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The principles of tactical
formation identification in
association football (soccer) —
a survey
Hadi Sotudeh*

Social Networks Lab, Department of Humanities, Social and Political Sciences, ETH Zürich, Zürich,
Switzerland
This paper reviews the principles employed to identify team tactical formations
in association football, covering over two decades of research based on event
and tracking data. It first defines formations and discusses their history and
importance. It then introduces the preprocessing and team/position-level
principles. Preprocessing includes match segments and normalized locations
followed by data representation using various options, such as average
locations, hand-engineered features, and graphs for the team-level and
relative locations, distributions, and images for the position-level approaches.
Either of them is later followed by applying templates or clustering. Among
the limitations for future research to address is the reliance on spatial rather
than temporal aggregation, which bases formation identification on newly
introduced coordinates that may not be available in raw tracking data.
Assuming a fixed number of outfield players (e.g., 10) fails to address scenarios
with fewer players due to red cards or injuries. Additionally, accounting for
phases of play is crucial to provide more practical context and reduce noise
by excluding irrelevant segments, such as set pieces. The existing formation
templates do not support arrangments with more or fewer players in each
horizontal line (e.g., 6-3-1). On the other hand, clustering forces new
observations to be described with previously learned clusters, preventing the
possibility of discovering emerging formations. Lastly, alternative evaluation
methods should have been explored more rigorously, in the absence of ground
truth labels. Overall, this study identifies assumptions, consequences, and
drawbacks associated with formation identification principles to structure the
body of knowledge and establish a foundation for the future.
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Introduction

The success of the Roman Triplex Acies formation in ancient battles (1) and the power

efficiency of migratory birds’ V-shaped flight (2) are just two examples that demonstrate

the benefits of collective behavior. Formations have also been studied in other domains,

including transportation (3), robotics (4), space exploration (5), video games (6),

choreography (7), and sports such as American football (8), field hockey (9), handball

(10), and association football1 (11).

In football, formations have been present since the early versions, as evidenced by

available drawings from a festive match played in Italy in 1688, which depict team

arrangements on the field, including players’ defined distances (12). After the
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FIGURE 1

A (symmetric) 4-4-2 formation.
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codification of football and its split from rugby in 1863, the first

observed formations were 2-2-6, 1-2-7, and 2-3-5 (pyramid).

Historically, formations have been modified to balance defensive

and offensive capabilities while adapting to rule changes such as

offside in 1925. Arsenal’s 3-2-2-3 (W-M) from the 1930s, Brazil’s

4-2-4 in the 1950s, and the 4-2-3-1 formation used in recent

decades are a few examples of this continuous evolution (11)

because there is no optimal formation as each has its pros

and cons (13, 14).

We define “formation”2 as an abstraction summarizing each

team’s spatial arrangement on the pitch over a match using

labels (16) that are usually short to communicate useful and

relevant information to the target audience in a consistent

manner. While this definition means there is no requirement for

a standard and unified set of these labels, they are commonly

reported using three to five digits denoting the number of

outfield players from defense to attack in each horizontal line3

usually in a symmetric manner, like 4-4-2 (four defenders, four

midfielders, and two attackers), as shown in Figure 1.

Formations can change in a match for various reasons (18)

including the match score (19), coach instructions (20),

substitutions (21), tactical position4 switches, match phases

(22–25), opponent (26), mental pressure, injuries, and yellow/red

cards. This definition aligns with football as a dynamic

interaction process (27) and contrasts with the traditional belief

that formations are fixed throughout a match, as reported in

“starting formation”5 graphics in media and history books (11, 28).

Formations are important to ensure a team operates cohesively,

without confusion or delay, while taking advantage of each player’s

abilities and conserving energy. Therefore, players’ confidence is

boosted and they can inflict maximum damage on their

opponents while remaining less susceptible to attacks (1).

Moreover, it serves as a reference (29) for players to remember

their organization and responsibilities when distracted (30), helps
1Association/European football or soccer from hereafter is just referred to it

as “football”.
2The same term has also been used to describe the selection of the best

team under specific constraints (15), which is not the subject of this paper.

Therefore, we used “tactical formation” in the title to avoid this confusion.

In this context, tactical does not mean intended formations but observed

ones through data. Hereafter, we will refer to it simply as “formation”.
3One can find exceptions where the emphasis is given to the vertical lines, as

seen in 2-7-2 denoting the number of players from left to right (17). The

digits in this case sum up to 11 as the goalkeeper is also considered.
4The term "tactical position", often communicated with labels such as center

back and right midfield, typically refers to where players spend most of their

match time on the pitch. Since "position" is also used in the literature for

player locations (coordinates) from tracking data, we added the adjective

"tactical" to avoid confusion.
5These graphics are analysts’ educated guesses based on the starting players’

list in addition to players’ tactical positions and team formations from

previous matches, as the team officials do not announce their formation.
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coaches reduce communication overhead, and shapes the team’s

collective behavior by creating desired scenarios (31), such as

passing options and numerical superiorities. All these reasons

could explain why formations are covered in coaching programs,

interviews (22, 32–34), training sessions (20), dressing room

discussions (35), and media (36).

Formations are also among the first considerations in

opposition analysis (13, 20), as highlighted by the spygate

incident (37). This is because coaches have the freedom to

choose any6 formation consisting of a goalkeeper and six to ten

other starting players to counter opponents (11, 39–41). In

addition, there are other factors that can influence a formation

choice such as the skills of available players (19), tradition (11),

recent results (42), coach and club’s principles (43), league (30,

44), home or away (45), and pitch elevation (46).
Goal

Formation analysis is often carried out qualitatively (47) relying

on previous matches using isolated observations (16), most seen

arrangements (48), or only out-of-possession moments (49, 50)

resulting in a time-consuming and subjective process (51). For

instance, comparing the starting formations recorded by two

industry data providers for the 2022 Men’s World Cup shows
6There is no restriction on the formation choice in the Laws of the

Game (38).
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only a 65% agreement (52, 53) highlighting the lack of ground

truth formation labels (54).

To address these issues, dozens of data-driven studies have been

conducted over the past decades to identify formations in a more

automated, scalable, and objective manner. These solutions also

can have player/coach recruitment in addition to performance and

match analysis applications such as studying the relationship

between formation choice and various success metrics (e.g., goals,

expected goals, scoring zone entries) (30, 55, 56), examining the

physical load implications of different formations (57–59), and

comparing the identified formations with the instructed ones.

Ideally, these approaches, given data availability, can also support

real-time applications for media, fans, and specifically the

coaching staff to facilitate in-game interventions.

Given the ongoing interest in this problem and the time required

to get informed about the relevant developments and their

limitations, we recognized the need for a survey on the subject of

“formation identification principles in football using event and

tracking data” to structure the body of knowledge, prevent

redundant efforts, and establish a foundation for future research.
Method

Our survey is not a systematic review but rather an extensive

overview of the principles used to identify football formations7

using event and tracking data8 in the past decades9. We put

together similar attempts for each principle found in academic

papers, presentations, books, theses, and patents starting with the

seminal publications in football and their reference lists. Next, we

monitored sources that cited the initial publications and

subsequently expanded them to relevant principles from other

sports and fields.

In summary, these principles are preprocessing the input data,

followed by choosing either the team or position level. Regardless

of the choice, there is a data representation and identification step

followed up by evaluation. The goal at the team level is to directly

report the formation for the entire team while the position level

first starts by identifying individual player positions and then

maps the set of those positions to a formation label using a pre-

defined lookup table. Therefore, this survey also covers tactical

position identification methods relevant to formation identification.

An overview of these principles and their concepts is depicted

in Figure 2. Each step is explained through the remainder sections

and subsections of this paper.
7Excluding studies focused on specific team segments, like defenders (60,

61).
8Excluding studies that relied on direct video or image analysis (62–65), as

well as partial TV broadcast tracking data (66) because recent advances

have allowed for generating full tracking data (67).
9The earliest attempts we found date back to the late 1990s in RoboCup and

American football (8, 68).
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Data

In this section, we introduce the event and tracking data

sources. Event data is used only in “Match Segments” while

tracking data is employed in all steps shown in Figure 2.
Event data

The event data commonly includes on-ball actions such as

passes, throw-ins, shots, and fouls during a match, often with

timestamps, locations, involved players, and other relevant

attributes. The collection of event data can be traced back to the

1950s when Charles Reep began recording its basic elements

occasionally with pen and paper (69). Today, event data is

typically recorded by computer-assisted professional annotators (70).
Tracking data

The second source is the time series of the ball and player

locations obtained through optical tracking cameras installed in

the stadiums (71), radar-based systems such as Global

Positioning System (GPS) sensors worn by players and inside the

ball (72), or computer vision and deep learning models applied

to TV footage (73). A tracking dataset with 25 frames per second

results in more than three million records per match (74).
Preprocessing

In this section, the input data is preprocessed by transforming

teams to have a consistent attacking direction (e.g., from bottom to

top) to negate the effect of half-time side switches, or ignoring the

goalkeeper locations, as they may not be relevant. Moreover, the

pitch sizes are standardized since they can differ per stadium10.

The other preprocessing tasks are explained in “match segments”

or “normalized locations” subsections.
Match segments

Since formations can change throughout a match, as

mentioned in the introduction, it is necessary to divide the

match time into segments, known as phases of play, to report

formations. For each phase, coaches instruct their teams to

deploy a set of customized principles and arrangements (76, 77).

While defining these segments is subjective, there are

commonalities among the previous approaches seen in the

literature, coaching textbooks, and match reports (78). For

example, the England Football Association’s training and
10However, the common pitch standardization methods result in distorted

player locations (75).
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FIGURE 2

Overview of the formation identification principles.

11Inspired by players’ alignments with nearest teammates (88, 96, 97).
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coaching guide from 1967 introduced the attack (in-possession),

defense (out-of-possession), and preparation (transition) phases

(77). The transition phase can be divided into attack to defense

and vice versa (79). Additionally, set-pieces are considered a

separate phase by some coaches because a considerable

proportion of goals comes from them (80).

One major difference among these approaches is how the in and

out-of-possession phases are divided into smaller sub-phases. For

instance, whether to base the division on when each of the

opposite team’s attack, midfield, and defense lines is broken (81)

or to divide the pitch into tactical zones such as the first, middle,

and last third of the field (20). This latter approach is reflected in

the training grounds of some professional teams to guide player

positioning and direction during training sessions (82).

To provide more context, formations should be reported per

segment and previous studies operationalized it using a

combination of event or tracking data:

1. Fixed time intervals, such as per match half (83) five-minute

windows (84), and 15-minute windows subdivided in case of

a substitution (85, 86).

2. In and out of possession sequences (25, 87) such as two-minute

windows of each separately (88) with tweaks to discard

interruptions, short sequences, and some seconds after throw-

ins, free kicks, corners, and penalties (89) or consider only sub-

windows bigger than five seconds to ignore transitions, and end

the time window due to a substitution or half-time break (88).

3. Identification of common in and out-of-possession subphases

such as build-up, and low/mid/high blocks using ball zone

changes (90) or a Convolutional Neural Network (CNN)

trained on labeled tracking data frame visualizations (55).

4. Change point identification by applying g-segmentation on

Delaunay adjacency matrices (91), or planarity testing on the

graph representation (92) to find distinct intervals (55, 93).
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Match segments play a crucial role in identifying formations by

excluding segments that have a different nature, such as set pieces.

These aspects were overlooked in earlier attempts until recently

(55). Additionally, these segments provide more context taking

into account the team’s arrangement concerning the opponent’s

influence and ball location, such as build-up (opposed/unopposed)

(78). Analyzing segments will also allow one to discuss relevant

sub-formations in each phase rather than focusing solely on the

overall team arrangement. For instance, it is common to describe a

team’s build-up as 3–2 (three in the back and two in the middle).
Normalization

The objective here is to report formations regardless of

their on-pitch location (89). For example, Figure 3 illustrates a

4-4-2 formation in various regions and to classify them as the

same formation, certain studies have utilized one or both of the

following steps, which are part of the Procrustes analysis (94), a

statistical shape analysis method with a long history in biology (95).

In translation, the locations of each team’s players are relocated

with a constant vector (e.g., team centroid or common k-nearest

neighbor11) to the pitch center (89, 93, 98, 99). To treat compact

and narrow formations the same, scaling methods such as min-

max (31, 89, 100), scaling to range (101), and division by

standard deviation (45, 83, 91, 102–105) are employed.

However, it is crucial to mention that the normalization

methods result in unintended transformations of player locations.

For instance, applying min-max normalization to an unorthodox
frontiersin.org
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FIGURE 3

A 4-4-2 in defense (a), attack (b), and with two attackers playing higher up on the pitch (c). All these arrangements should ideally be reported as 4-4-2.
While the normalization step can handle (a) and (b), it may result in reporting (c) as a different formation.
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4-4-2, depicted in Figure 3c, where two attackers are located

significantly higher up, may not achieve the desired outcome of

categorizing it as the same formation as the other 4-4-2

formations shown in Figures 3a,b (106). Therefore, it is desired

to achieve the same objective by the other pipeline steps.
12In which players in adjacent Voronoi cells (“dominant regions”) are

connected (129, 130).
Team level

Representation

The team-level formation representation should have the

following properties:

1. Distinguishing Power: It should differ for distinct formations.

2. Uniqueness: The same formation should have a single and

consistent representation.

3. Robustness: Small player location changes that do not alter the

formation should not affect the representation.

In addition to the raw 2D coordinate vector (107), the following

approaches have been proposed:

Average Player Locations is the simplest and most common

representation (25, 85, 108, 109) in media and reports, as shown

in Figure 4. However, a limitation of this representation is that

compactness will be interpreted as a direct consequence of

averaging. For instance, if a player switches from left to right

during the first half, taking average locations per half would

locate the player near the pitch center, which is not correct

(25, 102) and results in misleading statements (110, 111). One
Frontiers in Sports and Active Living 05
possible mitigation is to compute averages over smaller windows.

However, the appropriate time length will depend on the player’s

position change rate and remains unknown.

Hand-engineered Features where relevant indicators for

formations such as team centroid, range (83), convex hull,

spread, stretch (114), the distance between the farthest players

(115), or team heatmaps (116) are computed. For instance,

Figure 5 depicts an n�m grid placed around a team, resulting

in an nm vector where a cell records the presence or absence of

at least one player. The primary burden here remains the

identification of relevant features.

Graphs representation assumes a set of relations (i.e., edges)

among players that can describe their spatial organizations, seen

through tracking data, by neighborhood structure rather than

aggregated spatial distributions. For a team with n players, there are

a maximum of n(n� 1) directed or n(n� 1)=2 undirected relations

ignoring self-loops, as shown in Figure 6a (118, 119). Since not all of

these relations are relevant, previous studies applied heuristics to

well-known graphs, such as minimum spanning trees, nearest-

neighbor graphs (10, 92, 120–126), and Delaunay triangulation (DT)

(104, 105, 127, 128)12 to only consider neighborhood relations. Two

examples of them are depicted in Figures 6b,c.
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FIGURE 4

Examples of player average locations seen in the German Bundesliga’s official mobile application (112) in (a) and UEFA’s technical report (113) in (b).
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These options have also been successful for similar applications

in biometrics such as fingerprint (131–134), palmprint

(135), and face identification (136). Additionally, these

representations can incorporate inter-team and intra-team

relationships when considering both teams together. Coaches

have used similar graph representations as a tool for visual

communication, too (137).

The primary obstacle lies in identifying the relevant relations.

Tactical zones drawn on training grounds serve as just one

reference for players to arrange themselves on the pitch and

there are other references to consider, such as space (77), ball,

goals (77), teammates and opposition players, field markings,

nearest players (55), and passing options (77, 121). Moreover,

some of these graph-based representations such as DT suffer

from (1) a lack of a unique solution and (2) susceptible to minor

player location changes, leading to errors in identifying the same

formations and inconsistent results.

To the best of our knowledge, previously published formation

studies did not consider addressing these two drawbacks when

proposing graph-based representations.
Identification

To assign formations at the team level, both template-

based and clustering approaches have been explored, as
Frontiers in Sports and Active Living 06
discussed below. Typically, formations are identified by matching

frames or game segments to the most similar template or

cluster. A more robust approach, inspired by match analysts’

methods and overlooked by previous studies, involves using

only frames or segments that exhibit 100% similarity with a

template or cluster. Frames that do not fully align can be

categorized as transitions, variations, or new formation labels

based on similarity scores. Forcing non-perfect matches into

predefined templates or clusters will introduce noise and obscure

the results.

Templates are inspired by common labels like 4-4-2. This

option involves preparing a list of formation templates and

matching them to the most similar label. The matching process

can be accomplished through similarity functions or machine

learning algorithms.

Examples of similarity functions are Euclidean-based distances

(83, 89, 138), graph edit distance (139), the Freeman code (140,

141), and the sum of element-wise differences divided by the

maximal possible distance (84, 142, 143). Machine learning

algorithms, such as neural networks, support vector machines,

and decision trees, are also employed in some of those attempts

(100, 107, 115, 117, 144–150).

One difficulty here is maintaining a consistent and up-to-date

list of these templates because of (1) differences across the sources

and (2) emergence of new formations over time. For example,

Table 1 shows the formations listed by three well-known industry
frontiersin.org
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FIGURE 5

A 5 × 5 grid, inspired by (117), with gray cells indicating the presence
of at least one player. This produces a vector of length 25 (5 × 5) to
represent the team’s arrangement.

13Some use the term “role“ to refer to the position (87, 91, 160).
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data providers (52, 151, 152). The matching agreement among

these providers is just 30% (13 out of 44). This comparison

highlights the subjective nature of these labels. Additionally, the

FIFA video game series offers 52 formations (153), providing

variations to the same label, such as 4-4-2 flat and holding,

because players can be arranged in different ways while still

using the same label (20).

A notable observation about these predefined formation

templates is their symmetry, as seen in Figure 1 and coaching

documents reported before. However, this assumption appears

unrealistic when it comes to player arrangements observed

through tracking data.

Clustering avoids the difficulties explained in the template-

based option and is not restricted to a set of predefined labels.

It focuses on learning formations directly from tracking data

by inferring the number of players in each horizontal (i.e.,

defense, midfield, and attack) or vertical (flank) line directly, as

shown in Figure 1. Various clustering algorithms, such as

complete-linkage (154), K-means (92, 155, 156), Jenks natural

breaks optimization & (157), Percentage (101), FOREL (158),

and team width/length-based (159), have been proposed to

cluster players’ x and y coordinates separately per frame. The

number of lines can be determined by setting a fixed number

(e.g., three) or using optimization methods like the elbow or

silhouette method.
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Position level

Several studies focused on reporting team formations bottom-

up by starting from smaller units called positions13, which are

defined based on where on the pitch players spend most of their

match time. Positions are commonly communicated with labels

such as center back and right midfield, as shown in Figure 7, for

an example.

The reason behind considering positions rather than player

identifiers is that players can swap positions, be substituted or

sent off during a match, or differ across matches while the set of

all possible positions on the pitch remains fixed. Similar to the

team-level approach, an appropriate data representation is chosen

and later either template or clustering is applied to identify

positions. The key assumption employed in the position-level

approach is that no two teammates can occupy the same position

simultaneously (9). Therefore, a one-to-one mapping is applied

to assign either a template or cluster position by solving the

assignment problem (161).

Similar to Table 1, we compiled the list of position labels from

the same three industry data providers see Table 2 by merging

labels with identical descriptions or spatial arrangements on the

pitch. This comparison shows a 79% agreement, indicating a

stronger consensus than for formations.
Representation

Player position data representation proposals apart from

the 2D coordinate vectors can be classified into the

following categories:

Relative Locations are based on how position labels have been

named relative to each other. For instance, a left back in a 4-4-2

formation is located to the left of the center backs (45). This

approach describes a position using statistics relative to the

other players (8) such as the percentage of teammates located in

the front, behind, right, and left angle bins (83), as depicted in

Figure 8a, the division into 16 instead of four (162, 163), or the

amount of created angles (50, 164).

Distributions such as bivariate normal distributions (88) and

normalized heatmaps containing players’ occupancy probabilities

(83, 165), as shown in Figure 8b.

Images can capture a position’s spatial arrangement, as

proposed in (99) and shown in Figure 8c to serve as input for

image classifiers.
Identification

Similar to the team level, the position-level identification

approaches are templates and clustering.
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FIGURE 6

A 4-4-2 representation as a complete undirected graph (a), a union of minimum and second minimum spanning trees (b) presented in (82), and
delaunay triangulation (c) proposed in (104). Considering the properties a team-level representation should have, a complete graph (a) can’t
distinguish formations since all players are connected. The algorithms producing (b) and (c) do not guarantee a unique answer and are not robust
against small player location changes that don’t affect the team’s formation.
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Templates ensure adherence to common position labels. This

approach assigns the representation to a predefined set of

position templates using one of the following methods:

1. Rule-based such as defining arbitrary pitch regions (home

areas) for each position. When a player moves outside the

designated area, the position is updated accordingly (166, 167).

2. Similarity functions such as Chi-square distance for the

relative locations representation and naive Bayes as a distance

function on the log probabilities of the heatmaps (83).

3. Machine learning algorithms such as ResNet on images of

color-coded positions, see Figure 8c (99).

The issues discussed for the template-based approach at the team

level are also valid here.

Clustering moves away from the template issues and various

clustering algorithms (78) such as k-means (9, 31, 45, 51, 83, 87, 102,

168–171), Gaussian mixture models (25, 103, 172–175), and

hierarchical agglomerative (25, 55, 88, 91, 96, 97, 104, 175–179) have

been applied. To determine the number of position clusters, different

numbers of clusters (87), dendrogram (88, 105), or a combination of

them along with video/match analysts’ inputs were considered (55).
Evaluation

Regardless of the approach, previous studies have generally

fallen short in terms of reporting their accuracy, execution time,
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and required storage. This is understandable given the variations

in validation datasets, evaluation metrics, labeling quality,

granularity, and expert interpretations (106).

While quantitative evaluation in this area remains difficult due

to the lack of ground truth in sports analytics (180), there are other

aspects to an evaluation, as suggested for mathematical models in

general and sports analytics ones in particular (181, 182). We

divide them into design and qualitative categories.

In design, aspects such as realistic assumptions, output

robustness to small input data changes, output stability over

time, reproducibility, and interpretability can be covered.

In the qualitative category, one can address whether the

outputs behave as expected in known and boundary scenarios

and if the results are intuitive, insightful, and actionable

for practitioners (183).
Discussion & conclusion

While the definition of formations remains an ill-defined

problem, we aimed to provide more clarity by defining them as

the spatial arrangement of players on the field. Our paper offers

an overview of more than 20 years of research on team tactical

formations starting from the late 1990s in simulated robotic

soccer and American football. The importance of formations is

highlighted through opposition analysis, training sessions, and

media coverage and the formation identification still is carried
frontiersin.org

https://doi.org/10.3389/fspor.2024.1512386
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


TABLE 1 Comparison of three data providers’ 44 formations shows 30%
agreement (colored rows).

Formation StatsBomb Wyscout Stats Perform
3-1-2-1-1-2 ×

3-1-2-2-2 ×

3-1-4-2 × ×

3-1-5-1 ×

3-2-1-2-2 ×

3-2-2-2-1 ×

3-2-3-2 × ×

3-2-4-1 ×

3-3-3-1 × ×

3-3-2-2 ×

3-3-1-3 ×

3-3-4 ×

3-4-1-2 × × ×

3-4-2-1 × ×

3-4-3 × × ×

3-5-1-1 × ×

3-5-2 × × ×

3-6-1 ×

5-1-2-1-2 ×

5-1-2-2 ×

5-1-3-1 ×

5-1-4 ×

5-2-2-1 × ×

5-2-1-2 ×

5-2-3 ×

5-3-2 × × ×

5-4-1 × × ×

4-1-1-3-1 ×

4-1-2-1-2 × ×

4-1-2-2-1 ×

4-1-3-2 × × ×

4-1-4-1 × × ×

4-2-1-2-1 ×

4-2-1-3 × ×

4-2-2-1-1 ×

4-2-2-2 × × ×

4-2-3-1 × × ×

4-2-4 ×

4-3-2-1 × × ×

4-3-1-2 × × ×

4-3-3 × × ×

4-4-1-1 × ×

4-4-2 × × ×

4-5-1 × × ×

FIGURE 7

The outfield tactical position locations documented by
StatsBomb (52).
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out qualitatively to a large extent by counting the number of

players in each horizontal line overlooking the vertical disposition.

The main principles were structured as first preprocessing and

later taking either a team or position-level approach. The two main

concepts employed in the preprocessing step were match segments

and normalized locations. The objective of dividing the match time

into smaller windows, known as phases of play, is to move beyond

reporting one fixed formation for the entire match. Normalized

locations aimed to report the same formation for the same

arrangements, regardless of where they occurred. However, the

potential unintended consequences were not fully understood.
Frontiers in Sports and Active Living 09
Moreover, the same objective can be achieved through other

steps of the pipeline without the need for normalization.

After preprocessing, two different paths were followed: The

team-level approach looks at a whole team at once while the

position level starts with positions as smaller units to build on.

In both, the first step is data representation and later, the

detection using either qualitatively labeled data (templates) or

clustering methods.

Among the data representation options, average locations were

the simplest and most commonly used. However, they lead to

misleading statements due to the natural outcome of

compactness resulting from averaging. When utilizing hand-

engineered features or graph representations, it is crucial to

carefully select the elements to include in those representations.

These elements should align with the references coaches use to

instruct team arrangements. Additionally, the representation

should be unique for the same arrangements, or arrangements

that are not distinguishable due to small player location differences.

After data representation in the team or position levels,

formation identification has been achieved by employing domain

knowledge through templates or relying on data through
frontiersin.org
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FIGURE 8

A right midfielders’ representation using relative locations (a), heatmap (b),

TABLE 2 Comparison of three data providers’ 24 outfield positions shows
79% agreement (colored rows).

Position StatsBomb Wyscout Stats perform
Right Back × × ×

Right Center Back × × ×

Center Back × × ×

Left Center Back × × ×

Left Back × × ×

Right Wing Back × × ×

Right Defensive Midfield × ×

Center Defensive Midfield × ×

Left Defensive Midfield × ×

Left Wing Back × × ×

Right Midfield × × ×

Right Center Midfield × × ×

Center Midfield × ×

Left Center Midfield × × ×

Left Midfield × × ×

Right Wing × × ×

Right Attacking Midfield × × ×

Center Attacking Midfield × × ×

Left Attacking Midfield × × ×

Left Wing × × ×

Secondary Striker × ×

Right Center Forward × × ×

Striker × × ×

Left Center Forward × × ×
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clustering. While templates are relatable to public understanding

and can be widely accepted, preparing a list of labels and

qualitatively assessing them could be cumbersome, especially

since there is no worldwide consensus and they change over

time. This could be why some adopted clustering to bypass the

issues associated with templates. Clustering avoids these issues

but on the other hand, requires tracking data of a large number

of matches and will limit the future observations to be mapped

to one of the existing formation clusters seen in the selected set

of matches.

Since our comparison has shown more consensus in position

labels than formations, we suggest carefully considering match

segments and choosing the position-level approach. For data

representation, a graph choice seems reasonable because it can

achieve the objectives of the normalization step without facing its

drawbacks. When deciding between templates or clustering, it is

important to consider the drawbacks of each.

The limitations identified in each step were documented in

their respective sections and Table 3 highlights the major ones.

Future research can address these limitations and then provide

the most value by reporting identified formations and player

tactical positions over match time, incorporating contextual

factors such as phases of play, substitutions, red cards, scoreline,

halftime, and stoppage breaks to reveal formation and position

dynamics. Finally, large-scale studies could identify patterns
and color-coded image (c).
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TABLE 3 Some recognized limitations of previous studies.

Limitation Description
Spatial Aggregation Introduces coordinates not present in tracking data, as

noted in normalization.

Ignoring Phases of Play Mixes irrelevant coordinates, such as those from set
pieces, into results.

Fixed Number of
Players

Does not account for scenarios with fewer players due to
suspensions or injuries (184).

Existing Pre-defined
Templates

Lack flexibility for formations with fewer or more players
in each horizontal line (e.g., 6-3-1), see Table 1.

Clustering Requires extensive tracking data and constrains new
observations to predefined clusters, failing to recognize
emerging formations.

Forced matching Assigns a formation to each match frame by selecting the
most similar (lowest distance) template or cluster.
Instead, one could adopt the approach of match analysts,
who focus only on moments with 100% similarity to a
formation template or cluster and consider all others as
transitions.

Evaluation Usually is neglected or limited to accuracy-related
metrics with an insufficient number of classes. However,
those are not applicable in this context due to the lack of
ground truth labels (54) and alternative methods,
outlined in the evaluation section, should be considered.

Sotudeh 10.3389/fspor.2024.1512386
across leagues, seasons, coaches, and teams, as well as how

formations counter each other, considering relevant success

factors. These advancements will also significantly influence

sports science studies that focus on physical load monitoring.
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