin.org

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fspor.2024.1512010
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


TABLE 2 Route-centric machine and deep learning methods used to determine rock climbing route difficulty.

Source Objective Method(s) Feature data Route difficulty
granularity

Metric of
success

Performance

(19) Classify route as easy
or hard

VOMM, DE-CTW Enriched CRDL 2 (Easy/Hard) Classification
Accuracy

64.38%

(7) Classify route
difficulty

RNN, LSTM Hold sequence data from MoonBoard
2016 routes

13 (V4-V13, V-Scale), 13
(V4-V13, V-Scale+1)

Classification
Accuracy

46.7%, 84.7%

(17) Classify route
difficulty

2DCNN Hold sequence data from 2016, 2017,
2019 MoonBoard routes

21 ( Fontainebleau), 21
(Fontainebleau+1)

Classification
Accuracy

42.0%, 84.0%

(16) Classify route
difficulty

LoOP-powered HGBC Scored hold sequence data from
MoonBoard routes

11 (V4-V14, V-scale) Classification
Accuracy

46.5%

(14) Classify route
difficulty

CNN 2016 MoonBoad route data 13 ( Fontainebleau Scale) Classification
Accuracy

31.8%

(20) Classify route
difficulty

Histogram of custom
non-linear probability
distribution function

Energy needed to complete a route
section, rest quality in between
sections

21 ( Fontainebleau scale) Classification
Accuracy

91.75%a

(15) Classify route
difficulty difficulty
classification

Graph Neural Network MoonBoard 2016 routes 11 (V4-V14, V-Scale) AUC 0.73

(18) Classify route
difficulty

Bayesian Network
Estimator

MoonBoard 2016 route data (number
of holds, distance between holds,
types of holds, and incut sizes of
holds)

3 (partial Fontainebleau) Classification
Accuracy

71.0%

Bolded terms indicate the best performing model when authors observed the performance of two or more methods.
aThis accuracy was calculated via a meta analysis of Figure 3 of (20).
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collected and feature engineered. Of the five models tested, it

was the hyper parameter optimized (HPO) multi-layer

perceptron (MLP) that produced the best classification

accuracy of 98.04%. Interestingly, this accuracy measure was

reached by ignoring the acceleration and rotation data

captured by the chest. Other than acceleration and rotational

data, EMG activity of the forearm (more specifically, the flexor

digitorum profundis) was shown to have a logarithmic

relationship in predicting route grade (23). As observed in

(21), an objective measure of route grade becomes more

difficult to distinguish at higher grades.4

In addition to bio-metric tracking, another desirable tracking

service in climbing concerns route ascent history. Researchers (21,

25, 26) have scrapped databases from logbook apps like theCrag

and Vertical-Life to determine climbing route difficulty. Route

ascent history has shown a unique relationship between climber

skill and route grade in rating system algorithms. Whole history

rating (WHR) methods posit the climber and the route as two-

players in an adversarial, Bradley-Terry game of odds. The game

has one of two results: the climber “sends” (ascends) or fails to

ascend the route. There are two key independent variables at play

in this game. The first is the time-varying climbing grade of the

climber (21, 25, 26). In instances when the climber’s climbing grade

is self-reported, it is still a valid measure of the climber ability (29).

The second is the grade of the route. Equation 3 describes the
4In the same work (23), it is observed that the perceived difficulty of a route

has a positively accelerating, exponential relationship with route grade. It

therefore becomes easier for climbers to subjectively distinguish between

route difficulty at higher grades.
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probability of sending a route as a function of the route grade and

the time-varying climber grade.

psend ¼ emC(t)

emC(t) þ emR
(3)

where psend is the probability of sending a route of grade R for a

climber of grade C(t) optimized for some parameter m.

This method of route difficulty determination was first presented

by Scarff (25) and later improved by Drummond and Popinga (21).

The latter improved by describing the increase of route difficulty

through the application of a Bayesian Markov Chain Monte Carlo

inference on the timing-varying climber skill grade. Although

Drummond and Popinga used a different method than Delignieres

et al. (23), they observed a non-linear model for route difficulty. For

example, on the Vermin scale, an increase in grade corresponds to

a 3.17 increase in difficulty (21). This demonstrates that despite the

feature data, perceived increases in difficulty do not follow a linear

scale; and logbook data has the potential to better describe this

non-linear relationship in climbing route difficulty.

A limitation in logbook data is that the data is reliant on the

self-reporting of climbers. Climbers may be more apt to log

ascents than failed attempts (21), and exploration of their logging

biases and behaviors (21, 25) is nascent. There are multiple ways

to mitigate this bias. One would be to offer a tool that

automatically captures sends, attempts, and failures. For example,

the ClimbSense inertial measurement unit bands (24) could

accurately recognize when a climber sent a route. This activity

recognition accuracy hardly degraded when only one band was

used, suggesting that climbing activity recognition may be

achieves with smartwatches and other wrist-worn fitness gadgets.

Another mitigation technique is to learn climber bias. Andric

et al. (26) focused on understanding the perceived difficulty of a
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FIGURE 7

Anexample of interface for browsing indoor climbing routes presented by Andric et al. (26). Figure (a) shows howaclimber can observe route setters’ grades
and his/her predicted perceived route grades in columns ’Grade’ and ’Perceived grade’, respectively. Red colour of a perceived grade indicates that the route
would beperceived asmore difficult, while blue colour indicates that the routewould be perceived as easier than theofficial route grade. Figure (b) illustrates
an example of automatically generated explanation for the predicted climber’s perceived grade of a route. Reprinted with author permission from (26).

O’Mara and Mahmud 10.3389/fspor.2024.1512010
route in their climbing recommendation system. As seen in Figure 7,

they propose how this recommendation system would learn the

bias of a climber and make suggestions based on their perceptions.

An example statement (in reference to Figure 7) would be:
Fron
“You could perceive route r as more difficult than officially

graded, because it is often graded by other climbers as 1 level

higher, and you usually grade 6a+ as 1 level higher” (26).
Their knowledge-based models, operating with engineered

features based on time-varying properties of route grade and

climber grading, predicted perceived difficulty of indoor and

outdoor routes. For the indoor routes, their Random Forest

regression model performed 9.5% better than the baseline

recommender system (26).

The determination of difficulty of the climber-centric route is

based on performance and performance history. Common

feature data to exploit were biometrics recorded from wearable

electronics or from logbook databases. It is unclear which will

become the most efficacious; however, it is clear that tracking

climbing performance and performance history are burgeoning

research fields that will be enabled by ubiquitous computing

devices and cloud services. For further comparison between the
tiers in Sports and Active Living 11
climber-centric methods, refer to the summary of each in

Table 3. It highlights key model information, such as feature set,

granularity, and performance.
7.3 The path finding and path generation
approach

path finding and path generation incorporates both route-

centric and climber-centric features. Both are dependent on the

holds of the route and the sequenced movements of the climber.

In the context of rock climbing, path generation is the equivalent

of route setting, and finding a path is the climber equivalent of

finding a “solution.” If a route is a set of holds, then a solution is

the set of sequenced movements to ascend the route.

Furthermore, the most optimal solution would be the one with

the lowest path finding cost (9, 16, 18, 30, 31). These costs

incorporate restrictions imposed by the route and the features of

the climber movement in path finding and path generation.

The A* algorithm and its relatives have commonly been

applied to finding the path of solution. These algorithms: beam

search (16), least-cost stance graphs (9), Dijkstra’s shortest-path

algorithm (18), and A* (31), are well suited to find the least-cost
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TABLE 3 Climber-centric machine and deep learning methods used determine rock climbing route difficulty.

Source Objective Method(s) Feature data Route difficulty
granularity

Metric of
success

Performance

(25) Classify successful and
unsuccessful ascents

Bradley-Terry WHR theCrag outdoor climbing
ascent outcomes and time-
varying climber grade

2 (Fail/Success,
Ewbank Scale)

Classification
Accuracy

85% (average)

(27) Classify route difficulty RF, C4.5, SVM, Naive
Byes, HPO MLP

3D Acceleration and rotation
data of human limb movement
and chest

3 (Partial
Fontainebleau Scale)

Classification
Accuracy

79.01%, 68.63%, 86.93%,
75.82%, 98.04%

(21) Predict route grade Bayesian MCMC
inference of Bradley-
Terry WHR

theCrag outdoor climbing
ascent outcomes and time-
varying climber grade

N/A (Ewbank, Font,
and V-grade Scales)

N/A N/A

(26) Predict climber’s perceived
difficulty of climbing route for
route suggestion

Linear Regression, RF
Regression, SVD
normalized

Static and time variant official
and climber-rated route grades
on the Vertical Life app

32 (Font Scale) RMSE (Indoor
Routes)

0.381, 0.378, 0.384

(23) Model route difficulty based
on perceived difficulty

Multiple linear
regression fitting
perceived difficulty

Perceived exertion, perceived
motor accuracy

16 (Font scale) Correlation
coefficient

r ¼ 0:993

Bolded terms indicate the best performing model when authors observed the performance of two or more methods.

FIGURE 8

Simulated humanoid climber posture presented by Naderi et al. (31). Left: climber in T-pose with measures in meters. Right: Climber’s preferred
posture. Reprinted with permission under Copyright Clearance Center License Agreement.
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solution. A least-cost solution for the climber is the one that

expends the least amount of energy. As seen earlier from Ansel

(20), energy expenditure is primarily dependent on the route

hold sequence and the movements required to move through the

sequence. Although the costs for each algorithm varied between

researchers, the costs focused on nodes and edges. The nodes–or

stances (9)–represent the posture of the climber on a set of

holds. Mathematically, climber posture can be defined by a 4

limb/hold hypernode (18) or a 4-tuple of holds (9). Edges

represent the movement of a climber between nodes (postures).

For node costs, emphasis was placed on positioning the climber
Frontiers in Sports and Active Living 12
agent in a preferred climber stance, which is depicted in

Figure 8. The preferred climber stance is one that has unique

hold for each limb, a low center of mass (COM), and often keeps

feet below hands. For edge costs, emphasis was placed on

mitigating dynamic movements. For both nodes and edges, costs

were introduced to limit postures and movements to what is

humanly possible. A comprehensive list of observed node and

edge costs is further detailed in Table 4.

Despite these costs, it is not clear how to evaluate an optimal

solution or how to evaluate the difficulty of a climbing route. In

fact, Turedioglu et al. (18) was the only cohort whose primary
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TABLE 4 Common costs for nodes (body posture defined by limb
positions) and edges (movements between nodes).

Cost
category

Cost Reason for cost Source
(s)

Node

free limbs It’s undesirable to have a
free hand; somewhat
undesirable to have a free
foot

(9, 30, 31)

unique limbs Matching limbs on the
same hold, especially feet,
is often undesirable

(9, 30, 31)

center of mass (COM) It’s desirable to have COM
low and near wall;
undesirable to have limbs
close together

(9, 30, 31)

stretch/reach It’s undesirable to be at
maximum reach

(9, 16)

matching feet Matching feet is often
undesirable for balancing
weight

(9)

limb crossing Maintaining crossed limbs
is difficult

(9, 30, 31)

high feet Unless in instances of heal-
hooking or toe-hooking, it
is undesirable to place feet
high

(9, 30)

hold type Hold type influences the
difficulty to maintain a
posture

(9, 16, 30)

Edge

cumulative distance
between all holds

Need to keep limb
distances within human
limits

(9, 31)

limbs changing It’s desirable to move one
limb at a time as it may
cause instability

(9, 31)

optimal deviation from
current node COM to
next node COM

It’s not desirable to always
make dynamic movements

(16, 31)

flow (comparison of
movements)

It’s desirable to have
varying movements in a
climb

(16)
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objective was to find the most optimal solution. They used

MoonBoard 2016 route solutions as ground truth. In

comparison, their solutions matched the MoonBoard nodes with

accuracy 39% in three graded routes. Naderi et al. (31) was

concerned with modeling climbing movement moreso than

finding an optimal path. Their simulated climber agent could

reflect either “skilled” or “hobbyist” climber movement. This

suggests that if the climber agent were applied to a MoonBoard

set, its movement pattern could adapt the difficulty grade of

route. This would have the potential to infer the difficulty of a

route based on climber movement. These climber movements

were the basis for Stapel’s (16) route difficulty classifier. Stapel’s

method was a four-step process: (1) use beam searching to find

the optimal solution, (2) grade the difficulty of each movement

in the solution, (3) sum these difficulties, and then (4) classify

the difficulty of a route. This method is similar to the NLP

method of Ansel (20), but the poorer classification accuracy–

46.5% across 11 grades–of the HGBC suggests that the

movement feature data was not suited for the problem or that a

higher-level approach to sequence data is more appropriate. Celik
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(9) was concerned with classifying the difficulty of the route and

the order of the difficulty of the route, respectively. As for Celik,

his least-cost stance graph model, based on hold property feature

data, had a 75% model fit in classifying route difficulty ordering.

But this was only across five grades. The pathfinding approach in

determining climbing route difficulty is in its nascent stage; but

this approach, an approach that directly mimics sequenced

climber movement, demonstrated some success, and it has

potential to improve.

Pathfinding and path generation are closely related processes.

With some modifications, Stapel’s (16) beam-searching method

generated quality MoonBoard routes. His overall method was

changed by personalizing costs to a climber with climbing action

capabilities. For example, the stretch/reach cost (Figure 4) was

customized to the actual ape-index of the participants (16).

Incorporation of these climber-centric methods into route

generation reportedly created MoonBoard routes that were

enjoyable, had good flow, and were on par with the benchmark

routes produced by MoonBoard (16). The climbing abilities that

had a large effect in creating these quality routes were the level

of difficulty, reach, power, and finger strength. So, in this case,

the difficulty of a route is customized to the strengths or

weaknesses to the climber, opening up possibilities for custom

training and defining route difficulty from the climber

perspective. To have a more route-centric, route generation

approach, the difficulty of holds may be incorporated. Katsura

et al. (30) investigated which degree of hold difficulty

stratification would produce accurately graded routes with the A*

algorithm. Across 4 grades, climbers rated the MoonBoard routes

generated with eight degrees of hold difficulty stratification as the

most accurate for the intended grade (30). The degree of hold

difficulty granularity has a large effect on the quality of route

generation. As pathfinding and pathgeneration are closely related,

it is likely that the knowledge gained from route generation

would be insightful to more accurately determine route difficulty

based on pathfinding.

Not all route generation algorithms have path finding roots.

Instead, many generate climbing routes through NLP methods. The

aforementioned Strange Beta (6) (VOMM-based variation generator)

was the first computational tool with the aim of generating climbing

routes. Its main intent was to aid route setters in creating routes,

which was met with apprehension. Two route setters were “hesitant

to endorse anything that would lessen their creative control” (6), and

they found the tool “tedious” (6) to use. Furthermore, Strange Beta

was sometimes unwieldy and created “chaotic” (6) 5.10 routes absent

of climbing flow. This, and generating routes that are unclimbable,

has been a problem with other NLP-like route generation tools (7,

32). However, climbers did prefer the 5.11 routes made with the

assistance of Strange Beta. A later variational autoencoder

development was also met with mixed success in generating

MoonBoard routes, where less than half of the generated routes were

deemed climbable (32). But Duh and Chang’s (7) DeepRouteSet

(RNN+LSTM) had greater success in generating MoonBoard routes,

where 80% were deemed of high quality and 95% were deemed

reasonable for the difficulty. Among the route generation approaches,

the NLP method has proved the most successful.
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There is no standard for evaluating the quality of a generated

climbing route. In general, researchers (6, 7, 16, 30) have surveyed

climbers and or route setters to assess the quality of the route. Likert-

like qualification scales were commonly used as the evaluation

method. Statements such as, “Route or movement is appropriate for

the grade,” is a helpful qualifier in gaining insight on how well a
TABLE 5 Examples of qualification statements and questions for
evaluating a generated rock climbing route.

Qualifier statements and questions Source
Route has good flow throughout the climb (6, 16)

Route has high-quality, quality of a benchmark (7, 16)

Route or movement is appropriate for the grade (6, 30)

“Climbing the route was enjoyable” (16)

“Route fits my climbing style” (16)

Design of route promotes an aspect of climbing training (16)

“Movement is close to expert climbers” (30)

“I think this move is reasonable for the course and difficulty” (30)

“Is the problem [route] decent/reasonable?” (7)

“Difficulty is consistent throughout the climb” (6)

“Appears to be well thought out” (6)

“Climbs awkwardly” (6)

“Is creative/has interesting moves” (6)

“Crux is technically engaging” (6)

TABLE 6 Path-finding and path generation machine and deep learning metho
accurately at a difficulty grade.

Source Objective Method(s) Feature data

(7) Generate bouldering
routes

LSTM Hold sequence data from
MoonBoard 2016 routes

(6) Generate new or
variant climbing routes

VOMM-based
variation generator

A climbing route descriptive
language

(16) Classify route grade LoOP-powered
beaming searching-
informed HGBC

Scored hold sequence data
from MoonBoard routes

(16) Generate bouldering
routes

LoOP-powered
beam searching

Climber action capabilities,
stance and movement costs

(9) Classify order of route
difficulty

Least-cost stance-
graph path finding
algorithm

Wall position, hold position
hold direction, hold type

(30) Generate climbing
routes at specific
difficulties

A* path finding MoonBoard 2017 routes,
hold type difficulty

(18) Find most optimal
climbing path

Dijkstra’s Shortest
Path Algorithm

MoondBoard 2016 route
data broken into stances
(hypernodes) and
movements (hyperedges)

(31) Simulate climber
movement and
determine optimal
climbing path

A*-powered CMA-
ES, A*-powered
C-PBP

Artificial climbing wall, 8x4
max

(32) Generate MoonBoard
climbing routes

Variational
Autoencoder

MoonBoard 2017 route
holds

Bolded terms indicate model achieved it’s best performance when allowing for a +/-1 error in g
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generated route aligns with the target difficulty grade. Other useful

qualifying statements and questions are detailed in Table 5.

Pathfinding and path generation methods to determine the

difficulty of the rock climbing route combine qualities from route-

centric and climber-centric approaches. Their feature set depend on

both route properties, like hold type, and climber properties, like

movement abilities. While many route generation methods use path

finding algorithms, the more successful ones use NLP-like. The

corpus of path finding and route generation methods related to

determining the difficulty of a route or producing a route whose

grade is suitable for the difficulty may be viewed in Table 6.
7.4 What’s the optimal approach?

The main products of a rock climbing gym are routes. Route

production quality is reliant on the route-setting team. They aim

to provide routes of varying–yet consistent–ratings of difficulty

for their community of climbing customers. A detriment to

consistent route setting are the personal biases that route setters

introduce. In attempting to address this grading bias, a machine

learning and or deep learning model tool may be helpful in

assisting route setters. This optimal tool would be able to

accurately determine route difficulty with with great granularity.
ds used determine rock climbing route difficulty and or produce a route

Route
difficulty
granularity

Metric of
success

Performance

13 (V4-V13,
V-Scale), 13
(V4-V13,
V-Scale+1)

Climber qualification 95% routes were reasonable,
80% of high quality

2 (5.10 and 5.11 on
YDS Scale)

Likert-type scale-based
Wilcoxon rank-sum
qualification by
climbers

No preference for 5.10 climbs,
5.11-generated climbs were
preferred

11 (V4-V14, V-scale) Classification Accuracy 46.5%

11 (V4-V14, V-scale) Likert-qualification of
route quality by
climbers

Enjoyable, quality, and flow
were on par with benchmark
routes; were deemed more
unsafe

, 5 (partial
Fontainebleau)

Fitness function 75%

4 (Dankyu & Font) Likert-qualified
accuracy by climbers

8-hold difficulty granularity was
preferred

3 (partial
Fontainebleau)

Accuracy comparison
with MoonBoard
suggestions

39.0%

N/A Researcher and climber
qualification

Both produced plausible
movements, CMA-ES produced
skilled movement movement

Unspecified Researcher and climber
qualification

22/50 routes were climbable

enerating a route at a specified grade.
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The accuracy and granularity of route grade determination are the

key outputs to optimize.

Sequence is the key. Route-centric, NLP and probabilistic

methods were the most successful in this definition of optimal

outputs. On a standardized rock wall, Duh and Chang’s (7)

RNN-LSTM GradeNet achieved the greatest granularity accuracy

(84.7%) when allowed a +1 deviation from the actual route

grade. It was the MoonBoard hold data, when sequenced, that

allowed for such a high accuracy. For chaotic (non-standardized)

representations of rock walls, the probabilistic, HGBC model (20)

achieved the best accuracy (91.75%) observed by any model. As

with the RNN-LSTM architecture of GradeNet, the sequencing of

feature data (expended climber energy and quality of rests) was

profound in determining route grade for the HGBC. It is evident

that successful determination of route difficulty is dependent

on sequencing.
7.5 Future work

There are limitations to the identified optimal models. The first

limitation being that GradeNet operates on a dataset from a

standardized rock wall (i.e., MoonBoard). While MoonBoard’s

standardization makes it desirable for machine and deep learning

models, most frequently climbed routes at climbing gyms are not

on a MoonBoard. Most frequently climbed routes at a climbing

gym are non-standardized, varying widely in length and path.

These routes are also time dependent. Gyms continually update

their walls with new routes. This is a situation where a model

like the probabilistic HGBC (20) would be more appropriate; for,

it relies on graded sections of a route, not the individual holds

and their geometries relative to each other. But the limitation of

the probabilistic classifier is that it does rely on pre-graded

sections of a route. These pre-graded sections may introduce a

grading bias. To mitigate this from a route-centric approach,

each pre-graded section would need to be evaluated by a large

number of climbers, such as with the community-determined

routes in the MoonBoard database. There is thus an opportunity

to develop a route rating system for climbing gyms. Members of

a gym community could grade and rate routes, effectively

building a large grading database for the gym. Building this

database already is the app Crux, which allows users to set their

own routes, grade their own routes, and grade the routes posted

by others. The path-finding approach would also be suitable

for determining route difficulty on a non-standardized wall.

Each section of a route could be broken down into individual

hold and move components as in (16). This would circumvent

the need for relying on crowd-sourced grading data. Instead,

the onus would be on route setters to upload their routes

complete with hold and sequence features to an online path-

finding model for grade evaluation. But this may prove labor to

be a labor intensive, which opens an opportunity for computer

vision to help.

Computer vision would be helpful in route-centric and path

finding and path generation approaches. Besides the image pre-

processor GradeNet, computer vision has seldom been used in
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determining rock climbing route difficulty. Image pre-processing

could perform feature extraction on standardized and non-

standardized rock walls. Features of interest within the route-

centric and path finding approaches would revolve around

holds and climber movements. Hold type, size, placement, and

distances between holds would be good features for breaking

down the difficulty of hold sequences, which builds on the hold

difficulty stratification of (30). Contributions in distinguishing

holds from the wall have recently been made in both research

(33) with Climb-o-Vision and apps like Crux. Moving forward,

a standardized image database of rock holds would need to be

established. In this database of rock holds, it would be

important to label each image with hold type, size, quality of

hold incut, angle of climber observation, and the angle of

incline. Climber movements would also indicate difficulty. Some

movements are harder to perform than others. For example, a

heel-hook often requires less energy to perform than a Gaston.

A heel-hook involves placing the heel of the foot on a hold to

pull oneself toward the wall. This movement engages the leg

muscles, which can take more strain than the arm muscles,

thus allowing more conservation of energy. A Gaston, where

the climber’s hands pry opposed with elbows flared outward, is

a powerful movement that engages the shoulder and back

muscles of the climber. If a computer vision pre-processor

could accurately distinguish climber movements, it could then

rate the difficulty of a movement and grade the difficulty of

sequenced movements.

Recording human movement may also be approached in a

climber-centric context. A Gaston is typically a strenuous

movement to perform. However, it may not always be a hard

movement. Wearable and embedded sensors have the

opportunity to measure and quantify the exertion of the climber

as an indicator of difficulty. On the wearable side, metrics of

heart rate (34), EMG activity (23), and acceleration (24, 35) may

be readily recorded. However, because these recorded metrics are

stochastic, the greatest challenge for future research will be

developing statistical analyses that can quantify climber exertion

based on non-periodic metrics with a high degree of confidence.

Embedded sensors will face this same challenge. But they face

this challenge to a lesser degree. Force-derived climber metrics

have been used extensively in understanding climber

performance (36–44) (? ) in the sports science field. Metrics such

as mean impulse force and the number of load changes are

indicative of climber effort and skill. So, the challenges in using

force-derived metrics from embedded sensors would be aligning

their occurrence with movements, sequencing those movements,

and selecting a suitable model for evaluating route difficulty. This

is a multifaceted problem that will require future collaboration

between researchers of different fields. The future success of the

climber-centric approach will rely on the interdisciplinary work

of sports scientists, engineers, computer scientists, and climbing

gym owners. Quantifying human effort and skill performance is

challenging in any athletic endeavor, and it is especially

complicated for climbing. To generate and validate meaningful

feature data that indicates climbing effort and skill, researchers in

the fields of sports science, engineering, and computer science
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must work collaboratively to aid climbing gyms in producing

accurately graded routes that satisfy their consumer base.

Determining the difficulty of a rock climbing route based on

risk is relatively unexplored. the majority of work reported in

this review aimed to determine route difficulty from technical

systems, such as the V-Scale and Font Scale. Even those that did

explore route difficulty determination with systems that

incorporate risk, such as YDA and French Sport, the feature data

for the models were only related to the technical grading of the

route. There is an opportunity for future researchers to quantify

risk as feature data in models. These feature data could be

temperature, precipitation, humidity, number of protective gear,

distance between protective gear, and height of the route. It is

suspected that humidity would have a large impact on route

difficulty because low humid conditions improve friction between

the climbing and holds. Determining route difficulty with risk

factors, and evaluating how the introduction of risk features

affects model performance, would be an interesting development.

Selecting a machine and or deep learning model for future

research in determining route difficulty is dependent on

numerous factors. We recommend following these steps for

selecting a suitable model:

1. Identify which rock climbing route grading system will be used.

2. Understand the factors affecting route grade determination

within that system.

3. Formulate how to meaningfully quantify these factors with

feature data. This is where collaboration with researchers in

sports science and the rock climbing community is crucial.

4. After identifying these factors and how to quantify them, select

whether your feature data falls within the Route-centric,

Climber-centric, Path-finding and Path-generation

approaches, or an entirely new approach.

5. Select a method (model) for your approach.

8 Conclusion

Climbers solve problems. These climbing route problems are

defined by their difficulty grade, which is often times decided

based on subjective, personal biases. In aims of quantifying

climbing route difficulty with a more objective standard,

researchers have implemented many machine and deep learning

methods with varying success. This survey paper synthesized the

state-of-the-art for determining rock climbing route difficulty with

machine and deep learning; and, in doing so, has identified three

main approaches: route-centric, climber-centric, and path finding

and path generation. The most successful of these approaches

used route-centric and path finding data with probabilistic and

NLP-like methods. But this success was attained with standardized

rock walls, which do not reflect the majority of walls in

commercial climbing gyms. Future success in determining rock

climbing difficulty in these chaotic environments likely rely on

route-centric data extracted with computer vision and then fed

through an NLP algorithm. Machine learning and deep learning

methods keep evolving to solve route problems like climbers. With
Frontiers in Sports and Active Living 16
further evolution, these methods may solve the pervading Grading

Bias Problem in determining rock climbing route difficulty.
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