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Toward interpretable expected
goals modeling using Bayesian
mixed models
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and Performance INSEP, Paris, France, 4DMeM, Univ Montpellier, INRAe, Montpellier, France
Empowered by technological progress, sports teams and bookmakers strive to
understand relationships between player and team activity and match
outcomes. For this purpose, the probability of an event to succeed (e.g., the
probability of a goal to be scored, namely, xG for eXpected Goals) provides
insightful information on team and player performance and helps statistical
and machine learning approaches predict match outcomes. However, recent
approaches require powerful but complex models that need more inherent
interpretability for practitioners. This study uses a Bayesian generalized linear
mixed-effects model to introduce a simple and interpretable xG modeling
approach. The model provided similar performance when compared to the
StatsBomb model (property of the StatsBomb company) using only seven
variables relating to shot type and position, and surrounding opponents
(AUC = 0.781 and 0.801, respectively). Pre-trained models through transfer
learning are suitable for identifying teams’ strengths and weaknesses using
small sample sizes and enable interpretation of the model’s predictions.
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1 Introduction

Football is a globally popular sport and its financial and social impact attracts

researchers whose main aim is to increase comprehension of training and match-

play performance (1–3). Thanks to technological and analytical evolutions, new

performance-oriented research perspectives have emerged from the analysis of player

performance. Both training and match data, collected from football players using global

navigation satellite systems (4) and markerless optical tracking systems (5), have

become more plentiful and increasingly accurate. The information enables the

development of advanced statistical and machine learning approaches to help analyze

and subsequently optimize football performance and attempt predictions of

match outcomes.

A popular performance metric in football is expected goals (xG). This metric

represents the probability of a shot resulting in a goal. It was first introduced in football

by Green (6) with the aim of identifying the key factors underpinning how goals are

scored and has become a valuable objective measure of an individual player’s

performance that can also be extended to the team level (7–10). To date, xG models

typically account for spatio-temporal information, such as the time, the distance and

angle between the player and the goal at the shooting time, the type of shot, and the
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preceding event (i.e., the last action such as a low pass or a high

pass). Beyond these data, previous studies have reported different

approaches and model architectures (11–16). Modeling xG

requires multiple features as the complexity of the task and its

variability calls into question its predictability when using a

restricted set of game features (e.g., the goal distance) (15).

However, Umami et al. (16) reported that a logistic regression

using only a few features (the distance and angle to the goal, and

whether the shot is headed or not) provided convincing results.

Alternatively, more complex architectures have been employed to

attempt to better estimate xG (14). In effect, the authors in the

latter study compared a logistic regression with non-linear

ensemble learning algorithms (random forest and adaptive

boosting) to predict the match score by summing the estimated

xG of each shot opportunity. According to their results, the

random forest algorithm provided the best model performance. In

another study, Anzer and Bauer (11) used advanced features such

as the height of the ball when the shot was attempted and analysis

of the player’s movement at the time of the shot. By comparing

several supervised machine learning models, a gradient boosting

model that accounted for the type of shot (header, leg kick, and

direct free kick) provided the best performance in predicting the

number of goals scored.

Most studies that have attempted to model xG have focused on

fitting the best model using non-linear and complex model

architectures, at the expense of model interpretability. These

studies aimed to achieve the best performance in predicting that

the shot will be converted into a goal. However, complex models

are difficult to interpret. There are methods for explaining such

models, such as the use of Shapley values (17, 18), but these

approaches are still criticized today (19, 20), questioning the ability

of one to fully master the complexity of Shapley value calculations.

There are a few studies that have focused on xG modeling while

preserving interpretability. To build a model that identifies key

factors influencing xG, Decroos and Davis (13) and Bransen and

Davis (12) proposed the use of a generalized additive model

(GAM). The studies show that GAMs provide comparable results

to a more complex gradient boosting model while retaining the

advantage of interpretability. To further improve the

interpretability of the model and since logistic regression has

proved effective in modeling xG (16), one should consider the

relationships between features and xG to be linear and

consequently should utilize a generalized linear model instead of a

GAM. One also assumes that soccer games evolve and that

patterns are slightly different across seasons and competitions. As

such, the present authors made a choice to investigate a Bayesian

framework with mixed effects. Very recently, Scholtes and Karakuş
(21) also proposed a hierarchical Bayesian approach to model xG.

They used this model to determine whether the individual player

or their positional role impacted xG. The main strength of their

work was the identification of specific player abilities throughout

an interpretable model and a rigorous assessment of prediction

uncertainty. However, the potential of the Bayesian framework was

arguably not fully exploited and further research is warranted.

In the present article, an alternative prior specification method

is proposed to model xG: an interpretable Bayesian generalized
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linear mixed-effects model (22). This model might achieve better

estimation quality, and its benefits are potentially numerous.

First, the linear structure makes the model very easy to interpret

by analyzing the model’s coefficients. Second, the inclusion of

random effects means that intra- and inter-player/team

variability can be considered. This enables interpretation of the

strength of players and/or teams in specific game situations.

Third, using the Bayesian framework enables the utilization of

limited training data while incorporating expert prior knowledge.

Such a model is not new and is used in other fields and

applications. Yet, it was unseen in xG modeling until the recent

work of Scholtes and Karakuş (21) and also demonstrates the

aforementioned advantages. In our study, we propose to further

exploit the Bayesian contribution with a transfer learning strategy

to build a highly informative prior. The prior is built using past

competition, rather than relying on a hand-constructed prior,

which is inevitably less informative. A study on the impact of

prior choice on the posterior was presented using the

Wasserstein Impact Measure (WIM) (23), showing the benefits

of choosing the prior we propose (more informative prior and

better predictive performance). Furthermore, a practical model

explainability of outcomes is provided through Shapley Additive

exPlanations estimates (SHAP), which can, according to the

literature (24), benefit football analysts and coaches in their

decision-making processes.

Following the presentation of the data and the features used to

evaluate xG (Section 2.1), we will define our xG model (Section 2.2)

and then present the results (Section 3). Thereafter, we will engage

in a discussion of the results and benefits of the model within the

context of the existing literature (Section 4).
2 Material and methods

2.1 Dataset description

Here, we used the StatsBomb open dataset (25) that includes

460 matches with 63,177 shots from 11 different competitions

including the FIFA World Cup, Women’s World Cup, UEFA

Euro, UEFA Women’s Euro, Indian Super League, NWSL, and

Premier League between 2003 and 2022. Among these shots, we

retained 59,417 from open-play situations and discarded 3,760

from set-play actions (penalty, free kick, or corner). Hence, only

shots from open play were considered. Shot location and

occurrence is displayed in Figure 1.

Shot data include the ball’s location, the player’s location, and

the time of the shot. From these spatio-temporal data, we extracted

features for subsequent modeling. An exhaustive list of the features

is provided in Table 1. Many of these features are well-known and

are common to previous studies (11, 26). However, subtle features

such as the Best_angle may provide relevant information. Since our

dataset includes quantitative and qualitative features (Position,

Body_part, and Last_action), the latter have been one-hot

encoded for the modeling. To reduce dimensionality and prevent

collinearity, we performed a feature selection as described in

Section 2.2.
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FIGURE 1

Shot outcomes. On the left, dots represent shot locations on the field and the gradient color denotes the frequency of scored shots per location. On
the right, all outcomes and their occurrences are listed.
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The StatsBomb dataset provides an estimate of xG, which we

will refer to as StatsBomb xG. Their model, which remains

undetailed, has most likely been trained on their full dataset of

matches instead of the open-source dataset used in our study.

Furthermore, some features such as shot impact height are used

and not shared in the open-source data set. This StatsBomb xG

estimate, which has proven its performance (27, 28), will be

considered as a baseline model for comparison.
2.2 Model definition

In the literature, many statistical and machine learning

methods have been tested to model xG (presented in Section 1),

most of them focusing on the best predictive performance at the

expense of model interpretability. In this study, we propose a

model allowing a detailed analysis of the shot quality. We built a

Bayesian logistic regression with mixed effects, defined in

Equations 1 and 2. Normal and Gamma prior distributions (see

Equation 3) have been set for fixed and random effects, with

adjusted means and standard deviations accordingly (the method

is described hereafter).

Let us define xi and yi, respectively, as the vector of feature

values and the shot result for observation i (yi [ {0, 1}, 1

represents a goal and 0 otherwise). Hence, we define yik such

that the i predicted xG for a team k in the following:

yik ¼ (1þ e�uik )�1 þ eik , eik � N (0, s2
i ), (1)

uik ¼ aþ
Xp

j¼1

(bj þ h
(bj)
i )xikj þ h(a)

i , h
(q)
i � N (0, v2

q), (2)

a � N (ma, s
2
a), b � N (mb, Sb), vq � G(aq, bq),

s � G(a, b):
(3)
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where q [ {a, b1, . . . , bp} are the fixed effects parameters

to be identified, p is the number of features,

i [ {1, . . . , N}, k [ {1, . . . , ni}, N is the number of teams,

and ni is the number of observations for team i. Moreover, the

parameters q [ {a, b1, . . . , bp} on which random effects h(q)
i are

applied must be determined. The model selection is performed

using Pareto-smoothed importance sampling-leave-one-out (PSIS-

LOO) (29). This Bayesian approach to model selection enables us

to select the model that offers the best predictive accuracy in a

robust way thanks to its leave-one-out strategy. In addition, the

combination of Hamiltonian Monte Carlo and approximate cross-

validation enables highly efficient model fitting and score

estimation for a wide range of model selection contexts (30). Thus,

not all h(q)
i will be considered a random variable but some will be

fixed to 0.

The choice of the prior distribution is a crucial step in the

model fitting process (choice of ma, sa, mb, Sb, aq, bq, a, b).

Alternatively, two different approaches can be considered instead

of a non-informative prior, with (i) a prior identification from

expert knowledge, and (ii) a prior identification using a baseline

model, computed on different data. Scholtes and Karakuş (21)

used the first method while the latter method has been employed

in this study, thus considering a different training dataset. Hence,

estimating prior distributions using a separate dataset ensures

unbiased model training and model generalization. Our method

therefore uses a transfer learning strategy (i.e., the reuse of a set

of functions or knowledge learned from a source task). A model

is fitted for each competition, the prior being built from the

other competitions. In other words, let us assume that c is the

competition of interest and that c are the other competitions

available in our dataset. The c are used to fit a model M without

informative prior knowledge. The model of interest, fitted on c,

then benefits from the posterior knowledge identified in M.

A Bayesian model with flat prior and without random effect

was fitted on the shots from c. The posterior distribution
frontiersin.org
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TABLE 1 Feature descriptions and value range.

Feature Description Values
Minute Time of the shot in minutes [0, 128]

Distance The distance between the location of the shot and the center of the goal [0:4, 93]

Angle The angle of the shot (ball, center of the cage, and center of the field). Its value is
0 when the shot is aligned with the center of the cage and 90 when the shot is
from the back line.

[0, 90]

Distance_goalkeeper The distance between the goalkeeper and the center of the goal [0, 118]

Goalkeeper_on_traj If the goalkeeper is on the trajectory (in the triangle formed by the two posts and
the shot location)

{1, 0} for {True, False}

Nb_opponent_on_traj The number of opponents, excluding the goalkeeper, on the trajectory [0, 10]

Closest_opponent The distance between the shot location and the closest opponent [0, 92]

Opponent_nearby The number of opponent closer than 3m [0, 9]

Teammate_front The number of teammates more advanced in the field [0, 10]

Best_angle The best shot angle (left post, shot location, or right post angle if there is neither
opponent nor goalkeeper on the trajectory, else the largest space)

[0, 180]

Under_pressure Statsbomb feature estimating whether the shooter is under pressure or not
during the shot

{1, 0} for {True, False}

Position The position of the shooter e.g., “Goalkeeper,” “Right Attacking Midfield,” “Center Forward,”
. . . 25 different instances

Body_part The part of the body used for the shot {“Left Foot,” “Right Foot,” “Head,” or “Other”}

Last_action The action preceding the shot {“Regular Play,” “From Throw In,” “From Keeper,” “From Corner,”
“From Counter,” “From Free Kick,” “From Goal Kick,” or “From
Kick Off”}
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obtained is then used to build the prior for the model on

competition c, and is defined as

a � N (âc, g:ŝ
2
ac
), b � N (b̂c, g:Ŝbc

):

The coefficient g is chosen so that the mean of the standard

deviations for the fixed effects is equal to 0:5 to ensure that the

prior information is neither too strong nor too weak. Regarding

the parameters s and vq, q [ {a, b1, . . . , bp}, the priors were

fixed to s � G(1, 0:5), vq � G(0:3, 0:1). The variance of s prior

distribution is large, while vq, q [ {a, b1, . . . , bp} is more

restrictive. This allows us to avoid the high values obtained when

teams are under-represented in the studied competition, and

when observations are not necessarily representative of actual

team performance.

Posterior distributions have been estimated through Markov

chain Monte Carlo with a Hamiltonian Monte Carlo algorithm

[No-U-Turn Sampler, (31)]. The No-U-Turn sampler allows us

to simplify the tuning of the standard Hamiltonian Monte Carlo

method with a similar efficient performance. Then, on the basis

of the sampling obtained, we used 10,000 iterations and four

chains, with a burn-in period of 1,000 samples for sampling. All

the analyses were conducted using the latest version of the

Python library PyMC (32). Once the sampling from the posterior

distribution was complete, the model’s parameters were estimated

according to the maximum a posteriori for further predictions.

For a given competition, 70% of the shots were used as a

training set while the remaining 30% were used as a test set. All

the results presented in Section 3 stem from the test set. Model

selection was carried out using PSIS-LOO for each competition

to select q parameters on which random effects are applied.
Frontiers in Sports and Active Living 04
Consequently, the random effect structure could vary

across competitions.

As the work of Scholtes and Karakuş (21) is analogous to ours,

we also fitted their model to our data and features (selected in

Section 2.3) to emphasize the benefits of using an informative

prior in small datasets. The following priors presented in this

section correspond to the priors used to reproduce their work.

The same features used to fit our model were considered, but the

priors were chosen as proposed in their paper. Since some

features are shared between our respective works, the priors

chosen for the associated parameters are the identical (N stands

for normal distribution and SN for skew-normal distribution):

• intercept : N (m ¼ 0, s ¼ 5)

• distance goalkeeper : N (m ¼ 0, s ¼ 5)

• distance : SN (m ¼ �1, s ¼ 5, a ¼ �1)

• body part head : N (m ¼ 0, s ¼ 5)

• nb opponent traj : SN (m ¼ �1, s ¼ 5, a ¼ �1)

For the other features, we applied the same method for their

selection and finally used the following priors:
• best angle : SN (m ¼ 1, s ¼ 5, a ¼ 1)

This feature is similar to the shot_angle feature used in

Scholtes and Karakus’ paper, which is the left post, shot

location, and right post angle. The prior is therefore the same

as that used in their article for the shot_angle feature.

• angle : SN (m ¼ �1, s ¼ 5, a ¼ �1)

The angle we use represents alignment with the goal. A higher

value represents a less centered positioning, which translates into a

lower score probability and explains the choice of m and a.

• closest opponent : SN (m ¼ 1, s ¼ 5, a ¼ 1)

m ¼ 1 and a ¼ 1 because the closer the opponent, the greater

the pressure.

In the following, we will refer to this model as Scholtes’ model.
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FIGURE 2

AUC score evolution of the fivefold cross-validation. On the x-axis, the best features are added one by one. The red dotted line represents the last
selected feature, where the AUC reaches a plateau.
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2.3 Feature selection and performance
criteria

To use our approach, the model used to build the prior must

be fitted using the same features as the model of interest. Thus,

feature selection was conducted using the training set of all

competitions in a global model. A frequentist logistic

regression was performed, discarding random effects and any

prior knowledge. For feature selection, we performed a

forward selection starting with the best features to model xG

and then added features one by one until the area under the

curve (AUC) reached a plateau (see Figure 2). At each step, all

unused features were tested.

Seven features were selected from the fivefold cross-validation

(Figure 2), with (1) best_angle, (2) distance_goalkeeper, (3)

distance, (4) body_part_head (one-hot-encoded feature, 1 if the

shooter struck the ball with their head, 0 otherwise), (5) angle,

(6) nb_opponent_traj, and (7) closest_opponent. They constitute

the set of predictors for subsequent modeling.
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The area under the curve, balanced accuracy, precision, recall,

specificity, and F1 score were used to measure the efficiency of

the models.

Each competition was used for model fitting, leading to models

with heterogeneous fixed parameter estimates based on the

prior information.
3 Results

The comparison of the performance of the proposed model (i.e.,

a Bayesian mixed effect logistic regression, namely, Bayesian xG)

with that of StatsBomb’s and Scholtes’ models is reported in

Table 2. Considering all competitions, the results show that model

performances differed slightly, but similar performance was

obtained with the Bayesian approach and the StatsBomb model.

Scholtes’ model seemed to suffer from less informative priors

when fitted on small data samples. This is supported by a lower
frontiersin.org
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TABLE 2 Model performance of the Bayesian model, StatsBomb xG, and Scholtes’ model.

Threshold Score Bayesian xG StatsBomb xG Scholtes xG

AUC 0.781 0.801 0.578
Balanced accuracy 0.517 0.520 0.553

Precision 0.754 0.845 0.159

0.8 Recall 0.036 0.041 0.238

Specificity 0.999 0.999 0.868

F1 score 0.068 0.078 0.191

Balanced accuracy 0.559 0.558 0.504

Precision 0.563 0.608 0.095

0.5 Recall 0.129 0.124 0.944

Specificity 0.988 0.991 0.064

F1 score 0.211 0.207 0.173

Balanced accuracy 0.710 0.735 0.502

Precision 0.228 0.250 0.095

0.2 Recall 0.687 0.716 0.996

Specificity 0.733 0.754 0.007

F1 score 0.344 0.372 0.173

The results are displayed according to three thresholds.

TABLE 3 Wasserstein Impact Measure using the priors proposed for the
Bayesian model and Scholtes’ model and using a uniform prior for
all parameters.

Uniform prior Scholtes’ prior
Bayesian xG prior 0.69 0.66

Scholtes’ prior 0.18

Iapteff et al. 10.3389/fspor.2025.1504362
AUC score than the other models, and the xG predictions tend to be

symptomatically higher (higher recall with a smaller threshold).

Having obtained a reasonable model, we will now illustrate the

advantages of the proposed approach and focus on a given

international football competition: the FIFA World Cup 2022.

First, to underline the impact of the prior used for the Bayesian

xG model compared to the prior proposed by Scholtes, we

calculated the WIM. This measure is used to compare two

distributions, and in the Bayesian framework, to compare two

posterior distributions obtained with distinct priors. As suggested

in the original paper, we computed the WIM using the uniform

prior. The aim of the approach is to evaluate the quantity of

information provided by the prior: the higher the WIM between a

given prior and the uniform prior, the more informative the prior

is. The WIM was computed using the samples obtained with the

MCMC algorithm, and resulted in a WIM almost four times

higher for the Bayesian xG prior against the uniform prior than

for the Scholtes prior against the uniform prior (Table 3).

To focus on the Bayesian xG model, the maximum a posteriori

parameter estimation showed that the distance feature (i.e., the

distance between the shot location and the center of the goal) had

the greatest negative influence on the predicted xG (see Table 4).

Furthermore, the optimal model structure retained for xG

prediction includes a random intercept va and two random slopes

(on angle and closest_opponent parameters, denoted by vb5
and

vb7
, respectively). Since vb5

and vb7
differ from 0, they highlight

team-specific traits and relationships between these predictors and

the predicted xG. Accordingly, such a model structure allows for

consideration of inter-team variability. The univariate posterior

and prior distribution for the fixed effects showed the differences

between the Bayesian model calibrated on the 2022 FIFA World

Cup and the global model fitted on other competitions (see

Figure 3). For this competition, the features nb_opponent_on_traj,

angle, and body_part_head had a particularly higher negative

impact than the global model. This means that in this competition

and situation, the players were less likely to score than usual.
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However, the optimal model retained a random slope on the angle

feature, meaning that some teams were significantly better than

others to deal with the bad angles.

Computing SHAP values allowed us to explain the model

predictions and, for a given shot, to interpret the impact of each

feature’s value on the prediction. In addition, we can examine

poorly predicted shots to understand where the failure arises

from. For example, Figure 4 presents two poorly predicted shots

and their respective feature contributions. The first shot has a

very high xG value because it is close, central, and there is no

opponent on its trajectory. However, the pressure exerted by the

nearest opponent likely exceeded the model’s prediction, resulting

in a missed shot. The second shot was challenging, characterized

by its considerable distance and lateral displacement, with two

opposing players present on its trajectory. Nevertheless, the player

successfully converted his attempt into a goal.
4 Discussion

The present xG mixed-effect model, based on a dataset from the

2022 FIFAWorld Cup, provided an opportunity to study teams’ goal

scoring through strengths and weaknesses in an interpretable and

explainable way. The results are arguably of major interest to

coaching practitioners, sports scientists, and researchers interested

in determining the influence of player and team actions on

scoring goals and match outcomes. For practical usage, the models

were implemented in a Streamlit web application (33).
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TABLE 4 Maximum a posteriori parameter estimation for the FIFA World Cup 2022.

a b1 b2 b3 b4 b5 b6 b7 va vb5
vb7

�2.58 0.393 0.397 �1.296 �0.501 �0.449 �0.703 0.378 0.427 0.364 0.326

The beta’s are defined as the parameters for (1) best_angle, (2) distance_goalkeeper, (3) distance, (4) body_part_head, (5) angle, (6) nb_opponent_traj, and (7) closest_opponent.

FIGURE 3

Univariate posterior and prior distribution of the b parameters for the 2022 FIFA World Cup.

FIGURE 4

SHAP waterfall plots for two separate shots. The shot on the left has a high Bayesian xG prediction (0.787) and was missed, the one on the right has a
low Bayesian xG prediction (0.026) and was scored.
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Using transfer learning, our model further advances the recent

work of Scholtes and Karakuş (21). It can notably undergo an

initial pre-training phase on a more extensive and historical

dataset and a secondary training phase on a smaller, recent

dataset to refine its predictive capabilities. The application of

transfer learning within a Bayesian framework yielded results

that were comparable to those of a commercial xG model

(developed by StatsBomb), despite the utilization of a reduced

dataset (see Table 2 for a summary). Furthermore, the

interpretability of our linear model is a notable advantage as

each model parameter can be analyzed and compared with one
Frontiers in Sports and Active Living 07
another. For instance, the distance from the goal had the most

significant influence on xG predictions (over the shot angle) and

should, consequently, be considered in any training drills and in-

game tactical decision-making.

The Bayesian framework has several advantages. Building an

efficient predictive model in a frequentist way implies training a

model over a large enough dataset (34). In their study, Robberechts

and Davis (35) concluded that five seasons of data were needed to

fit an accurate frequentist and non-parametric xG model. Since the

Bayesian inference comes with prior distributions, fewer training

observations are needed to fit a model correctly. In addition, our
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approach also addressed confidentiality issues. Identifying a prior

distribution implies learning a first function that approximates xG

using a separated data sample (in our case, to use another

competition to build the baseline model). Through transfer

learning, models trained on multiple competitions can be reused

for the targeted competition, reducing the computation time and

improving model performances. Furthermore, retraining the

baseline model on the competition of interest helps identify

differences and similarities between the competitions.

In this work, we focused on open-play phases only, while

overall, football performance should be modeled from all playing

phases. However, the method is transferable to any playing

phases where models could be built separately or combined. As

aforementioned, player characteristics have significant importance

in any football performance modeling. Player-specific data might

improve model accuracy and outperform other commercial xG

models. Gender has also shown some importance, as mentioned

by Bransen and Davis (12). Considering gender in xG modeling

or building gender or youth-specific models is recommended.

Since football data on the women’s game are generally less

abundant, the proposed approach based on transfer learning

should address this issue as an optimal model would be built for

a given competition while benefiting from broader information.

Even though sports performance modeling remains

challenging due to its inherent complexity, analyzing players’ and

teams’ characteristics provides essential information for this task.

In this study, we considered individuals as teams since the data

did not allow us to consider each player individually. Hence, the

cross-random effects from the mixed logistic regression

highlighted singularities between football teams, particularly

regarding the body_part_head and nb_opponent_traj features.

However, one may note that player-level information could

significantly increase the performance of xG predictions, as

players have strengths and weaknesses of their own. Beyond this,

the model could allow for adapting a pre-game team strategy or

making on-field decisions, to optimize the efficiency of the team.

Expert knowledge can be included in the model as priors.

Nevertheless, if the number of observations is insufficient to

construct the prior or if the prior information reflects extreme

parameter values, there is a risk of bias and identification failure

of posterior distributions (36–38). This phenomenon can be

observed in our dataset when a comparison is made between the

results of Scholtes’ model and the Bayesian xG model that we

propose. Indeed, fitting the model by competition results in a

smaller dataset than that employed in the aforementioned work.

Furthermore, the selection of priors has led to a model with a

higher xG prediction than that of StatsBomb and our own

model. Conversely, when a sufficient number of observations

have been accumulated, the incorporation of expert knowledge as

a prior enables coaches to exert direct influence on predictions

and decisions, thereby facilitating the provision of valuable real-

time feedback. To illustrate, a coach’s knowledge of the game

could be incorporated into the prior to facilitate meaningful

insight into the players. Knowledge of the strengths of the

starting team he has chosen, or of the opposing team, could lead

to a manual shift in the value of the parameters influenced.
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Coaches could then readily utilize the model’s parameters to

optimize in-game strategies, such as identifying the optimal

shooting distance for individual players and offering practical

insights for enhancing overall team performance.

The proposed method may also be of particular interest for

modeling expected goals on target (xGOT). xGOT is a post-shot

metric that uses the position at which the ball enters the goal and

whether it is saved or scored. The xGOT is primarily employed to

assess a team’s finishing proficiency by comparing xG with xGOT

and to evaluate the performance of goalkeepers according to the

quality of the shot. The methodology delineated in this paper also

permits the identification of scenarios wherein specific teams

exhibit superior finishing proficiency or more efficacious

goalkeeping and the characterization of these scenarios. However,

although our approach is generalizable to many cases, it is

possible that predictive quality may be reduced in tasks that are

too complex, such as expected threat. Maintaining high

interpretability and, therefore, simple models for such tasks would

potentially lead to a greater loss of predictive quality.
5 Conclusion

The development of interpretable and, more widely,

explainable artificial intelligence represents a pivotal area of

research within the field of computer science and subsequently

sports science. This approach facilitates the extraction of novel

insights from complex sports data, thereby empowering

practitioners to make well-informed decisions (39). Our

approach, based on a Bayesian mixed logistic regression model, is

aligned with the principles of reproducibility and interpretability.

Furthermore, it achieves comparable predictive performance to

that of more complex models, despite the utilization of a limited

sample of competition data. It also addresses practical concerns

such as the identification of team strengths and weaknesses, and

could be further extended to model xG from individual

characteristics in a straightforward, accessible, and reliable manner.
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