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Cluster analysis of cutting
technique—a valuable approach
for assessing anterior cruciate
ligament injury risk?
Lasse Mausehund1*, Anri Patron2, Sami Äyrämö3,4 and
Tron Krosshaug1

1Oslo Sports Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport
Sciences, Oslo, Norway, 2Department of Computer Science, University of Helsinki, Helsinki, Finland,
3Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland, 4Hospital Nova of
Central Finland, Wellbeing Services County of Central Finland, Jyväskylä, Finland
Background: Despite extensive efforts to pinpoint singular biomechanical risk
factors for anterior cruciate ligament (ACL) injuries, research findings are still
inconclusive. By combining multiple biomechanical variables, cluster analyses
could help us identify safe and risky cutting technique strategies.
Purpose: To identify common movement strategies during cutting maneuvers
and to assess their association with ACL injury risk.
Methods: A total of 754 female elite handball and football players, including 59 with
a history of ACL injury, performed a sport-specific cutting task while 3D
biomechanics were recorded. Over an 8-year follow-up period, 43 of these
players sustained a primary ACL injury and 13 players a secondary ACL injury.
Cutting technique was described using 36 discrete kinematic variables. To
identify different cutting techniques, we employed a K-means clustering
algorithm on data subsets involving different numbers of kinematic variables (36,
13 and 5 variables) and different sports (handball, football, and both combined).
To assess the impact of the identified cutting technique clusters on ACL injury
risk, we compared the proportion of injured players between these clusters using
the Fisher-Freeman-Halton Exact test and adjusted rand indices (ARI).
Results: We identified two distinguishable cutting technique clusters in the subset
involving both sports and five kinematics variables (average silhouette score,
ASS =0.35). However, these clusters were formed based on sport- or task-
related differences (Fisher’s p < 0.001, ARI = 0.83) rather than injury-related
differences (Fisher’s p=0.417, ARI = 0.00). We also found two cutting technique
clusters in the handball (ASS=0.23) and football (ASS =0.30) subsets with five
kinematic variables. However, none of these clusters appeared to be associated
with ACL injury risk (Fisher’s p > 0.05, ARI = 0.00).
Conclusion: No safe or risky cutting technique strategies could be discerned
among female elite handball and football players. Cluster analysis of cutting
technique, using a K-means algorithm, did not prove to be a valuable
approach for assessing ACL injury risk in this dataset.
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1 Introduction

Anterior cruciate ligament (ACL) injuries are a major concern in

team ball sports, especially for female athletes, who face an incidence

three times higher than their male counterparts (1). These injuries

carry severe consequences not only for the injured athlete and

their team but also for society at large. One of the most severe

consequences of a primary ACL injury is the alarmingly high risk

of suffering yet another ACL injury. As many as 1 out of every 5

athletes who return to play after an ACL injury will end up with a

new ACL injury in the same or contralateral knee (2), with short-

and long-term implications overshadowing those of a primary

ACL injury (3–6). It is therefore critical to prevent such injuries

and to make return to sport safer.

A first logical step in preventing ACL injuries is to investigate

their underlying risk factors (7). We know that the risk of an ACL

injury is multifactorial in nature (8–11) and we know that

movement biomechanics might be one important piece of the

puzzle (12). Since ACL injuries in handball (13, 14) and football

(15, 16) most commonly occur during cutting maneuvers,

identifying biomechanical risk factors in such movements is

critical and may bring us one step closer to successful injury

prevention. Even though a multitude of studies have assessed

biomechanical risk factors for primary and secondary ACL injury

in female athletes during various tasks, the research findings are

still inconclusive. For example, some researchers have identified

knee abduction angles and moments as risk factors for ACL

injury (17), whereas others have not (18, 19). Some have

identified stiff landings, meaning less knee flexion in

combination with a greater knee flexion moment, as a risk factor

(19, 20), whereas others have not (18). So far, not one single

biomechanical variable has been consistently linked to ACL

injury risk, including knee abduction angles and moments which

are commonly accepted as unfavorable movement biomechanics

(21). Therefore, other approaches might be necessary to give us

new insights into biomechanical risk factors for ACL injury.

In conventional approaches, we commonly compare single

biomechanical variables between groups with and without an

injury or we assess associations between specific variables and

future injury. However, sport-specific movements are complex,

and it is likely that a combination of multiple kinematic and

kinetic characteristics might impact ACL loading and injury risk

rather than single variables. In contrast to conventional

approaches, in cluster analysis approaches, we try to find patterns

or groupings (i.e., clusters) in the whole group, independent of the

injury status, and where the groupings are based on a combination

of multiple biomechanical variables. Thus, cluster analysis

methodology allows us to identify and characterize typical

movement patterns. Potentially, there are several different,

commonly used movement patterns during cutting maneuvers,

which we will refer to in this study as cutting technique clusters.

For example, one cutting technique cluster might involve more

torso lateral flexion in combination with more knee valgus and

less ankle plantar flexion as compared to another cluster. After

identifying cutting technique clusters, we can assess if injured

players are more represented in one of the clusters, indicating that
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this specific cutting technique strategy may lead to a higher risk of

ACL injury. Thereby, cluster analysis can help us identify safe and

risky cutting technique strategies, where the risky strategies can be

targeted in interventions. Using cluster analysis, two previous

studies have successfully identified distinct movement strategies

during jumping tasks, some of which were found to be associated

with increased knee abduction moments (22), a proxy for ACL

injury risk, or increased musculoskeletal injury risk (23). To the

best of our knowledge, there are no studies using cluster analysis

techniques to identify movement strategies during cutting

maneuvers which are associated with ACL injury risk.

To investigate potential biomechanical risk factors for ACL

injury in female elite football and handball players this study had

two purposes. The first purpose was to identify the most

common cutting technique clusters based on pre-defined 3D

kinematic variables from baseline testing. The second purpose

was to determine if the identified cutting technique clusters were

associated with ACL injury risk in players, both with and

without previous ACL injury, during the follow-up period. In

addition, we aimed to assess differences in knee abduction

moments across the identified clusters.
2 Materials and methods

2.1 Study design and participants

In this investigation we applied cluster analysis methodology

(unsupervised classification) to determine a set of different

cutting techniques with biomechanically different characteristics

and we assessed their influence on ACL injury risk in players

with and without previous injury. This study is part of a

comprehensive prospective cohort study focused on identifying

risk factors for non-contact ACL injuries among female elite

handball and football players (18, 24–26).

All data were gathered over an 8-year period, beginning in

2007, when all clubs in Norway’s elite female handball league

were invited to participate in an extensive preseason baseline

testing. To be included, players were required to have a first-

team contract and were expected to play in the Premier League

during the upcoming season. From 2008 to 2013, players from

new Premier League teams as well as new players from existing

teams were subjected to the same preseason baseline test. Female

Premier League football players were also included in the study

from 2009 to 2014, using the same inclusion criteria. A total of

880 athletes were tested, including 451 football and 429 handball

players. During the follow-up period, 15 participants suffered

secondary non-contact ACL injuries, while 51 suffered primary

non-contact ACL injuries. In the current study, we excluded

players with direct contact–related new ACL injuries (n = 8) as

well as players with a previous ACL injury who had not

undergone ACL reconstruction surgery (n = 5). Also, thirteen

percent of the players (n = 113) had to be excluded due to

missing kinematic data in the cutting task, which was caused by

technical problems, illness or injury. Thus, the final sample

consisted of 754 players (age, 20.7 ± 3.9 years; body mass,
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66.2 ± 7.9 kg; height, 169.5 ± 6.3 cm), who were subdivided into the

following four groups: Players with a previous ACL injury who

sustained a new, secondary ACL injury during follow-up (Prev/

New ACL group), players with a previous ACL injury only (Prev

ACL group) and players without a previous ACL injury who did

(New ACL group) or did not (No ACL group) sustain a new,

primary ACL injury during follow up (Figure 1). The previously

ACL injured players (n = 59) were tested, on average, 3.6 ± 2.4

years after their injury.

The study was approved by the Regional Committee for

Medical Research Ethics, the Regional Health Authority of

South-Eastern Norway, and the Norwegian Social Science Data

Services. Before inclusion, all participants signed a written

informed consent form, which included parental consent for

players under the age of 18. The study adhered to the most

recent iteration of the Helsinki Declaration.
FIGURE 1

Flow diagram of the tested players, including their injury status at baseline and
anterior cruciate ligament.
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2.2 Data collection and test procedures

During the preseason, all players attended one day with

extensive baseline testing, including a vertical drop jump task, a

cutting task and a variety of neuromuscular, mobility, clinical

and anthropometrical assessments. The foundation for this study

was a biomechanical analysis of sport-specific cutting tasks using

three-dimensional motion capture. The details of the marker

placement and cutting test procedure have been described

previously (27, 28). For the handball-specific cut, the player

received a lateral pass from a teammate right before performing

a match-like cutting maneuver to fake and pass a human static

defender. For the football-specific cut, the player received a

football pass forcing her to perform a sharp sidestep cutting

maneuver. For each leg, at least five successful trials with

maximum match-like effort were recorded, with the first three
follow-up, as well as the number of analyzed players in each group. ACL,
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being chosen for analysis. Trials 4 and 5 were considered viable

alternatives if one or more markers were hidden during parts of

the cutting movement or if the force platform was partially missed.

Following baseline testing, all complete ACL ruptures were

registered prospectively through May 2015, mostly through

regular contact with the participating teams’ managers, coaches,

or medical staff. In the event of an acute knee injury, we

contacted the injured player directly to get medical information

and a description of the injury situation. The mechanism of

injury was self-classified as contact, indirect contact, or non-

contact. Magnetic resonance imaging and/or arthroscopy were

used to confirm all complete ACL ruptures.
2.3 Measurements and data processing

All measurements were collected synchronously using a 16-bit

analog-to-digital conversion board (USB-2533; Measurement

Computing Corporation, Norton, MA, USA), then integrated into

Qualisys Track Manager (version 2.8; Qualisys AB, Gothenburg,

Sweden) and processed in Matlab (version 2011; MathWorks Inc.,

Natick, MA, USA). Three-dimensional kinematic data were

collected from 2007 to 2012 using an 8-camera motion capture

system (ProReflex; Qualisys AB, Gothenburg, Sweden) sampling at

240 Hz. Since 2012, an updated 16-camera system with a sample

frequency of 480 Hz was employed (Oqus 4; Qualisys AB).

Ground reaction forces and center of pressure were measured with

two force platforms (AMTI LG6-4-1, Watertown, MA, USA) at

960 Hz. Data processing, including filtering, interpolation, joint

center position estimation as well as joint angle and moment

calculations have been described previously (18, 28).

Sidestep cutting technique was described using 36 kinematic

variables, including 3D hip, knee and ankle angles at initial

contact as well as peak angles during the ground contact phase.

At initial contact, 3D torso angles, cutting width and depth, foot

to floor angles, cutting angle and approach speed were also used

to describe cutting technique. Finally, the time at which the peak

angles occurred as well as ground contact time were also

included. Cutting width and depth were defined as the respective
TABLE 1 Cluster analysis methodology was applied to 24 unique data subsets
category was combined with every possible combination of subsets from the o
can be found in the text.

4 subsets based on number of variables 3 subsets base
All 36 kinematic variables (All 36) Handball and football

Core selection of 13 kinematic variables (Core 13) Handball players only

Core selection of 5 kinematic variables (Core 5) Football players only

12 principal components based on PCA (PCA)

All 12 ipsilateral subsets are listed in Table 2. The corresponding 12 contralateral subsets can be

group, players with a previous ACL injury who went on to sustain a new secondary ACL injury;

previous ACL injury who went on to sustain a new primary ACL injury; no ACL group, injury
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angles between a line from the center of mass to the center of

pressure and a vertical line in a plane perpendicular to the

direction of movement 20 ms after initial contact (29). Torso

flexion, lateral flexion and rotation were defined as angles relative

to the ground and direction of movement at initial contact. For

each leg, the mean of the three cutting trials served as the

foundation for all analyses. In order to give equal weights to all

the input biomechanical variables in the cluster analyses, they

were normalized by linear scaling into the closed interval [0, 1].
2.4 Cluster analyses

2.4.1 Dataset subdivision
To determine if the biomechanical variables can be used to

cluster safe and risky cutting techniques, the dataset was initially

divided into different subsets (Tables 1, 2): First, four subsets

were based on how many biomechanical variables were included

in the model, whereof one subset involved all kinematic variables

described above (All 36), one subset involved a reduced selection

of 13 kinematic variables at initial contact (Core 13: Cutting

width and depth, 3D torso angles relative to the ground and

direction of movement, hip abduction and rotation angles, knee

flexion and valgus angles, foot to floor angle and foot rotation

angle relative to direction of movement, approach speed and

cutting angle) and one subset narrowed the selection down to 5

kinematic variables at initial contact (Core 5: Cutting width and

depth, 3D torso angles relative to the ground and direction of

movement). The core selections were based on expert-opinion

and previous research (17, 19, 29, 30), and they included

variables which have been shown to be related to ACL injury

risk, or at least to knee abduction moments, and variables which

are more easily modifiable through training. We selected

variables occurring at initial contact because ACL injuries

typically occur approximately 40 ms after initial contact (31),

making these variables highly relevant and in many cases more

pertinent than, for example, peak values, which often occur later

during the stance phase. We chose to focus on kinematic

variables only, since these are more readily modifiable during
which were based on three different categories. Each subset from the first
ther two categories (4 × 3 × 2 = 24 subsets in total). A detailed explanation

d on sport 2 subsets based on testing leg
players combined Ipsilateral leg subset:

- Prev/New ACL group: leg with new ipsilateral re-injury
- Prev ACL group: ipsilateral leg
- New ACL group: leg with new injury
- No ACL group: random leg

Contralateral leg subset
- Prev/New ACL group: leg with new contralateral injury
- Prev ACL group: contralateral leg
- New ACL group: leg with new injury
- No ACL group: random leg

found in the Supplementary Material 1; PCA, principal component analysis; Prev/New ACL

Prev ACL group, players with a previous ACL injury only; new ACL group, players without a

free players.
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TABLE 2 Average silhouette scores for all subsets and for different
number of clusters. Only the ipsilateral leg subsets are presented.

2 clusters 3 clusters 4 clusters 5 clusters
All 36 0.16a 0.14 0.13 0.11

All 36 (PCA) 0.19a 0.15 0.14 0.13

Core 13 0.22a 0.18 0.16 0.14

Core 5 0.35a,b 0.29b 0.25b 0.21

Handball all 36 0.13a 0.09 0.08 0.07

Handball all 36
(PCA)

0.13a 0.11 0.11 0.09

Handball core 13 0.13a 0.13 0.12 0.11

Handball core 5 0.23a,b 0.20 0.17 0.16

Football all 36 0.14a 0.10 0.08 0.07

Football all 36
(PCA)

0.15a 0.12 0.10 0.09

Football core 13 0.18a 0.13 0.11 0.11

Football core 5 0.30a,b 0.21 0.20 0.19

The first four subsets involve both handball and football players, as well as different selections

of kinematic variables [all 36 variables, a narrowed selection of 13 and 5 variables, and a
principal component analysis (PCA) reduction of all 36 variables resulting in 12 principal

components]. The last eight subsets involve either handball or football players alone and

the same selection of variables.
aThe highest average silhouette score of all cluster models within the same subset (bold used
for visibility).
bSubsets with an average silhouette score exceeding 0.25, indicating some evidence of cluster

existence, and subsets scoring highest within their sport group (bold used for visibility).
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interventions and do not necessitate force plates for measurement.

Our aim was to make the identification of safe and potentially risky

cutting technique strategies more practical in real-world

application. The last subset involved dimensionality reduction

using principal component analysis (PCA). PCA was applied as a

computational approach to reduce the total number of variables

(i.e., 36 dimensions), effectively transforming the original data

into the lowest dimensional projection possible while still

preserving a minimum of 80% of the total data variance. Twelve

principal components (i.e., 12 dimensions) were required to

achieve the necessary variance in each subset. PCA was used to

simplify the data, reduce noise, improve cluster quality and

performance, mitigate multicollinearity, and help the clustering

algorithm to identify meaningful patterns more effectively.

Second, three subsets were defined by sport: one with both

handball and football players, one with only handball players,

and one with only football players.

Third, two subsets were based on the testing leg. Since players

with an ACL injury history have an increased risk of a new injury

in both the ipsilateral and contralateral knee (2), both legs were

included in the analyses. However, since previous research

indicates that risk factors for ipsilateral re-injury and

contralateral injury might differ (10, 11, 32, 33), we conducted

separate analyses for the ipsilateral leg and ipsilateral re-injury as

well as the contralateral leg and contralateral injury. Therefore, in

one subset, the Prev/New ACL group included only players who

sustained a new ipsilateral re-injury during follow-up, and for the

Prev ACL group, we chose the ipsilateral leg (ipsilateral leg

subset). In the other subset, the Prev/New ACL group included

only players who sustained a new contralateral injury, and for

the Prev ACL group, we selected the contralateral leg

(contralateral leg subset). In both subsets, we chose the leg which
Frontiers in Sports and Active Living 05
sustained the new injury during follow-up for the New ACL

group, and a randomly selected leg for the No ACL group.

2.4.2 Identification of cutting technique clusters
For clustering these data subsets, a partition-based K-means

clustering algorithm was applied. In order to avoid convergence to

local minima, we used K-means++ initialization, which attempts to

spread out the initial cluster centers (34). Each data point was

assigned to the nearest cluster center based on the Euclidean

distance (35). The cluster centers were then updated by recomputing

the mean of the data points assigned to each cluster (35). This

operation was repeated until convergence, defined according to the

Frobenius norm as cluster centers changing less than 1e-10 between

consecutive iterations, or until a maximum count of 1,000 iterations

was reached. The algorithm was set to run 10 different

initializations, the model with the lowest measure of the squared

sum between data points and nearest cluster center was chosen as

the final model. We chose a k-means clustering algorithm due to its

efficiency and easily interpretable results. Our intention was not to

find any arbitrary clustering structure, but specifically to identify the

“most common” cutting technique movement strategies. The k-

means algorithm seemed to be a highly suitable choice for this

purpose, as it inherently presumes clusters of comparable sizes and

densities, increasing the likelihood of identifying “common”

strategies. Given the exploratory nature of our study, we aimed to

balance model complexity and interpretability, which k-means

allowed us to achieve effectively. We did not explore additional

clustering methods to avoid the risk of overfitting and the risk of

identifying appealing yet spurious patterns.

To determine the number of clusters for the K-means algorithm,

several models with different number of clusters [k = 2,…,5] were

fitted, and the optimal number of clusters was selected by

applying silhouette analyses, using the Euclidean distance as a

similarity metric (36). The silhouette score ranges between

[−1; 1], where close to 1 implies that the data point lies well

within its cluster, a value of 0 implies that the data point lies

somewhere in between to two neighboring clusters and a negative

value implies that the data point is assigned to the wrong cluster

(37). The average silhouette score of a cluster model reflects how

well the cluster model is able to separate the data (37). Therefore,

the number of clusters with the highest average silhouette score

was selected for the K-means algorithm. Since the two cluster

models achieved the highest average silhouette score for all subsets

(Table 2), the K-means algorithm was seeded with two clusters for

all the models. Further, the average silhouette score can be used as

evidence of cluster existence. According to Larose and Larose (38),

an average silhouette score of less than 0.25 is an insufficient

indication of cluster existence, whereas a score of 0.5 or higher is

good evidence of the reality of the clusters in the data, indicating

that clusters are clearly distinguishable. A score between 0.25 and

0.5 indicates some evidence of the existence of the clusters in the

data, but domain-specific expertise is important to support the

reality of these clusters (38).

For each subset with at least some evidence of cluster existence

(i.e., average silhouette score ≥0.25) and for each subset scoring

highest within its sport category, the following data analyses were
frontiersin.org
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conducted to further assess the reality of the clusters as well as their

importance with regards to ACL injury risk: The cutting technique of

each identified cluster were presented by the cluster mean ± SD of

each biomechanical variable included in the model. For further

interpretation of the cluster model, t-tests were performed for all

the input variables. Due to the descriptive nature of the cluster

analysis, it is important to be aware that the aim of the t-tests was

not hypothesis testing per se, but help to identify which input

variables separate the two clusters the most. Hence, t-statistics and

Cohen’s d effect size were used to determine the ranking of the

input variables. Normality was assumed based on the Central Limit

Theorem. Levene’s test was used to assess the equality of the group

(i.e., cluster) variances. If one or more variables in a cluster model

were found heterogeneous, Welch’s t-tests were performed. If all

variables were found homogeneous, Student’s two sample t-tests

were conducted. The same t-tests were conducted for all variables

in a cluster model to ensure comparability of the t-statistics. The

level of significance was set a priori at p≤ 0.05.

2.4.3 Cutting technique clusters and ACL injury
risk

To determine if the identified cutting technique clusters were of

relevance for ACL injury risk, we applied Fisher-Freeman-Halton

Exact tests (with a significance limit of p≤ 0.05) and calculated

adjusted rand indices for the four injury groups depicted in

Figure 1. The Fisher-Freeman-Halton Exact test assessed the

statistical association between the clusters and the injury groups,

while the adjusted rand index evaluated the distribution of the

players across the clusters. When applicable, we also performed

these analyses for the two sport groups (handball and football),

to assess if the clusters were based on sport-related differences

rather than on differences related to injury status. The adjusted

rand index objectively measures the similarity between two

different clusterings of the same data set (39, 40). It ranges

between [−1,1], with scores close to 0 indicating an agreement

that is no better than random, scores close to 1 indicating perfect

agreement between the two clusterings and scores close to −1
indicating complete disagreement (39, 40). In this study, the

adjusted rand index was used to evaluate if the clustering results

agree with the true labels of the injury groups and the sport

groups (if applicable) (41). Since only two clusters were identified

in each subset, despite four injury groups being present, three

new binary injury groups (BIN groups in Table 3) were derived

from the original injury groups and tested against the clustering

results to assess if two or more of the original injury groups were

clustered together. Finally, we also performed t-tests to assess

between-cluster differences in peak knee abduction moment,
TABLE 3 Adjusted rand indices comparing the clustering results with the tru

Injury groups BIN No ACL group BIN
Core 5 0.00 0.00

Handball core 5 0.00 0.00

Football core 5 0.00 0.00

Injury groups, the four injury groups depicted in Figure 1; BIN No ACL group, no ACL group vs.
groups; BIN new ACL group, prev/new ACL group and new ACL group vs. all other groups; sp
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which is often considered a main biomechanical risk factor for

ACL injury (42). Cluster analyses and all statistical tests were

performed using Python (Python version 3.12.2; The Python

Software Foundation), except for the Fisher-Freeman-Halton

Exact test, which was conducted in IBM SPSS Statistics (version

24; IBM Corporation, Armonk, NY, USA).
3 Results

The results of the cluster analyses for the ipsilateral and

contralateral leg subsets were close to identical. For clarity, only the

results of the ipsilateral leg subsets are presented. The results of the

contralateral leg subsets are appended (Supplementary Material 1).

The average silhouette scores for all data subsets and cluster

models were relatively low (<0.50), implying that no clearly

distinguishable cutting technique clusters could be identified

(Table 2). Only the Core 5 subset and the Football Core 5 subset

demonstrated some evidence of cluster existence, as indicated by an

average silhouette score of at least 0.25. The Core 5 subset, the

Football Core 5 subset and the Handball Core 5 subset achieved

the highest scores within their respective sport groups. Hence,

further analyses were conducted for those three subsets only.

Descriptive and inferential statistics for the Core 5 subset

containing both sports are presented in Table 4. The three input

variables which separated the two identified cutting technique

clusters the most were torso flexion followed by cutting width

and torso lateral flexion (Table 4). The clusters were not

significantly associated with the ACL injury groups (Fisher’s

p = 0.417; Table 5). The players appeared to be randomly

distributed across the two clusters (Figure 2), as indicated by

adjusted rand indices equal to zero for the four injury groups

and their binary derivates (Table 3). Instead, the cutting

technique clusters were associated with the sport groups (Fisher’s

p < 0.001). As can be seen in Table 6; Figure 2, the majority of

the players in Cluster 0 were handball players, whereas football

players were mainly assigned to Cluster 1. This is supported by a

high adjusted rand index of 0.83, indicating high agreement

between the clustering results and the true labels of the sport

groups (Table 3). Interestingly, the peak knee abduction

moments were significantly higher (p < 0.001; mean difference,

0.20 Nm/kg; Cohen’s d, 0.37) in Cluster 1 (1.74 ± 0.57 Nm/kg) as

compared to Cluster 0 (1.54 ± 0.51 Nm/kg).

Descriptive and inferential statistics for the Handball Core 5

subset are presented in Table 7; Figure 3. The three input

variables which separated the two clusters the most were torso

lateral flexion followed by torso rotation and torso flexion
e labels of four different injury groupings and one sport grouping.

Prev ACL group BIN New ACL group Sport groups
0.00 0.00 0.83

0.00 0.00 n.a

0.01 0.00 n.a

all other groups; BIN prev ACL group, prev/new ACL group and prev ACL group vs. all other
ort groups, handball vs. football players.
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TABLE 4 Cluster descriptive and inferential statistics for the core 5 subset.

Cluster 0
(n = 370)

Cluster 1
(n = 377)

MD p-value Welch t-statistic Cohen’s d

Cutting width (°) 20.4 ± 3.9 28.6 ± 4.2 8.1 <0.001* 27.43 2.01

Cutting depth (°) 25.9 ± 4.7 32.4 ± 5.0 6.5 <0.001* 18.38 1.34

Torso flexion (°) −9.3 ± 9.3 11.8 ± 9.9 21.1 <0.001* 30.08 2.20

Torso lateral flexion (°) 1.4 ± 7.9 13.5 ± 8.4 12.2 <0.001* 20.43 1.49

Torso rotation (°) 3.8 ± 13.6 12.0 ± 10.6 8.3 <0.001* 9.26 0.68

Values are means ± SD. MD, mean difference.

*Significant mean difference (p≤ 0.05). Torso flexion: positive values indicate torso forward flexion; torso lateral flexion: positive values indicate torso lateral flexion in the intended cutting

direction; torso rotation: positive values indicate torso rotation in the intended cutting direction (bold used for visibility).

TABLE 5 The distribution of players between the two clusters in each injury group for the core 5 subset.

Prev/New ACL group Prev ACL group New ACL group No ACL group
Cluster 0 (n = 370) 1 (0.3%) 25 (6.8%) 21 (5.7%) 323 (87.3%)

Cluster 1 (n = 377) 5 (1.3%) 21 (5.6%) 22 (5.8%) 329 (87.3%)

Values are number of players (percentage of n); the Fisher-Freeman-Halton exact test yielded a p-value of 0.417; Prev/New ACL group, players with a previous ACL injury who went on to
sustain a new secondary ACL injury; Prev ACL group, players with a previous ACL injury only; new ACL group, players without a previous ACL injury who went on to sustain a new primary

ACL injury; no ACL group, injury free players.

FIGURE 2

Visualization of the two clusters (cluster 0 and cluster 1) as well as the true labels of (a) the injury groups and (b) the sport groups for the core 5 subset.
The first two principal components of the principal component analysis, which explain the highest amount of variance in the original data, are plotted
against each other. Prev/New ACL group, players with a previous ACL injury who went on to sustain a new secondary ACL injury; Prev ACL group,
players with a previous ACL injury only; new ACL group, players without a previous ACL injury who went on to sustain a new primary ACL injury;
no ACL group, injury free players.

Mausehund et al. 10.3389/fspor.2025.1463272
(Table 7). Again, these cutting technique clusters were found to be

irrelevant to ACL injury risk (Fisher’s p = 0. 836; Table 8). The

player distribution seemed to be random across the two clusters,

as confirmed by adjusted rand indices close to zero for all injury
Frontiers in Sports and Active Living 07
groupings (Table 3). Also, the peak knee abduction moments did

not differ significantly between clusters (Cluster 0,

1.55 ± 0.51 Nm/kg; Cluster 1, 1.55 ± 0.52 Nm/kg; p = 0.917; mean

difference, 0.01 Nm/kg; Cohen’s d, 0.01).
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TABLE 6 The distribution of players between the two clusters in each
sport group for the core 5 subset.

Football Handball
Cluster 0 (n = 370) 18 (4.9%) 352 (95.1%)

Cluster 1 (n = 377) 362 (96.0%) 15 (4.0%)

Values are number of players (percentage of n); The Fisher-Freeman-Halton exact test
yielded a p-value of <0.001.

Mausehund et al. 10.3389/fspor.2025.1463272
Descriptive and inferential statistics for the Football Core 5

subset are detailed in Table 9; Figure 4. Cutting depth was the

input variable which separated the two identified cutting

technique clusters the most, followed by torso lateral flexion and

torso rotation (Table 9). The proportion of players did not differ

between the two clusters (Fisher’s p = 0. 472; Table 10), with

players appearing randomly dispersed, as indicated by adjusted

rand indices close to zero for the four injury groups and their

binary derivates (Table 3). Notably, the peak knee abduction
TABLE 7 Cluster descriptive and inferential statistics for the handball core 5

Cluster 0
(n = 193)

Cluster 1
(n= 174)

MD

Cutting width (°) 19.8 ± 4.2 21.1 ± 3.2 1.3

Cutting depth (°) 27.1 ± 4.4 24.6 ± 4.6 2.4

Torso flexion (°) −13.5 ± 8.3 −4.0 ± 8.0 9.5

Torso lateral flexion (°) 6.8 ± 5.9 −4.2 ± 6.0 11.1

Torso rotation (°) 12.2 ± 10.2 −5.0 ± 10.9 17.2

Values are means ± SD. MD, mean difference.

*Significant mean difference (p≤ 0.05). Torso flexion: positive values indicate torso forward flex
direction; torso rotation: positive values indicate torso rotation in the intended cutting direction

FIGURE 3

Animated figures for the handball core 5 subset, illustrating the mean differe
(a) the frontal plane, (b) the sagittal plane, and (c) the horizontal plane. T
Euclidean norm, were chosen as the basis. Created by Muscle Animations.
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moments were significantly higher (p = 0.005; mean difference,

0.16 Nm/kg; Cohen’s d, 0.29) in Cluster 1 (1.80 ± 0.59 Nm/kg)

compared to Cluster 0 (1.64 ± 0.53 Nm/kg).
4 Discussion

This is the first study aiming to identify common cutting

technique clusters and investigate their association with ACL

injury risk in players with and without a previous ACL injury.

We found no clearly distinguishable cutting technique clusters in

the data set. There was however some evidence of cluster

existence in the Core 5 subset involving both sports, but these

cutting technique clusters were of no relevance for ACL injury

risk. Rather, they could be attributed to sport- or task-related

differences. We also found some evidence of cluster existence in

the Football Core 5 subset. Even though peak knee abduction
subset.

p-value Welch t-statistic Cohen’s d

0.001* 3.34 0.35

<0.001* 5.16 0.54

<0.001* 11.16 1.17

<0.001* 17.80 1.86

<0.001* 15.56 1.63

ion; torso lateral flexion: positive values indicate torso lateral flexion in the intended cutting
(bold used for visibility).

nces in cutting technique between cluster 0 (grey) and cluster 1 (color) in
he players nearest to the respective cluster centers, established by the
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TABLE 8 The distribution of players between the two clusters in each injury group for the handball core 5 subset.

Prev/New ACL group Prev ACL group New ACL group No ACL group
Cluster 0 (n = 193) 1 (0.5%) 17 (8.8%) 10 (5.2%) 165 (85.5%)

Cluster 1 (n = 174) 1 (0.6%) 11 (6.3%) 10 (5.7%) 152 (87.4%)

Values are number of players (percentage of n); the Fisher-Freeman-Halton exact test yielded a p-value of 0.836; Prev/New ACL group, players with a previous ACL injury who went on to

sustain a new secondary ACL injury; Prev ACL group, players with a previous ACL injury only; new ACL group, players without a previous ACL injury who went on to sustain a new primary

ACL injury; no ACL group, injury free players.

TABLE 9 Cluster descriptive and inferential statistics for the football core 5 subset.

Cluster 0
(n = 161)

Cluster 1
(n = 219)

MD p-value Welch t-statistic Cohen’s d

Cutting width (°) 25.9 ± 4.2 30.4 ± 3.2 4.5 <0.001* 11.41 1.21

Cutting depth (°) 36.4 ± 3.2 29.3 ± 4.0 7.1 <0.001* 19.16 1.95

Torso flexion (°) 6.2 ± 9.9 15.2 ± 9.3 8.9 <0.001* 8.90 0.93

Torso lateral flexion (°) 19.6 ± 6.9 8.5 ± 6.4 11.1 <0.001* 15.95 1.67

Torso rotation (°) 19.5 ± 9.2 5.9 ± 8.1 13.5 <0.001* 14.87 1.56

Values are means ± SD. MD, mean difference.

*Significant mean difference (p≤ 0.05). Torso flexion: positive values indicate torso forward flexion; torso lateral flexion: positive values indicate torso lateral flexion in the intended cutting
direction; torso rotation: positive values indicate torso rotation in the intended cutting direction (bold used for visibility).

FIGURE 4

Animated figures for the Football Core 5 subset, illustrating the mean differences in cutting technique between Cluster 0 (grey) and Cluster 1 (color) in
(a) the frontal plane, (b) the sagittal plane, and (c) the horizontal plane. The players nearest to the respective cluster centers, established by the
Euclidean norm, were chosen as the basis. Created by Muscle Animations.
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moments differed significantly between the identified clusters, no

association with ACL injury risk could be found. The Handball

Core 5 subset achieved the highest average silhouette score

among the handball subsets. However, the identified cutting

technique clusters were not associated with ACL injury risk and

the peak knee abduction moments did not differ between the

clusters. Hence, we could not identify specific movement

strategies during cutting maneuvers clearly leading to a higher

risk of primary or secondary ACL injury in this data set.
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Not surprisingly, the average silhouette scores decreased with

increasing numbers of clusters as well as with increasing number

of variables included in the model (Table 2). This can be

attributed to the “curse of dimensionality”, stating that an

increase in dimensionality (i.e., variables) causes an exponential

increase in the volume of the space which implies that the

available data points become increasingly sparse, that data points

belonging to the same cluster drift apart (i.e., the within-cluster

distance increases) and that the distance between data points
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become more similar and less meaningful (43, 44). This makes it

more difficult for the K-means algorithm to identify distinct and

cohesive clusters and explains the decreasing average silhouette

scores with added dimensions and clusters. To address this

phenomenon, we included several subsets with fewer dimensions,

and we applied PCA to reduce the number of dimensions

computationally. Also, given this issue and the fact that the two

cluster models often achieved the highest average silhouette score

by a narrow margin, we chose to further explore the 3- and

4-cluster models as well. However, the respective results were

unremarkable, and none of the identified cutting technique

clusters proved to be relevant for ACL injury risk

(Supplementary Material 2, 3).
4.1 Is cluster analysis useful for assessing
ACL injury risk in a mixed group of handball
and football players?

With an average silhouette score of 0.35, the Core 5 subset

scored highest among all tested subsets (Table 2). Still, values

between 0.25 and 0.5 are categorized only as medium evidence

of cluster existence, and according to Larose and Larose (38)

subject-specific expert opinion is required to determine if the

differences between the clusters are meaningful. Players in

Cluster 1 leaned 12° and rotated 8° more towards the intended

cutting direction and they leaned 21° more forward than

players in Cluster 0 (Table 4). They also placed their foot 8°

further to the side and 7° further forward. All these five

variables differed significantly between clusters and the effect

sizes were “medium” to “huge” (45). Based on the mean

differences, the effect sizes and the scatter plot visualization, we

concluded that we have two distinguishable cutting technique

clusters in this subset.

Still, the question remained whether or not these cutting

technique clusters were of relevance for ACL injury risk. This did

not appear to be the case. As can been seen in Table 5; Figure 2,

the injured players appeared to be randomly distributed across

the two clusters, with close to 50% of the players in each cluster.

However, for the Prev/New ACL group, 5 out of 6 players were

assigned to Cluster 1. Due to the small number of players in this

group, the non-significant result of the Fisher-Freeman-Halton

Exact test, and since we found a similar player distribution in the

contralateral leg subset for this group (Supplementary Material

1), we suspect that this uneven distribution may be caused by

chance. This is also confirmed by adjusted rand indices of zero,

implying that the clustering results do not correspond with the

injury groups. Therefore, the identified cutting technique clusters

do not appear to be associated with ACL injury risk.

We were also interested to assess if the clustering results were

affected by the two different sports which were included in this

model. Since the cutting tasks were slightly different for the

handball and football players, there was a chance that the

algorithm would simply capture those differences. Not surprising,

that is what we observed. Handball and football players were

assigned to separate clusters (Table 6; Figure 2), which explains
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why the clustering results coincided well with the sport groups

(Table 3). Therefore, the cutting technique clusters appeared to

be based on sport-related differences rather than injury-related

differences. Those differences in cutting technique between

handball and football players were most likely caused by the

slightly different cutting tasks rather than by sport-inherent

differences. The handball players were instructed to fake- and

pass a static defender, whereas the football players had to

perform a sharp cut based on a football pass they received,

without faking a defender.

On the one hand, these findings indicate that the clustering

algorithm can successfully distinguish between genuinely distinct

cutting techniques. At the same time, they indicate that the

suggested thresholds for the average silhouette scores might be

too conservative in the present context, given the low scores for

the subsets involving both sports in spite of genuine differences

between the clusters. On the other hand, the findings clearly

indicate that we have to analyze different sports or slightly

different tasks separately. Other biomechanical patterns which

might be present in the data are likely to be washed out by these

sport- or task-related patterns.

Despite the lack of association with ACL injury risk, the peak

knee abduction moments were 13% higher (“small” effect size) in

the cluster which was mainly represented by football players as

compared to the “handball” cluster. This difference can likely be

attributed to the wider cutting width in the “football” cluster

(Table 4), which has previously been associated with larger knee

abduction moments (29, 46). According to Kristianslund, Faul

(29), increasing cutting width by 3.7° increases peak knee

abduction moment by approximately 17%. In our study, the

“football” cluster had an 8.1° wider cutting width yet only a 13%

higher peak knee abduction moment. This can probably be

explained by players in the “football” cluster leaning more in the

direction of the cut (Table 4), which has been shown to reduce

knee abduction moments (29, 46). The difference in peak knee

abduction moments between the two clusters is likely attributable

to the variations in the cutting tasks rather than inherent

differences in the sports. This is further supported by previous

research indicating similar ACL injury rates among football and

handball players (18, 47).
4.2 Is cluster analysis useful for assessing
ACL injury risk in handball players?

The Handball Core 5 subset scored highest among the handball

subsets with an average silhouette score of 0.23 (Table 2). Since this

score was close to the threshold of 0.25 and since we considered

these thresholds as slightly conservative, we performed further

analyses to assess the reality of the identified clusters. We found

that players in Cluster 1 leaned 11° and rotated 17° more in the

opposite direction of the cut, and they leaned 10° more forward

than players in Cluster 0 (Table 7; Figure 3). The effect sizes for

these torso variables were “large” to “very large”. The differences

in cutting width and depth were negligible however with only 1–

2° differences between clusters and “small” to “medium” effect
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TABLE 10 The distribution of players between the two clusters in each injury group for the football core 5 subset.

Prev/New ACL group Prev ACL group New ACL group No ACL group
Cluster 0 (n = 161) 3 (1.9%) 9 (5.6%) 8 (5.0%) 141 (87.6%)

Cluster 1 (n = 219) 1 (0.5%) 9 (4.1%) 15 (6.8%) 194 (88.6%)

Values are number of players (percentage of n); the Fisher-Freeman-Halton exact test yielded a p-value of 0.472; Prev/New ACL group, players with a previous ACL injury who went on to

sustain a new secondary ACL injury; Prev ACL group, players with a previous ACL injury only; new ACL group, players without a previous ACL injury who went on to sustain a new primary

ACL injury; no ACL group, injury free players.
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sizes. Therefore, we concluded that there are medium distinct

differences in cutting technique between those two clusters,

warranting the assessment of those clusters’ association with ACL

injury risk.

The proportion of players with either a previous ACL injury or

a new ACL injury during follow-up was similar in each identified

cutting technique cluster (Table 8), implying that the risk of an

ACL injury associated with these two different movement

strategies is similar. This was also confirmed by adjusted rand

indices near zero (Table 3), as well as by identical peak knee

abduction moments across the clusters. Therefore, the differences

in cutting technique between the two clusters appeared to have

no practical relevance for ACL injury or ACL injury risk.
4.3 Is cluster analysis useful for assessing
ACL injury risk in football players?

With an average silhouette score of 0.30, the Football Core 5

subset demonstrated some evidence of cluster existence (Table 2).

We found that players in Cluster 1 leaned 11° and rotated 14°

more in the opposite direction of the cut, and they leaned 9° more

forward than players in Cluster 0 (Table 9; Figure 4). They also

displayed a 5° wider cutting width and a 7° shorter cutting depth.

All these five variables differed significantly between clusters and

the effect sizes were “large” to “very large” (45). Based on the

mean differences and the effect sizes, which were only slightly

lower than those of the Core 5 subset (summated mean

differences of 45.1° and 56.2°, respectively; summated mean effect

sizes of 7.32 and 7.72, respectively), we concluded that we have

two distinguishable cutting technique clusters in this subset.

The proportion of players with a previous ACL injury was

similar in each identified cutting technique cluster (Tables 3, 10),

implying that the clusters did not reflect the biomechanical

alterations commonly observed in players with an ACL injury

(48). The proportion of players who sustained a new ACL injury

during follow-up was also similar across the two clusters, which

indicates that the risk of an ACL injury associated with these two

different movement strategies was similar.

Interestingly, the peak knee abduction moments were 10%

higher (“small” effect size) in Cluster 1 compared to Cluster

0. This can likely be attributed to wider cutting widths in this

cluster as well as more torso lateral flexion in the opposite

direction of the cut (Figure 4), which both have previously been

linked to greater knee abduction moments (29, 46). Prior research

has shown that higher knee abduction moments result in higher

ACL loading (49, 50) and may be associated with future ACL
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injury (17). Therefore, the increased peak knee abduction

moments observed in Cluster 1 might potentially imply a higher

risk of injury. However, since the difference and the effect size

were small and since the injured players were distributed relatively

evenly across these clusters, we can conclude that there is no clear

evidence of an association between either of the cutting technique

clusters and ACL injury risk.
4.4 Why are the identified clusters unrelated
to ACL injury risk?

There are several possible explanations for the lack of

association between the identified movement strategies and ACL

injury risk. First, the cutting technique clusters may genuinely

represent factors other than injury risk. For instance, they could

be based on differences in genetics, anthropometry, muscular

strength, coordination, playing position, or playing style. It is

also conceivable that there might be a relationship to cutting

performance, where one of the cutting strategies is more effective

for outmaneuvering a defender than the other. Alternatively,

these strategies could simply be random in nature with no

specific underlying cause.

Second, the data may not clearly separate different cutting

techniques relevant to injury, possibly due to insufficient

information (e.g., not measuring or including relevant kinematic

variables), measurement noise (e.g., inaccuracies in kinematic

measurements), or a combination of both. Subtle differences in

the motions might not have been captured because of the

absence of additional biomechanical variables or the use of

discrete rather than continuous data. Nonetheless, the clustering

algorithm successfully distinguished between the two genuinely

distinct cutting techniques in the Core 5 subset (i.e., handball vs.

football cutting tasks), suggesting that the available information

may have been sufficient.

Third, our laboratory task may not accurately reflect the

biomechanics of game situations that lead to injury. This

discrepancy could be due to the nature of the task itself, the level

of effort exerted during its execution, or external factors such as

additional cognitive demands.
4.5 Strengths and limitations

One notable strength of this study was its large sample size of

754 elite female athletes, including 59 with an ACL injury history

and 56 who sustained an ACL injury during follow-up. These
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large numbers enhanced the chance of detecting commonly used

cutting techniques among handball and football players and

identifying their association with ACL injury risk. Still, there are

some limitations to consider. First, we had a limited sample size

of 13 players in the Prev/New ACL group, including 6 ACL re-

injuries and 7 contralateral injuries. This complicated the

detection of clear trends in the player distribution across clusters

for this group. Second, while K-means stands out as a popular

and efficient unsupervised machine learning algorithm which

produces easily interpretable results, it does have its limitations

(51). Notably, K-means assumes that clusters are spherical in

shape and have similar sizes and densities (51), which could be a

possible reason why this algorithm failed to identify clusters of

relevance to ACL injury. To address more complex cluster shapes

and sizes, future studies could explore alternative clustering

algorithms like Gaussian mixture models, density-based methods,

or hierarchical clustering. Finally, future research could consider

incorporating kinetics into cluster analyses to potentially provide

a deeper understanding of how certain combinations of loads

could contribute to injury risk.
5 Conclusion

We identified two distinguishable cutting technique clusters in

the subset involving both sports and 5 kinematics variables.

However, these clusters were formed based on sport- or task-

related differences rather than injury-related differences.

Concordantly, the identified cutting technique clusters in the

handball and football subsets with 5 kinematic variables were

also found to be unrelated to ACL injury risk.

Overall, K-means cluster analysis methodology proved valuable

for identifying different cutting techniques. However, none of the

identified cutting techniques seemed to increase the risk of ACL

injury, implying that we could not identify safe or risky side-step

cutting technique strategies among our cohort of 754 female elite

handball and football players. Therefore, cluster analysis of

cutting technique, using a K-means algorithm, did not prove to

be a valuable approach for assessing ACL injury risk in this dataset.
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