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ligament injury risk?
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Background: Despite extensive efforts to pinpoint singular biomechanical risk
factors for anterior cruciate ligament (ACL) injuries, research findings are still
inconclusive. By combining multiple biomechanical variables, cluster analyses
could help us identify safe and risky cutting technique strategies.

Purpose: To identify common movement strategies during cutting maneuvers
and to assess their association with ACL injury risk.

Methods: A total of 754 female elite handball and football players, including 59 with
a history of ACL injury, performed a sport-specific cutting task while 3D
biomechanics were recorded. Over an 8-year follow-up period, 43 of these
players sustained a primary ACL injury and 13 players a secondary ACL injury.
Cutting technigue was described using 36 discrete kinematic variables. To
identify different cutting techniques, we employed a K-means clustering
algorithm on data subsets involving different numbers of kinematic variables (36,
13 and 5 variables) and different sports (handball, football, and both combined).
To assess the impact of the identified cutting technique clusters on ACL injury
risk, we compared the proportion of injured players between these clusters using
the Fisher-Freeman-Halton Exact test and adjusted rand indices (ARI).

Results: We identified two distinguishable cutting technique clusters in the subset
involving both sports and five kinematics variables (average silhouette score,
ASS = 0.35). However, these clusters were formed based on sport- or task-
related differences (Fisher's p<0.001, ARI=0.83) rather than injury-related
differences (Fisher's p = 0.417, ARI = 0.00). We also found two cutting technique
clusters in the handball (ASS =0.23) and football (ASS =0.30) subsets with five
kinematic variables. However, none of these clusters appeared to be associated
with ACL injury risk (Fisher's p >0.05, ARl = 0.00).

Conclusion: No safe or risky cutting technique strategies could be discerned
among female elite handball and football players. Cluster analysis of cutting
technique, using a K-means algorithm, did not prove to be a valuable
approach for assessing ACL injury risk in this dataset.
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1 Introduction

Anterior cruciate ligament (ACL) injuries are a major concern in
team ball sports, especially for female athletes, who face an incidence
three times higher than their male counterparts (1). These injuries
carry severe consequences not only for the injured athlete and
their team but also for society at large. One of the most severe
consequences of a primary ACL injury is the alarmingly high risk
of suffering yet another ACL injury. As many as 1 out of every 5
athletes who return to play after an ACL injury will end up with a
new ACL injury in the same or contralateral knee (2), with short-
and long-term implications overshadowing those of a primary
ACL injury (3-6). It is therefore critical to prevent such injuries
and to make return to sport safer.

A first logical step in preventing ACL injuries is to investigate
their underlying risk factors (7). We know that the risk of an ACL
injury is multifactorial in nature (8-11) and we know that
movement biomechanics might be one important piece of the
puzzle (12). Since ACL injuries in handball (13, 14) and football
(15, 16) most commonly occur during cutting maneuvers,
identifying biomechanical risk factors in such movements is
critical and may bring us one step closer to successful injury
prevention. Even though a multitude of studies have assessed
biomechanical risk factors for primary and secondary ACL injury
in female athletes during various tasks, the research findings are
still inconclusive. For example, some researchers have identified
knee abduction angles and moments as risk factors for ACL
injury (17), whereas others have not (18, 19). Some have
identified knee
combination with a greater knee flexion moment, as a risk factor

stiff landings, meaning less flexion in
(19, 20), whereas others have not (18). So far, not one single
biomechanical variable has been consistently linked to ACL
injury risk, including knee abduction angles and moments which
are commonly accepted as unfavorable movement biomechanics
(21). Therefore, other approaches might be necessary to give us
new insights into biomechanical risk factors for ACL injury.

In conventional approaches, we commonly compare single
biomechanical variables between groups with and without an
injury or we assess associations between specific variables and
future injury. However, sport-specific movements are complex,
and it is likely that a combination of multiple kinematic and
kinetic characteristics might impact ACL loading and injury risk
than
approaches, in cluster analysis approaches, we try to find patterns

rather single variables. In contrast to conventional
or groupings (ie., clusters) in the whole group, independent of the
injury status, and where the groupings are based on a combination
Thus,
methodology allows us to identify and characterize typical
different,

commonly used movement patterns during cutting maneuvers,

of multiple biomechanical variables. cluster analysis

movement patterns. Potentially, there are several
which we will refer to in this study as cutting technique clusters.
For example, one cutting technique cluster might involve more
torso lateral flexion in combination with more knee valgus and
less ankle plantar flexion as compared to another cluster. After
identifying cutting technique clusters, we can assess if injured

players are more represented in one of the clusters, indicating that
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this specific cutting technique strategy may lead to a higher risk of
ACL injury. Thereby, cluster analysis can help us identify safe and
risky cutting technique strategies, where the risky strategies can be
targeted in interventions. Using cluster analysis, two previous
studies have successfully identified distinct movement strategies
during jumping tasks, some of which were found to be associated
with increased knee abduction moments (22), a proxy for ACL
injury risk, or increased musculoskeletal injury risk (23). To the
best of our knowledge, there are no studies using cluster analysis
techniques to identify movement strategies during cutting
maneuvers which are associated with ACL injury risk.

To investigate potential biomechanical risk factors for ACL
injury in female elite football and handball players this study had
two purposes. The first purpose was to identify the most
common cutting technique clusters based on pre-defined 3D
kinematic variables from baseline testing. The second purpose
was to determine if the identified cutting technique clusters were
associated with ACL injury risk in players, both with and
without previous ACL injury, during the follow-up period. In
addition, we aimed to assess differences in knee abduction

moments across the identified clusters.

2 Materials and methods
2.1 Study design and participants

In this investigation we applied cluster analysis methodology
(unsupervised classification) to determine a set of different
cutting techniques with biomechanically different characteristics
and we assessed their influence on ACL injury risk in players
with and without previous injury. This study is part of a
comprehensive prospective cohort study focused on identifying
risk factors for non-contact ACL injuries among female elite
handball and football players (18, 24-26).

All data were gathered over an 8-year period, beginning in
2007, when all clubs in Norway’s elite female handball league
were invited to participate in an extensive preseason baseline
testing. To be included, players were required to have a first-
team contract and were expected to play in the Premier League
during the upcoming season. From 2008 to 2013, players from
new Premier League teams as well as new players from existing
teams were subjected to the same preseason baseline test. Female
Premier League football players were also included in the study
from 2009 to 2014, using the same inclusion criteria. A total of
880 athletes were tested, including 451 football and 429 handball
players. During the follow-up period, 15 participants suffered
secondary non-contact ACL injuries, while 51 suffered primary
non-contact ACL injuries. In the current study, we excluded
players with direct contact-related new ACL injuries (n=8) as
well as players with a previous ACL injury who had not
undergone ACL reconstruction surgery (n=5). Also, thirteen
percent of the players (n=113) had to be excluded due to
missing kinematic data in the cutting task, which was caused by
technical problems, illness or injury. Thus, the final sample
consisted of 754 players (age, 20.7+3.9 vyears; body mass,
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66.2 + 7.9 kg; height, 169.5 + 6.3 cm), who were subdivided into the
following four groups: Players with a previous ACL injury who
sustained a new, secondary ACL injury during follow-up (Prev/
New ACL group), players with a previous ACL injury only (Prev
ACL group) and players without a previous ACL injury who did
(New ACL group) or did not (No ACL group) sustain a new,
primary ACL injury during follow up (Figure 1). The previously
ACL injured players (n=59) were tested, on average, 3.6 +2.4
years after their injury.

The study was approved by the Regional Committee for
Medical Research Ethics, the Regional Health Authority of
South-Eastern Norway, and the Norwegian Social Science Data
Services. Before inclusion, all participants signed a written
informed consent form, which included parental consent for
players under the age of 18. The study adhered to the most
recent iteration of the Helsinki Declaration.

10.3389/fspor.2025.1463272

2.2 Data collection and test procedures

During the preseason, all players attended one day with
extensive baseline testing, including a vertical drop jump task, a
cutting task and a variety of neuromuscular, mobility, clinical
and anthropometrical assessments. The foundation for this study
was a biomechanical analysis of sport-specific cutting tasks using
three-dimensional motion capture. The details of the marker
placement and cutting test procedure have been described
previously (27, 28). For the handball-specific cut, the player
received a lateral pass from a teammate right before performing
a match-like cutting maneuver to fake and pass a human static
defender. For the football-specific cut, the player received a
football pass forcing her to perform a sharp sidestep cutting
maneuver. For each leg, at least five successful trials with
maximum match-like effort were recorded, with the first three
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Flow diagram of the tested players, including their injury status at baseline and follow-up, as well as the number of analyzed players in each group. ACL,
anterior cruciate ligament.
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being chosen for analysis. Trials 4 and 5 were considered viable
alternatives if one or more markers were hidden during parts of
the cutting movement or if the force platform was partially missed.

Following baseline testing, all complete ACL ruptures were
registered prospectively through May 2015, mostly through
regular contact with the participating teams’ managers, coaches,
or medical staff. In the event of an acute knee injury, we
contacted the injured player directly to get medical information
and a description of the injury situation. The mechanism of
injury was self-classified as contact, indirect contact, or non-
contact. Magnetic resonance imaging and/or arthroscopy were
used to confirm all complete ACL ruptures.

2.3 Measurements and data processing

All measurements were collected synchronously using a 16-bit
conversion board (USB-2533;
Computing Corporation, Norton, MA, USA), then integrated into

analog-to-digital Measurement
Qualisys Track Manager (version 2.8; Qualisys AB, Gothenburg,
Sweden) and processed in Matlab (version 2011; MathWorks Inc.,
Natick, MA, USA). Three-dimensional kinematic data were
collected from 2007 to 2012 using an 8-camera motion capture
system (ProReflex; Qualisys AB, Gothenburg, Sweden) sampling at
240 Hz. Since 2012, an updated 16-camera system with a sample
frequency of 480 Hz was employed (Oqus 4; Qualisys AB).
Ground reaction forces and center of pressure were measured with
two force platforms (AMTI LG6-4-1, Watertown, MA, USA) at
960 Hz. Data processing, including filtering, interpolation, joint
center position estimation as well as joint angle and moment
calculations have been described previously (18, 28).

Sidestep cutting technique was described using 36 kinematic
variables, including 3D hip, knee and ankle angles at initial
contact as well as peak angles during the ground contact phase.
At initial contact, 3D torso angles, cutting width and depth, foot
to floor angles, cutting angle and approach speed were also used
to describe cutting technique. Finally, the time at which the peak
angles occurred as well as ground contact time were also
included. Cutting width and depth were defined as the respective

10.3389/fspor.2025.1463272

angles between a line from the center of mass to the center of
pressure and a vertical line in a plane perpendicular to the
direction of movement 20 ms after initial contact (29). Torso
flexion, lateral flexion and rotation were defined as angles relative
to the ground and direction of movement at initial contact. For
each leg, the mean of the three cutting trials served as the
foundation for all analyses. In order to give equal weights to all
the input biomechanical variables in the cluster analyses, they
were normalized by linear scaling into the closed interval [0, 1].

2.4 Cluster analyses

2.4.1 Dataset subdivision

To determine if the biomechanical variables can be used to
cluster safe and risky cutting techniques, the dataset was initially
divided into different subsets (Tables 1, 2): First, four subsets
were based on how many biomechanical variables were included
in the model, whereof one subset involved all kinematic variables
described above (All 36), one subset involved a reduced selection
of 13 kinematic variables at initial contact (Core 13: Cutting
width and depth, 3D torso angles relative to the ground and
direction of movement, hip abduction and rotation angles, knee
flexion and valgus angles, foot to floor angle and foot rotation
angle relative to direction of movement, approach speed and
cutting angle) and one subset narrowed the selection down to 5
kinematic variables at initial contact (Core 5: Cutting width and
depth, 3D torso angles relative to the ground and direction of
movement). The core selections were based on expert-opinion
and previous research (17, 19, 29, 30), and they included
variables which have been shown to be related to ACL injury
risk, or at least to knee abduction moments, and variables which
are more easily modifiable through training. We selected
variables occurring at initial contact because ACL injuries
typically occur approximately 40 ms after initial contact (31),
making these variables highly relevant and in many cases more
pertinent than, for example, peak values, which often occur later
during the stance phase. We chose to focus on kinematic
variables only, since these are more readily modifiable during

TABLE 1 Cluster analysis methodology was applied to 24 unique data subsets which were based on three different categories. Each subset from the first
category was combined with every possible combination of subsets from the other two categories (4 X 3 X 2 = 24 subsets in total). A detailed explanation

can be found in the text.

‘ 4 subsets based on number of variables 3 subsets based on sport

Handbeall and football players combined

All 36 kinematic variables (All 36)

Core selection of 13 kinematic variables (Core 13)

Core selection of 5 kinematic variables (Core 5)

12 principal components based on PCA (PCA)

Handball players only

Football players only

2 subsets based on testing leg

Ipsilateral leg subset:

- Prev/New ACL group: leg with new ipsilateral re-injury
- Prev ACL group: ipsilateral leg

- New ACL group: leg with new injury

- No ACL group: random leg

Contralateral leg subset

- Prev/New ACL group: leg with new contralateral injury
- Prev ACL group: contralateral leg

- New ACL group: leg with new injury

- No ACL group: random leg

All 12 ipsilateral subsets are listed in Table 2. The corresponding 12 contralateral subsets can be found in the Supplementary Material 1; PCA, principal component analysis; Prev/New ACL

group, players with a previous ACL injury who went on to sustain a new secondary ACL injury; Prev ACL group, players with a previous ACL injury only; new ACL group, players without a
previous ACL injury who went on to sustain a new primary ACL injury; no ACL group, injury free players.
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TABLE 2 Average silhouette scores for all subsets and for different
number of clusters. Only the ipsilateral leg subsets are presented.

| 2clusters 3 clusters 4 custers 5 clusters

All 36 0.16° 0.14 0.13 0.11
All 36 (PCA) 0.19° 0.15 0.14 0.13
Core 13 0.22° 0.18 0.16 0.14
Core 5 0.35>° 0.29" 025" 0.21
Handbeall all 36 0.13% 0.09 0.08 0.07
Handball all 36 0.13* 0.11 0.11 0.09
(PCA)

Handbeall core 13 0.13* 0.13 0.12 0.11
Handball core 5 0.23*° 0.20 0.17 0.16
Football all 36 0.14° 0.10 0.08 0.07
Football all 36 0.15° 0.12 0.10 0.09
(PCA)

Football core 13 0.18% 0.13 0.11 0.11
Football core 5 0.30™° 0.21 0.20 0.19

The first four subsets involve both handball and football players, as well as different selections
of kinematic variables [all 36 variables, a narrowed selection of 13 and 5 variables, and a
principal component analysis (PCA) reduction of all 36 variables resulting in 12 principal
components]. The last eight subsets involve either handball or football players alone and
the same selection of variables.

“The highest average silhouette score of all cluster models within the same subset (bold used
for visibility).

PSubsets with an average silhouette score exceeding 0.25, indicating some evidence of cluster
existence, and subsets scoring highest within their sport group (bold used for visibility).

interventions and do not necessitate force plates for measurement.
Our aim was to make the identification of safe and potentially risky
cutting technique strategies more practical in real-world
application. The last subset involved dimensionality reduction
using principal component analysis (PCA). PCA was applied as a
computational approach to reduce the total number of variables
(i.e, 36 dimensions), effectively transforming the original data
into the lowest dimensional projection possible while still
preserving a minimum of 80% of the total data variance. Twelve
principal components (i.e, 12 dimensions) were required to
achieve the necessary variance in each subset. PCA was used to
simplify the data, reduce noise, improve cluster quality and
performance, mitigate multicollinearity, and help the clustering
algorithm to identify meaningful patterns more effectively.

Second, three subsets were defined by sport: one with both
handball and football players, one with only handball players,
and one with only football players.

Third, two subsets were based on the testing leg. Since players
with an ACL injury history have an increased risk of a new injury
in both the ipsilateral and contralateral knee (2), both legs were
included in the analyses. However, since previous research
that

contralateral injury might differ (10, 11, 32, 33), we conducted

indicates risk factors for ipsilateral re-injury and
separate analyses for the ipsilateral leg and ipsilateral re-injury as
well as the contralateral leg and contralateral injury. Therefore, in
one subset, the Prev/New ACL group included only players who
sustained a new ipsilateral re-injury during follow-up, and for the
Prev ACL group, we chose the ipsilateral leg (ipsilateral leg
subset). In the other subset, the Prev/New ACL group included
only players who sustained a new contralateral injury, and for
selected the

(contralateral leg subset). In both subsets, we chose the leg which

the Prev ACL group, we contralateral leg
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sustained the new injury during follow-up for the New ACL
group, and a randomly selected leg for the No ACL group.

2.4.2 Identification of cutting technique clusters

For clustering these data subsets, a partition-based K-means
clustering algorithm was applied. In order to avoid convergence to
local minima, we used K-means++ initialization, which attempts to
spread out the initial cluster centers (34). Each data point was
assigned to the nearest cluster center based on the Euclidean
distance (35). The cluster centers were then updated by recomputing
the mean of the data points assigned to each cluster (35). This
operation was repeated until convergence, defined according to the
Frobenius norm as cluster centers changing less than le-10 between
consecutive iterations, or until a maximum count of 1,000 iterations
was reached. The algorithm was set to run 10 different
initializations, the model with the lowest measure of the squared
sum between data points and nearest cluster center was chosen as
the final model. We chose a k-means clustering algorithm due to its
efficiency and easily interpretable results. Our intention was not to
find any arbitrary clustering structure, but specifically to identify the
“most common” cutting technique movement strategies. The k-
means algorithm seemed to be a highly suitable choice for this
purpose, as it inherently presumes clusters of comparable sizes and
densities, increasing the likelihood of identifying “common”
strategies. Given the exploratory nature of our study, we aimed to
balance model complexity and interpretability, which k-means
allowed us to achieve effectively. We did not explore additional
clustering methods to avoid the risk of overfitting and the risk of
identifying appealing yet spurious patterns.

To determine the number of clusters for the K-means algorithm,
several models with different number of clusters [k =2,...,5] were
fitted, and the optimal number of clusters was selected by
applying silhouette analyses, using the Euclidean distance as a
similarity metric (36). The silhouette score ranges between
[-1; 1], where close to 1 implies that the data point lies well
within its cluster, a value of 0 implies that the data point lies
somewhere in between to two neighboring clusters and a negative
value implies that the data point is assigned to the wrong cluster
(37). The average silhouette score of a cluster model reflects how
well the cluster model is able to separate the data (37). Therefore,
the number of clusters with the highest average silhouette score
was selected for the K-means algorithm. Since the two cluster
models achieved the highest average silhouette score for all subsets
(Table 2), the K-means algorithm was seeded with two clusters for
all the models. Further, the average silhouette score can be used as
evidence of cluster existence. According to Larose and Larose (38),
an average silhouette score of less than 0.25 is an insufficient
indication of cluster existence, whereas a score of 0.5 or higher is
good evidence of the reality of the clusters in the data, indicating
that clusters are clearly distinguishable. A score between 0.25 and
0.5 indicates some evidence of the existence of the clusters in the
data, but domain-specific expertise is important to support the
reality of these clusters (38).

For each subset with at least some evidence of cluster existence
(ie, average silhouette score >0.25) and for each subset scoring
highest within its sport category, the following data analyses were
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conducted to further assess the reality of the clusters as well as their
importance with regards to ACL injury risk: The cutting technique of
each identified cluster were presented by the cluster mean +SD of
each biomechanical variable included in the model. For further
interpretation of the cluster model, t-tests were performed for all
the input variables. Due to the descriptive nature of the cluster
analysis, it is important to be aware that the aim of the t-tests was
not hypothesis testing per se, but help to identify which input
variables separate the two clusters the most. Hence, t-statistics and
Cohen’s d effect size were used to determine the ranking of the
input variables. Normality was assumed based on the Central Limit
Theorem. Levene’s test was used to assess the equality of the group
(i.e., cluster) variances. If one or more variables in a cluster model
were found heterogeneous, Welch’s t-tests were performed. If all
variables were found homogeneous, Student’s two sample t-tests
were conducted. The same t-tests were conducted for all variables
in a cluster model to ensure comparability of the t-statistics. The
level of significance was set a priori at p <0.05.

2.4.3 Cutting technique clusters and ACL injury
risk

To determine if the identified cutting technique clusters were of
relevance for ACL injury risk, we applied Fisher-Freeman-Halton
Exact tests (with a significance limit of p <0.05) and calculated
adjusted rand indices for the four injury groups depicted in
Figure 1. The Fisher-Freeman-Halton Exact test assessed the
statistical association between the clusters and the injury groups,
while the adjusted rand index evaluated the distribution of the
players across the clusters. When applicable, we also performed
these analyses for the two sport groups (handball and football),
to assess if the clusters were based on sport-related differences
rather than on differences related to injury status. The adjusted
rand index objectively measures the similarity between two
different clusterings of the same data set (39, 40). It ranges
between [—1,1], with scores close to 0 indicating an agreement
that is no better than random, scores close to 1 indicating perfect
agreement between the two clusterings and scores close to —1
indicating complete disagreement (39, 40). In this study, the
adjusted rand index was used to evaluate if the clustering results
agree with the true labels of the injury groups and the sport
groups (if applicable) (41). Since only two clusters were identified
in each subset, despite four injury groups being present, three
new binary injury groups (BIN groups in Table 3) were derived
from the original injury groups and tested against the clustering
results to assess if two or more of the original injury groups were
clustered together. Finally, we also performed t-tests to assess
between-cluster differences in peak knee abduction moment,

10.3389/fspor.2025.1463272

which is often considered a main biomechanical risk factor for
ACL injury (42). Cluster analyses and all statistical tests were
performed using Python (Python version 3.12.2; The Python
Software Foundation), except for the Fisher-Freeman-Halton
Exact test, which was conducted in IBM SPSS Statistics (version
24; IBM Corporation, Armonk, NY, USA).

3 Results

The results of the cluster analyses for the ipsilateral and
contralateral leg subsets were close to identical. For clarity, only the
results of the ipsilateral leg subsets are presented. The results of the
contralateral leg subsets are appended (Supplementary Material 1).

The average silhouette scores for all data subsets and cluster
models were relatively low (<0.50), implying that no clearly
distinguishable cutting technique clusters could be identified
(Table 2). Only the Core 5 subset and the Football Core 5 subset
demonstrated some evidence of cluster existence, as indicated by an
average silhouette score of at least 0.25. The Core 5 subset, the
Football Core 5 subset and the Handball Core 5 subset achieved
the highest scores within their respective sport groups. Hence,
further analyses were conducted for those three subsets only.

Descriptive and inferential statistics for the Core 5 subset
containing both sports are presented in Table 4. The three input
variables which separated the two identified cutting technique
clusters the most were torso flexion followed by cutting width
and torso lateral flexion (Table 4). The clusters were not
significantly associated with the ACL injury groups (Fisher’s
p=0.417; Table 5). The players appeared to be randomly
distributed across the two clusters (Figure 2), as indicated by
adjusted rand indices equal to zero for the four injury groups
and their binary derivates (Table 3). Instead, the cutting
technique clusters were associated with the sport groups (Fisher’s
p<0.001). As can be seen in Table 6; Figure 2, the majority of
the players in Cluster 0 were handball players, whereas football
players were mainly assigned to Cluster 1. This is supported by a
high adjusted rand index of 0.83, indicating high agreement
between the clustering results and the true labels of the sport
groups (Table 3). Interestingly, the peak knee abduction
moments were significantly higher (p <0.001; mean difference,
0.20 Nm/kg; Cohen’s d, 0.37) in Cluster 1 (1.74 £ 0.57 Nm/kg) as
compared to Cluster 0 (1.54 +0.51 Nm/kg).

Descriptive and inferential statistics for the Handball Core 5
subset are presented in Table 7; Figure 3. The three input
variables which separated the two clusters the most were torso
lateral flexion followed by torso rotation and torso flexion

TABLE 3 Adjusted rand indices comparing the clustering results with the true labels of four different injury groupings and one sport grouping.

Core 5 0.00 0.00 0.00 0.00 0.83
Handball core 5 0.00 0.00 0.00 0.00 na
Football core 5 0.00 0.00 0.01 0.00 na

Injury groups, the four injury groups depicted in Figure 1; BIN No ACL group, no ACL group vs. all other groups; BIN prev ACL group, prev/new ACL group and prev ACL group vs. all other
groups; BIN new ACL group, prev/new ACL group and new ACL group vs. all other groups; sport groups, handball vs. football players.
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TABLE 4 Cluster descriptive and inferential statistics for the core 5 subset.

Cluster 1

Welch t-statistic

10.3389/fspor.2025.1463272

Cohen’s d

Cutting width (°) 204+39 28.6+4.2 8.1 <0.001* 2743 2.01
Cutting depth (°) 259+4.7 324+50 6.5 <0.001* 18.38 1.34
Torso flexion (°) -93+£93 11.8+9.9 21.1 <0.001* 30.08 2.20
Torso lateral flexion (°) 14+79 135+ 84 12.2 <0.001* 20.43 1.49
Torso rotation (°) 3.8+13.6 12.0 £ 10.6 8.3 <0.001* 9.26 0.68

Values are means + SD. MD, mean difference.

*Significant mean difference (p <0.05). Torso flexion: positive values indicate torso forward flexion; torso lateral flexion: positive values indicate torso lateral flexion in the intended cutting
direction; torso rotation: positive values indicate torso rotation in the intended cutting direction (bold used for visibility).

TABLE 5 The distribution of players between the two clusters in each injury group for the core 5 subset.

Cluster 0 (n=370)

Prev/New ACL group

1 (0.3%)

Prev ACL group
25 (6.8%)

New ACL group
21 (5.7%)

No ACL group
323 (87.3%)

Cluster 1 (n=377)

5 (1.3%)

21 (5.6%)

22 (5.8%)

329 (87.3%)

Values are number of players (percentage of n); the Fisher-Freeman-Halton exact test yielded a p-value of 0.417; Prev/New ACL group, players with a previous ACL injury who went on to
sustain a new secondary ACL injury; Prev ACL group, players with a previous ACL injury only; new ACL group, players without a previous ACL injury who went on to sustain a new primary
ACL injury; no ACL group, injury free players.
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FIGURE 2
Visualization of the two clusters (cluster 0 and cluster 1) as well as the true labels of (a) the injury groups and (b) the sport groups for the core 5 subset.
The first two principal components of the principal component analysis, which explain the highest amount of variance in the original data, are plotted
against each other. Prev/New ACL group, players with a previous ACL injury who went on to sustain a new secondary ACL injury; Prev ACL group,
players with a previous ACL injury only; new ACL group, players without a previous ACL injury who went on to sustain a new primary ACL injury;
no ACL group, injury free players.

(Table 7). Again, these cutting technique clusters were found to be
irrelevant to ACL injury risk (Fisher’s p=0. 836; Table 8). The
player distribution seemed to be random across the two clusters,
as confirmed by adjusted rand indices close to zero for all injury

Frontiers in Sports and Active Living

groupings (Table 3). Also, the peak knee abduction moments did
not differ significantly between clusters (Cluster 0,
1.55 £ 0.51 Nm/kg; Cluster 1, 1.55+ 0.52 Nm/kg; p=0.917; mean
difference, 0.01 Nm/kg; Cohen’s d, 0.01).
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TABLE 6 The distribution of players between the two clusters in each
sport group for the core 5 subset.

Football Handball
Cluster 0 (1 = 370) 18 (4.9%) 352 (95.1%)
| Cluster 1 (n=377) 362 (96.0%) 15 (4.0%) |

Values are number of players (percentage of n); The Fisher-Freeman-Halton exact test
yielded a p-value of <0.001.

Descriptive and inferential statistics for the Football Core 5
subset are detailed in Table 9; Figure 4. Cutting depth was the
input variable which separated the two identified cutting
technique clusters the most, followed by torso lateral flexion and
torso rotation (Table 9). The proportion of players did not differ
between the two clusters (Fisher’s p=0. 472; Table 10), with
players appearing randomly dispersed, as indicated by adjusted
rand indices close to zero for the four injury groups and their
binary derivates (Table 3). Notably, the peak knee abduction

10.3389/fspor.2025.1463272

moments were significantly higher (p=0.005; mean difference,
0.16 Nm/kg; Cohen’s d, 0.29) in Cluster 1 (1.80 +0.59 Nm/kg)
compared to Cluster 0 (1.64 + 0.53 Nm/kg).

4 Discussion

This is the first study aiming to identify common cutting
technique clusters and investigate their association with ACL
injury risk in players with and without a previous ACL injury.
We found no clearly distinguishable cutting technique clusters in
the data set. There was however some evidence of cluster
existence in the Core 5 subset involving both sports, but these
cutting technique clusters were of no relevance for ACL injury
risk. Rather, they could be attributed to sport- or task-related
differences. We also found some evidence of cluster existence in
the Football Core 5 subset. Even though peak knee abduction

TABLE 7 Cluster descriptive and inferential statistics for the handball core 5 subset.

Cluster 0 Cluster 1 p-value Welch t-statistic Cohen’s d
(n=193) (n=174)
Cutting width (%) 19.8+42 211432 13 0.001* 3.34 0.35
Cutting depth (°) 27.1+44 24.6+46 24 <0.001* 5.16 0.54
Torso flexion (°) -13.5+83 —-4.0+8.0 9.5 <0.001* 11.16 1.17
Torso lateral flexion (°) 6.8+59 —42+6.0 11.1 <0.001* 17.80 1.86
Torso rotation (°) 1224102 —-5.0+10.9 17.2 <0.001* 15.56 1.63

Values are means + SD. MD, mean difference.

*Significant mean difference (p <0.05). Torso flexion: positive values indicate torso forward flexion; torso lateral flexion: positive values indicate torso lateral flexion in the intended cutting
direction; torso rotation: positive values indicate torso rotation in the intended cutting direction (bold used for visibility).

FIGURE 3

Animated figures for the handball core 5 subset, illustrating the mean differences in cutting technique between cluster 0 (grey) and cluster 1 (color) in
(a) the frontal plane, (b) the sagittal plane, and (c) the horizontal plane. The players nearest to the respective cluster centers, established by the

Euclidean norm, were chosen as the basis. Created by Muscle Animations.
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TABLE 8 The distribution of players between the two clusters in each injury group for the handball core 5 subset.

Prev/New ACL group

Cluster 0 (n=193) 1 (0.5%)

Prev ACL group
17 (8.8%)

New ACL group
10 (5.2%)

No ACL group
165 (85.5%)

Cluster 1 (n=174) 1 (0.6%)

11 (6.3%)

10 (5.7%) 152 (87.4%)

Values are number of players (percentage of n); the Fisher-Freeman-Halton exact test yielded a p-value of 0.836; Prev/New ACL group, players with a previous ACL injury who went on to
sustain a new secondary ACL injury; Prev ACL group, players with a previous ACL injury only; new ACL group, players without a previous ACL injury who went on to sustain a new primary

ACL injury; no ACL group, injury free players.

TABLE 9 Cluster descriptive and inferential statistics for the football core 5 subset.

Cluster 0 Cluster 1 p-value Welch t-statistic Cohen’s d
(n=161) (n=219)
Cutting width (°) 259+42 304 +3.2 45 <0.001* 1141 121
Cutting depth (°) 36.4+3.2 293440 7.1 <0.001* 19.16 1.95
Torso flexion (°) 62+99 152+9.3 8.9 <0.001* 8.90 0.93
Torso lateral flexion (°) 19.6 +6.9 85+6.4 11.1 <0.001* 15.95 1.67
Torso rotation (°) 19.5+9.2 59+8.1 13.5 <0.001* 14.87 1.56

Values are means + SD. MD, mean difference.

*Significant mean difference (p <0.05). Torso flexion: positive values indicate torso forward flexion; torso lateral flexion: positive values indicate torso lateral flexion in the intended cutting

direction; torso rotation: positive values indicate torso rotation in the intended cutting direction (bold used for visibility).

FIGURE 4

Animated figures for the Football Core 5 subset, illustrating the mean differences in cutting technique between Cluster O (grey) and Cluster 1 (color) in
(a) the frontal plane, (b) the sagittal plane, and (c) the horizontal plane. The players nearest to the respective cluster centers, established by the
Euclidean norm, were chosen as the basis. Created by Muscle Animations.

moments differed significantly between the identified clusters, no
association with ACL injury risk could be found. The Handball
Core 5 subset achieved the highest average silhouette score
among the handball subsets. However, the identified cutting
technique clusters were not associated with ACL injury risk and
the peak knee abduction moments did not differ between the
clusters. Hence, we could not identify specific movement
strategies during cutting maneuvers clearly leading to a higher
risk of primary or secondary ACL injury in this data set.
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Not surprisingly, the average silhouette scores decreased with
increasing numbers of clusters as well as with increasing number
of variables included in the model (Table 2). This can be
attributed to the “curse of dimensionality”, stating that an
increase in dimensionality (i.e., variables) causes an exponential
increase in the volume of the space which implies that the
available data points become increasingly sparse, that data points
belonging to the same cluster drift apart (i.e., the within-cluster
distance increases) and that the distance between data points
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become more similar and less meaningful (43, 44). This makes it
more difficult for the K-means algorithm to identify distinct and
cohesive clusters and explains the decreasing average silhouette
To address this
phenomenon, we included several subsets with fewer dimensions,

scores with added dimensions and clusters.

and we applied PCA to reduce the number of dimensions
computationally. Also, given this issue and the fact that the two
cluster models often achieved the highest average silhouette score
by a narrow margin, we chose to further explore the 3- and
4-cluster models as well. However, the respective results were
unremarkable, and none of the identified cutting technique
be ACL  injury
(Supplementary Material 2, 3).

clusters proved to relevant  for risk

4.1 Is cluster analysis useful for assessing
ACL injury risk in a mixed group of handball
and football players?

With an average silhouette score of 0.35, the Core 5 subset
scored highest among all tested subsets (Table 2). Still, values
between 0.25 and 0.5 are categorized only as medium evidence
of cluster existence, and according to Larose and Larose (38)
subject-specific expert opinion is required to determine if the
differences between the clusters are meaningful. Players in
Cluster 1 leaned 12° and rotated 8° more towards the intended
cutting direction and they leaned 21° more forward than
players in Cluster 0 (Table 4). They also placed their foot 8°
further to the side and 7° further forward. All these five
variables differed significantly between clusters and the effect
sizes were “medium” to “huge” (45). Based on the mean
differences, the effect sizes and the scatter plot visualization, we
concluded that we have two distinguishable cutting technique
clusters in this subset.

Still, the question remained whether or not these cutting
technique clusters were of relevance for ACL injury risk. This did
not appear to be the case. As can been seen in Table 5; Figure 2,
the injured players appeared to be randomly distributed across
the two clusters, with close to 50% of the players in each cluster.
However, for the Prev/New ACL group, 5 out of 6 players were
assigned to Cluster 1. Due to the small number of players in this
group, the non-significant result of the Fisher-Freeman-Halton
Exact test, and since we found a similar player distribution in the
contralateral leg subset for this group (Supplementary Material
1), we suspect that this uneven distribution may be caused by
chance. This is also confirmed by adjusted rand indices of zero,
implying that the clustering results do not correspond with the
injury groups. Therefore, the identified cutting technique clusters
do not appear to be associated with ACL injury risk.

We were also interested to assess if the clustering results were
affected by the two different sports which were included in this
model. Since the cutting tasks were slightly different for the
handball and football players, there was a chance that the
algorithm would simply capture those differences. Not surprising,
that is what we observed. Handball and football players were
assigned to separate clusters (Table 6; Figure 2), which explains
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why the clustering results coincided well with the sport groups
(Table 3). Therefore, the cutting technique clusters appeared to
be based on sport-related differences rather than injury-related
differences. Those differences in cutting technique between
handball and football players were most likely caused by the
slightly different cutting tasks rather than by sport-inherent
differences. The handball players were instructed to fake- and
pass a static defender, whereas the football players had to
perform a sharp cut based on a football pass they received,
without faking a defender.

On the one hand, these findings indicate that the clustering
algorithm can successfully distinguish between genuinely distinct
cutting techniques. At the same time, they indicate that the
suggested thresholds for the average silhouette scores might be
too conservative in the present context, given the low scores for
the subsets involving both sports in spite of genuine differences
between the clusters. On the other hand, the findings clearly
indicate that we have to analyze different sports or slightly
different tasks separately. Other biomechanical patterns which
might be present in the data are likely to be washed out by these
sport- or task-related patterns.

Despite the lack of association with ACL injury risk, the peak
knee abduction moments were 13% higher (“small” effect size) in
the cluster which was mainly represented by football players as
compared to the “handball” cluster. This difference can likely be
attributed to the wider cutting width in the “football” cluster
(Table 4), which has previously been associated with larger knee
abduction moments (29, 46). According to Kristianslund, Faul
(29), increasing cutting width by 3.7° increases peak knee
abduction moment by approximately 17%. In our study, the
“football” cluster had an 8.1° wider cutting width yet only a 13%
higher peak knee abduction moment. This can probably be
explained by players in the “football” cluster leaning more in the
direction of the cut (Table 4), which has been shown to reduce
knee abduction moments (29, 46). The difference in peak knee
abduction moments between the two clusters is likely attributable
to the variations in the cutting tasks rather than inherent
differences in the sports. This is further supported by previous
research indicating similar ACL injury rates among football and
handball players (18, 47).

4.2 Is cluster analysis useful for assessing
ACL injury risk in handball players?

The Handball Core 5 subset scored highest among the handball
subsets with an average silhouette score of 0.23 (Table 2). Since this
score was close to the threshold of 0.25 and since we considered
these thresholds as slightly conservative, we performed further
analyses to assess the reality of the identified clusters. We found
that players in Cluster 1 leaned 11° and rotated 17° more in the
opposite direction of the cut, and they leaned 10° more forward
than players in Cluster 0 (Table 7; Figure 3). The effect sizes for
these torso variables were “large” to “very large”. The differences
in cutting width and depth were negligible however with only 1-
2° differences between clusters and “small” to “medium” effect
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TABLE 10 The distribution of players between the two clusters in each injury group for the football core 5 subset.

‘_ Prev/New ACL group Prev ACL group New ACL group No ACL group

Cluster 0 (n=161) 3 (1.9%) 9 (5.6%) 8 (5.0%) 141 (87.6%)
Cluster 1 (n=219) 1 (0.5%) 9 (4.1%) 15 (6.8%) 194 (88.6%)

Values are number of players (percentage of n); the Fisher-Freeman-Halton exact test yielded a p-value of 0.472; Prev/New ACL group, players with a previous ACL injury who went on to
sustain a new secondary ACL injury; Prev ACL group, players with a previous ACL injury only; new ACL group, players without a previous ACL injury who went on to sustain a new primary
ACL injury; no ACL group, injury free players.

sizes. Therefore, we concluded that there are medium distinct injury (17). Therefore, the increased peak knee abduction

differences in cutting technique between those two clusters, moments observed in Cluster 1 might potentially imply a higher

warranting the assessment of those clusters’ association with ACL  risk of injury. However, since the difference and the effect size

injury risk. were small and since the injured players were distributed relatively
The proportion of players with either a previous ACL injury or  evenly across these clusters, we can conclude that there is no clear

a new ACL injury during follow-up was similar in each identified  evidence of an association between either of the cutting technique

cutting technique cluster (Table 8), implying that the risk of an  clusters and ACL injury risk.

ACL injury associated with these two different movement

strategies is similar. This was also confirmed by adjusted rand

indices near zero (Table 3), as well as by identical peak knee 4 4 Why are the identified clusters unrelated

abduction moments across the clusters. Therefore, the differences to ACL injury risk?

in cutting technique between the two clusters appeared to have

no practical relevance for ACL injury or ACL injury risk. There are several possible explanations for the lack of

association between the identified movement strategies and ACL
injury risk. First, the cutting technique clusters may genuinely

4.3 |s cluster analysis useful for assessing represent factors other than injury risk. For instance, they could
ACL injury risk in football players? be based on differences in genetics, anthropometry, muscular
strength, coordination, playing position, or playing style. It is

With an average silhouette score of 0.30, the Football Core 5 also conceivable that there might be a relationship to cutting
subset demonstrated some evidence of cluster existence (Table 2). performance, where one of the cutting strategies is more effective
We found that players in Cluster 1 leaned 11° and rotated 14°

more in the opposite direction of the cut, and they leaned 9° more

for outmaneuvering a defender than the other. Alternatively,
these strategies could simply be random in nature with no

forward than players in Cluster 0 (Table 9; Figure 4). They also specific underlying cause.

displayed a 5° wider cutting width and a 7° shorter cutting depth. Second, the data may not clearly separate different cutting

All these five variables differed significantly between clusters and techniques relevant to injury, possibly due to insufficient

the effect sizes were “large” to “very large” (45). Based on the information (e.g., not measuring or including relevant kinematic

mean differences and the effect sizes, which were only slightly variables), measurement noise (e.g., inaccuracies in kinematic

lower than those of the Core 5 subset (summated mean measurements), or a combination of both. Subtle differences in

differences of 45.1° and 56.2°, respectively; summated mean effect the motions might not have been captured because of the

sizes of 7.32 and 7.72, respectively), we concluded that we have absence of additional biomechanical variables or the use of

two distinguishable cutting technique clusters in this subset discrete rather than continuous data. Nonetheless, the clustering

The proportion of players with a previous ACL injury was algorithm successfully distinguished between the two genuinely

similar in each identified cutting technique cluster (Tables 3, 10), distinct cutting techniques in the Core 5 subset (i.e., handball vs.

implying that the clusters did not reflect the biomechanical football cutting tasks), suggesting that the available information

alterations commonly observed in players with an ACL injury = ™3Y have been sufficient.

(48). The proportion of players who sustained a new ACL injury Third, our laboratory task may not accurately reflect the

during follow-up was also similar across the two clusters, which biomechanics of game situations that lead to injury. This

indicates that the risk of an ACL injury associated with these two discrepancy could be due to the nature of the task itself, the level

different movement strategies was similar of effort exerted during its execution, or external factors such as

Interestingly, the peak knee abduction moments were 10% additional cognitive demands.

higher (“small” effect size) in Cluster 1 compared to Cluster

0. This can likely be attributed to wider cutting widths in this

cluster as well as more torso lateral flexion in the opposie 4.5 Strengths and limitations

direction of the cut (Figure 4), which both have previously been

linked to greater knee abduction moments (29, 46). Prior research One notable strength of this study was its large sample size of
has shown that higher knee abduction moments result in higher ~ 754 elite female athletes, including 59 with an ACL injury history

ACL loading (49, 50) and may be associated with future ACL  and 56 who sustained an ACL injury during follow-up. These
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large numbers enhanced the chance of detecting commonly used
cutting techniques among handball and football players and
identifying their association with ACL injury risk. Still, there are
some limitations to consider. First, we had a limited sample size
of 13 players in the Prev/New ACL group, including 6 ACL re-
injuries and 7 contralateral injuries. This complicated the
detection of clear trends in the player distribution across clusters
for this group. Second, while K-means stands out as a popular
and efficient unsupervised machine learning algorithm which
produces easily interpretable results, it does have its limitations
(51). Notably, K-means assumes that clusters are spherical in
shape and have similar sizes and densities (51), which could be a
possible reason why this algorithm failed to identify clusters of
relevance to ACL injury. To address more complex cluster shapes
and sizes, future studies could explore alternative clustering
algorithms like Gaussian mixture models, density-based methods,
or hierarchical clustering. Finally, future research could consider
incorporating kinetics into cluster analyses to potentially provide
a deeper understanding of how certain combinations of loads
could contribute to injury risk.

5 Conclusion

We identified two distinguishable cutting technique clusters in
the subset involving both sports and 5 kinematics variables.
However, these clusters were formed based on sport- or task-
than
Concordantly, the identified cutting technique clusters in the

related  differences rather injury-related  differences.
handball and football subsets with 5 kinematic variables were
also found to be unrelated to ACL injury risk.

Opverall, K-means cluster analysis methodology proved valuable
for identifying different cutting techniques. However, none of the
identified cutting techniques seemed to increase the risk of ACL
injury, implying that we could not identify safe or risky side-step
cutting technique strategies among our cohort of 754 female elite
handball and football players. Therefore, cluster analysis of
cutting technique, using a K-means algorithm, did not prove to
be a valuable approach for assessing ACL injury risk in this dataset.
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