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Background: In recent years, the proliferation of mobile applications in the

health and fitness sector has been rapid. Despite the enhanced accessibility of

these systems, concerns regarding their validation persist, and their accuracy

remains to be thoroughly evaluated compared to conventional motion analysis

methodologies. Furthermore, there is a paucity of evidence regarding real-

time feedback and movement quality assessment. Consequently, this

systematic review aims to evaluate the current state of camera-based mobile

applications for movement screening in healthy adults, focusing on specific

types of movement.

Methods: A systematic literature search was conducted in four databases—

PubMed, ScienceDirect, Web of Science, and IEEE Xplore—covering the period

from 2000 to 2024. The search strategy was based on key terms related to

four main concepts: screening, mobile applications, cameras, and physical

activity. The Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines were followed. The study was registered a priori

on PROSPERO (Registration ID: CRD42023444355) to ensure transparency and

prevent selective reporting of outcomes.

Results: Of the 2,716 records initially identified, eight studies met the specified

inclusion criteria. The studies were primarily concerned with fitness exercises,

gait analysis, and sport-specific movements. Some studies demonstrated

high reliability compared to gold standard systems, while others reported

technical limitations such as camera positioning and data interpretation issues.

Feedback mechanisms varied, with many applications lacking personalized

real-time correction.

Conclusion: Despite the potential of smartphone-based movement screening

applications, particularly their accessibility and affordability, challenges remain

regarding accuracy and user feedback. Precise measurements comparable to

established methods are crucial for application-oriented camera-based

movement screening. Equally important are improving real-time feedback,

expanding the types of movement that can be assessed, and ensuring broad

applicability across different populations and environments to ensure

sustainable use of application-based movement screening.
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1 Introduction

The presence of mobile applications, including those pertaining

to the sports/fitness/health market, has accelerated markedly in

recent years (1). The most popular mobile application marketplaces

offer users millions of applications (Google Play Store: 2.3 million

apps; Apple App Store: approximately 2 million) (2). By 2024, more

than 200,000 health and fitness applications had become available

across various app stores worldwide (3). These applications address

a comprehensive range of user needs, encompassing general fitness

and wellness and more specific areas such as medical management

and health behavior changes (4). Most users, 517 million, opt for

free fitness applications, while a smaller number, 384 million,

choose paid applications (5). Fitness and Exercise applications that

provide support and guidance for fitness workouts and incorporate

gamification elements are highly popular due to their ability to be

used on demand, aligning with the current market for flexibility (6, 7).

Despite the growing prevalence of medical and exercise

applications, there is a paucity of studies that assess the accuracy

and efficacy of camera-based mobile applications used for

movement assessment and exercise guidance, and their findings are

subsequently published in peer-reviewed journals. A few of these

studies have been summarized in previous systematic reviews.

For example, Thompson et al. (8) investigated mobile applications

to support therapeutic exercises targeting muscle pain and

demonstrated that such applications may effectively reduce pain

levels. In a similar therapeutic context, Pfeifer et al. (9) analyzed the

effectiveness of mobile interventions in patients with chronic pain

and concluded that these interventions can be beneficial in reducing

pain. Nussbaum et al. (10) conducted a systematic review of

mobile health applications in rehabilitation and found that these

applications demonstrated good psychometric properties when

measuring specific physical activity or gait parameters. Furthermore,

when used as interventions, they positively affected various medical

and functional outcomes. While these reviews provide important

insights into therapeutic use cases, few have systematically examined

the diagnostic validity of movement-focused applications under

gold-standard conditions. Other reviews, such as those by Moreira

et al. (11) and Milani et al. (12), examined mobile applications for

postural assessment. However, they primarily addressed static

analysis and did not consider the dynamic aspects of human

movement, which are central to the scope of our review. Among the

existing reviews on the use of mobile applications in the context of

human movement, the work by Silva et al. (13) is notable for its

focus on the validity and reliability of applications designed to assess

force, power, speed, and change of direction. However, their review

considers mobile applications more broadly without distinguishing

smartphone-based applications specifically. Moreover, their study

does not address the potential role of feedback provided by these

applications, an aspect that represents a crucial gap in the

current literature.

In the absence of robust validation, users may receive ineffective

or even detrimental recommendations, particularly when engaging

in unsupervised physical activity (see the discussion of harmful

applications by (14). Those applications typically lack a crucial

feature: the ability to correct user movements during exercise (15).

Incorrect movements can cause pain and injury, discouraging

physical activity and leading to further deterioration of health

conditions. Fitness applications that analyze movement and tailor

recommendations can help prevent this vicious cycle. When

adequately validated, such applications could offer substantial

benefits, especially in contexts lacking professional supervision.

Most highly validated movement analysis systems are

characterized by high time demands, significant costs, and limited

accessibility, typically confined to clinical or research settings (16).

Consequently, these systems are not accessible to the typical

consumer. The current gold standard for human motion analysis

are optical 3D motion capture systems, which employ multiple

cameras and markers on the moving body. Emerging technologies,

such as markerless systems utilizing devices such as the Kinect,

have been developed as more affordable alternatives, particularly in

the domains of physical therapy and rehabilitation [(17); see also

(18)]. Similarly, advances in smartphone technology have created

opportunities for movement screening and analysis via mobile

devices, offering greater accessibility, convenience, and the

potential for direct, real-time feedback. However, there is a paucity

of mobile applications with camera-based movement screening,

where a person’s movements are captured via a mobile device and

analyzed in real-time. Furthermore, these applications are poorly

represented, validated, and rarely peer-reviewed or presented in

scientific journals. Thus, our aim is (1) to identify current camera-

based mobile applications, (2) to examine which movement skills

are addressed and whether these tools provide immediate feedback

to the user regarding movement quality, and (3) to highlight areas

for further improvement and validation, with a particular focus on

enhancing measurement accuracy and usability—factors for the

effective everyday use of camera-based movement analysis systems.

We provide an overview of the various applications and the

movement skills under investigation. While reviews already exist

that focus on rehabilitation, the scope of this work is on

applications for healthy individuals without motor and/or

cognitive limitations. From a movement science perspective, the

technical implementation and the underlying algorithms for

motion analysis are not the primary focus. This review focuses

on camera-based movement analysis applications that deliver

immediate results without post-processing and are compatible

with standard mobile devices such as smartphones or tablets. By

presenting an evidence-based overview of apps validated in

scientific studies, the review offers practical value. It helps

distinguish between tools supported by empirical data and those

still in early development, guiding practitioners and researchers

toward reliable and accurate solutions for practical use.

2 Methods

2.1 Protocol and registration

This systematic review was conducted in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses [PRISMA, Page et al. (19)]. It was registered a priori
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with PROSPERO (Registration ID: CRD42023444355) to ensure

transparency and prevent selective reporting of outcomes.

2.2 Eligibility criteria

The study focused on the availability of full-length articles. We

considered original research articles published in peer-reviewed

journals and conference papers in English or German between

2000 and 2024. The participants targeted in the included studies

were adults aged 18 years or older. All participants were required

to be healthy and to have no motor-cognitive disabilities or other

disorders/disabilities to exclude studies focusing on rehabilitation

contexts. A mandatory inclusion criterion was the utilization of a

movement screening methodology through camera-based mobile

applications, with the supplementary requirement that the live

and real-time movement analysis constituted an intrinsic

component of the application rather than merely recording the

movement for subsequent examination through disparate software.

2.3 Literature search

A comprehensive search was conducted using the following

databases: PubMed, Science Direct, Web of Science, and IEEE

Xplore. The search was conducted on September 28, 2023, and

updated on February 22, 2024. Studies published from the year

2000 onwards were included in the search. The search strategy

consisted of key terms (MeSH terms in PubMed) relevant to four

key concepts: screening, mobile application, camera, and physical

activity. The entire electronic search strings across the various

databases is presented in Table 1.

2.4 Identification and selection of studies

The studies identified from the various databases were recorded,

and their metadata was exported to a Microsoft Excel spreadsheet.

The dataset comprises a variety of fundamentals, including author(s)

name(s), year, journal name, title, and so forth. Duplicates were

removed. Two of the three reviewers (IE-R and HK) evaluated each

title and abstract for potential eligibility using pre-established criteria

based on the eligibility criteria described above. If an article was

initially deemed suitable for inclusion, the full text of the remaining

paper was assessed. Authors of articles were contacted via email if

the full-text manuscript was unavailable. All three reviewers

independently screened each full-text article against the eligibility

criteria (IE-R, TK, and HK). Any conflicts during screening were

resolved through discussion between the three reviewers. The

included studies can be found in Table 2.

2.5 Data extraction

The following key data were extracted from each study: first

author(s), year, country, study aims, sample characteristics (e.g.,

age, gender, health status), movement screening methods, quality

criteria, outcome measures, and limitations. Three independent

reviewers extracted the data to minimize errors and bias. Any

discrepancies were resolved through discussion. The extracted

data were then compiled into a summary table, which formed

the basis for the descriptive analysis and synthesis of results.

2.6 Study risk of bias assessment

The studies included in this review are highly heterogeneous in

content and research design, which limits the applicability of

standard quality assessment tools and complicates direct

comparison. Existing instruments, such as the JBI Critical

Appraisal Tools, did not match the methodological characteristics

of the included studies. Specifically, the checklists designed for

diagnostic accuracy and analytical cross-sectional studies were

inappropriate for this review. Furthermore, a search within the

EQUATOR Network for alternative checklists did not yield any

tools that would provide meaningful added value for assessing

study quality from a movement science perspective. To maintain

focus on the primary objectives of this systematic review, we

chose not to conduct a formal quality assessment using

conventional appraisal tools. The aim of this review is not to

evaluate the methodological rigor or the effectiveness of

interventions. As a result, a formal risk of bias assessment was

not conducted.

TABLE 1 Overview of database-specific search strategies and
search strings.

Database String

Pubmed (assessment OR screening OR diagnos* OR examination) AND

(mobile* OR “mobile application*” OR “mobile phone” OR

“mobile device*” OR “mobile health” OR “mobile technolog*” OR

smartphone OR “cell phone” OR digital* OR “digital technolog*”

OR “digital health application*” OR Tablet OR ehealth OR

mhealth) AND (camera* OR video*) AND (movement OR

“physical activity” OR exercise OR training OR fitness OR

“physical fitness”) NOT (disease OR disorder)

ScienceDirect (assessment OR screening) AND (“mobile application” OR

mhealth) AND (camera) AND (movement OR “physical activity”

OR exercise) NOT (disease)

Web of

Science

(assessment OR screening OR diagnos* OR examination) AND

(mobile* OR “mobile application*” OR “mobile phone” OR

“mobile device*” OR “mobile health” OR “mobile technolog*” OR

smartphone OR “cell phone” OR digital* OR “digital technolog*”

OR “digital health application*” OR Tablet OR ehealth OR

mhealth) AND (camera* OR video*) AND (movement OR

“physical activity” OR exercise OR training OR fitness OR

“physical fitness”) NOT (disease OR disorder)

IEEE Xplore (assessment OR screening OR diagnos* OR examination) AND

(mobile* OR “mobile application*” OR “mobile phone” OR

“mobile device*” OR “mobile health” OR “mobile technolog*” OR

smartphone OR “cell phone” OR digital* OR “digital technolog*”

OR “digital health application*” OR Tablet OR ehealth OR

mhealth) AND (camera* OR video*) AND (movement OR

“physical activity” OR exercise OR training OR fitness OR

“physical fitness”) NOT (disease OR disorder)

Note: We specifically included the term “diagnosis” in the search strategy to broaden the

scope of the search and to ensure that potentially relevant studies that did not have direct

diagnostic applications but could still be relevant to the topic of the investigation

were included.
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TABLE 2 Overview of included studies on camera-based mobile applications for movement screening.

First author
(s), year;
country

Study aim Sample (n;
population; age)

Technical
implementation

(software/hardware)

Movement skill Type of feedback/
coaching

Reference
standard

Main outcome

Fanton and

Harari (2022)

(20); USA

Validation of a functional

movement assessment

n = 150;

age = 18–85 years;

♂ = 56

♀ = 94

Software:

Halo Movement App (HMA)

Hardware:

Smartphone (not further specified)

Single leg stance, forward

lunges, overhead squat,

overhead reach, feet

together squat

Score 0–100 (100 = best) based on

computer vision algorithms

applying deep neural networks; no

feedback to users on the quality of

movement performance

-Xsens sensors

-13 standardized

functional

movement tests

Moderate to strong correlations

between HMA overall score, sensor-

based 3D motion capture metrics,

and scores from 13 standardized

functional movement tests

Ability to differentiate regular

healthy individuals from

professional athletes and impaired

participants

Tran (2020)

(21); USA

Developing an application to

track and calculate 3D lower-

body gait in real-time

n.a./case study Software:

LGait—Apple ARKit-3

(Lower-Body Motion Tracking

version 1.0.1) Hardware:

iPhone 11, iPad mini 5, and iPad

Pro

Gait Measurement of joint angles, but

no feedback on the quality of the

gait or information on possible

improvements

Vicon Motion

System

Angle values are compatible

(differences in the angles between

the two systems are about 2◦), but

the LGait application slightly

delays tracking the gait cycle

Pham (2022)

(22); Vietnam

Developing an automated

system to recognize and

evaluate physical exercises

n = 9 (5 for training, 4 for

testing); age = 15–55 years

Software: Google MediaPipe

Hardware: Smartphone (not further

specified)

Arm circles, squats, and

standing crossover toe

touches

Depending on the deviation of

individual joint movements, a

score is calculated that gives the

user feedback on what should be

improved

n.a. Average accuracy of 98.33% in

recognizing movement skills

Aoyagi (2022)

(23); Japan

Developing an application

that enables markerless 3D

motion capture

n = 90 original humanoid

computer graphics (CG)

characters created (VRM

format)

Software: Three-Dimensional Pose

Tracker for Gait Test (TDPT-GT)

Hardware: iPhone 12 and iPhone

SE2

Gait so far, no feedback for users Vicon Motion

System

Application reconstructs the 3D

full-body human motion

efficiently in real time

Fernandez

(2023) (24);

New Zealand/

Philippines

Validation of a computer-

vision-based application with

lab-based systems to quantify

calf raise outcomes

n = 13 ♂ = 6; age = 38 (10)

years ♀ = 7; age = 34 (7)

years

Software: Calf Raise App (CRapp)

Hardware: Two iPad Air 2 devices

(Apple, iOS 14.1)

Calf raises Videos for raters, but no feedback

on performance for users

-3D Motion

Capture System

-Force Plate

Good to excellent validity across

measures and excellent intra- and

inter-rater reliability

Stanton (2017)

(25); Australia

Examine the concurrent

validity and intra-rater

reliability of the MyJump app

compared to laboratory-based

measurements

n = 29; age = 26.41 (5.36)

years ♂ = 10 ♀ = 19

Software: MyJump App Hardware:

iPhone 6s

Counter Movement Jump

(CMJ) and Drop Jump

(DJ)

Provides jump height based on

flight time; no feedback on quality

of movement execution

Force plate MyJump is valid and highly

reliable for CMJ and DJ

performance measurement and

has a strong correlation for CMJ

and DJ with force plate data

Jeon (2021)

(26); Korea

Optimization of 2D human

pose estimation for mobile

devices with real-time

feedback

n = 23; age not specified Software: TensorFlow Hardware:

Samsung S10, Samsung Note9,

Google Pixel 3, iPhone 11

Chest-stretch, squat

shoulder press, tuck jump,

side-bend knee-up, and

barbell power clean

Feedback on deviations in real-

time based on an action database

COCO dataset

(Common Objects

in Context)

Average precision of 65.2%

(COCO), 89.6% (Fitness dataset)

and consistent detection of joint

coordinates, 97.39% accuracy in

movement counting

Li (2021) (27);

Taiwan

Developing a system for the

analysis of baseball swings and

distinguishing good from bad

swings

n = 10; age not specified

♂ = 10

Software: Open Pose Hardware:

Smartphone (not further specified)

Baseball swing Overall score from 0 to 100, based

on custom rules

Baseball swing

distance

The system’s score positively

correlates with hit distance,

indicating its accuracy in

distinguishing good and poor swings

Abbreviations: n.a., not applicable.
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3 Results

3.1 Study selection

In the initial search, 2,718 entries were identified across the

following databases: PubMed (107), Science Direct (424), Web of

Science (1,881), and IEEE Xplore (304). Two additional entries were

identified through the reference list of a review paper (15).

Subsequently, 301 entries were identified as duplicates and removed.

The remaining 2,417 records were assessed based on their title and

abstract, excluding 2,369 studies that did not meet the pre-established

inclusion criteria. Following this initial screening, 48 full-text reports

were selected for further evaluation. In the subsequent detailed

assessment, 40 reports were excluded for various reasons. Some

studies were not based on smartphone or video technologies,

while others focused on screening methods that were applied

retrospectively. Additionally, studies employing marker-based

tracking and those lacking video recording were excluded. One study

was excluded because it focused on children or adolescents, and

another was excluded because it was used exclusively in a clinical

setting (see Figure 1). Following this review process, eight studies

were included in the final analysis of this systematic review.

3.2 Characteristics of studies

The studies were conducted in various countries, including the

USA (n = 2), Vietnam, Japan, Korea, Taiwan, New Zealand, and

Australia. They were conducted between 2017 and 2023,

although the inclusion criteria allowed for studies published since

2000. This suggests that research in this area has gained

momentum only in recent years.

The included studies aimed to validate mobile applications for

tracking and assessing specific movement patterns such as jumps

(25), gait (21, 23), sport-specific movements (27), and fitness

exercises (20, 22, 24, 26). The studies examined how accurately

these mobile systems work compared to laboratory-based

reference standards and whether they can analyze movements

effectively in real-time.

The populations under investigation exhibited considerable

diversity, although they often comprised relatively limited sample

sizes. For example, Fanton and Harari et al. (20) collaborated with

a diverse cohort of 150 individuals aged 18–85, encompassing

various body types and performance levels. In contrast, Pham et al.

(22) focused on a considerably smaller sample of nine participants

aged between 15 and 55. Other studies, such as those by Aoyagi

et al. (23), did not involve human participants but original

humanoid computer-generated figures. Tran et al. (21) conducted

a case study with only one participant.

Smartphone-based applications employing sophisticated

technologies such as Apple ARKit-3 (21), Google MediaPipe (22),

and OpenPose (27) were utilized to monitor and evaluate

movement capabilities in real-time. In all cases, motion capture

was conducted without the use of markers through the application

of AI-driven software. Jeon et al. (26) employed TensorFlow for

real-time human pose estimation. In contrast, Aoyagi et al. (23)

utilized a specialized motion-tracking application, TDPT-GT,

which facilitated markerless whole-body gait analysis with AI-

based algorithms. The motion monitoring methods employed in

the applications are based on computer vision and machine

learning to track and analyze human movements. The technical

implementation, including the specific software and hardware used

in each study, is presented in Table 2. However, since this review

has been compiled from a movement science perspective, the

technical aspects are not discussed in detail.

The included studies examined fundamental movement

patterns or sport-specific exercises intending to assess various

aspects of physical performance. Fanton and Harari et al. (20)

focused on functional movements encompassing the three

primary movement criteria: mobility, stability, and posture. This

was achieved by utilizing the functional movements of a one-leg

stance, forward lunge, overhead squat, overhead reach, and squat

with feet together. The focus on these functional movements,

which are essential for daily life and overall physical well-being,

aligns with the study’s objective of quantifying the performance

of activities of daily living in the general population. This

approach provides a practical and accessible method for

monitoring physical capabilities, avoiding the need for specialized

equipment. Similarly, Pham et al. (22) and Jeon et al. (26)

evaluated fitness exercises. The authors justified their selection of

movements by stating that these exercises can be performed

without professional assistance. They also noted that feedback

and assessments can be provided easily. This was particularly

important during the global COVID-19 pandemic of 2020, when

a significant proportion of the population was required to

exercise at home. Pham and colleagues (22) sought to address

the issues associated with incorrect form and technique,

potentially leading to muscle strain or injury. The studies by

Tran et al. (21) and Aoyagi et al. (23) focused on the

development of cost-effective and accessible solutions for human

gait analysis, recognizing its importance in assessing physical

health. The distinction between these two studies is that Aoyagi

et al. (23) employed a comprehensive whole-body approach to

assess general movement patterns and postural control during

walking. In contrast, Tran et al. (21) focused on a detailed joint-

specific analysis of the lower body (hip, knee, ankle). Similarly,

Fernandez et al. (24) also focused on the lower body, with a

particular emphasis on the calf, utilizing the calf raise test (CRT).

The studies conducted by Stanton et al. (25) and Li et al. (27)

examined movements specific to athletic performance. Stanton

et al. (25) examined the counter-movement jump (CMJ) and

drop jump (DJ), while Li et al. (27) examined the baseball swing.

The movement skills assessed in these studies illustrate the broad

range of physical abilities and performance metrics these

applications can capture and analyze.

The type of feedback also exhibited considerable variability

across the studies. In the Halo Movement application by Fanton

and Harari et al. (20), feedback is provided as a score ranging from

0 to 100, with 100 representing the optimal score. A similar

numerical rating system was employed in the studies by Li et al.

(27) and Aoyagi et al. (23). In the study by Li et al. (27), feedback

on the baseball swing is provided through an individualized
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scoring system based on biomechanical rules. The system captures

essential limb coordinates during the swing, including hip distance

and limb angles, utilizing the OpenPose model. Subsequently, these

measures are compared against predefined custom rules derived

from prior research and coaching experience. The scoring system

developed by Aoyagi et al. (23) is based on calculating gait

parameters, providing a quantitative assessment of the gait pattern.

The present study’s objective is to establish the system as a

screening tool by detecting anomalies in gait behavior that could

indicate the presence of movement disorders. A similar approach is

employed in the study by Tran et al. (21). The recorded data are

presented as 3D angular values, which allows for assessing

movement patterns that experts can interpret. However, the

authors do not provide any specific information on personalized

feedback or coaching mechanisms.

The remaining studies included in this review (22, 24–26)

similarly lack descriptions of personalized instructions or detailed

correction suggestions. Therefore, the feedback is quantitative

and based on the accuracy of movement detection. However, it

does not provide customized instructions to improve exercise

techniques. In Fernandez et al. (24), the feedback is intended for

interpretation by researchers or clinicians. In contrast, the

application developed by Pham et al. (22) offers supportive

guidelines to users. The application developed by Jeon et al. (26)

offers a quantitative assessment of movement deviation,

expressed as numerical values that quantify the discrepancy

between actual joint dynamics and the ideal model. A low

numerical value indicates a significant deviation from the

reference value. In the study by Stanton et al. (25), the MyJump

application was utilized to quantify the jump height based on the

flight time calculated from the moment of take-off to landing.

Thus, the MyJump application provides real-time feedback on

the jump height, thereby offering a readily accessible method for

users to monitor their performance. In summary, the primary

objective of most studies was to assess the validity and reliability

of the applied methods. Most of these studies primarily evaluate

FIGURE 1

Flowchart of the study selection process, according to the PRISMA guidelines (19).
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performance based on quantitative scores, neglecting to provide

qualitative feedback on movement execution. Consequently, the

paucity of studies has resulted in a lack of personalized

recommendations for performance enhancement.

The results of the reference standards exhibit considerable

variation across the included studies. The employment of

reference standards serves the objective of evaluating the efficacy

of motion analysis in mobile systems. Fanton and Harari et al.

(20) used Xsens sensors and 13 standardized functional

movement tests as reference standards. Correlations between

Halo Movement scores and sensor-based performance metrics

ranged from 0.23 to 0.83 (p < 0.05), demonstrating a statistically

significant relationship between the application output and

objective sensor data. Additionally, the correlation between

the Halo Movement scores and the thirteen clinically validated

functional movement tests ranged from 0.29 to 0.63 (p < 0.05),

indicating moderate to strong agreement. Furthermore, the

system demonstrated the capacity to effectively differentiate

between healthy individuals, professional athletes, and

participants with impairments, as evidenced by the intrasubject

coefficient of variation (1.64 ± 1.42%).

Two research groups have compared their gait analysis

applications with the Vicon Motion System (21, 23). In the study

by Tran et al. (21), the primary statistical outcome was the

comparison of angle measurements between the LGait application

and the Vicon system, with a particular focus on hip flexion and

extension angles. The discrepancy in angles between the two

systems was reported to be approximately two degrees,

demonstrating a high degree of concordance between the mobile

application and the Vicon system. However, the LGait application

exhibited a minor delay in tracking the gait cycle. The TDPT-GT

application by Aoyagi et al. (23) and the Vicon system were

calculated for various joint measurements during rotational

movements. The Pearson’s correlation coefficients between the

reference standard and the application vary across different joints.

The findings suggested that the TDPT-GT application could

adequately capture three-dimensional joint coordinates. However,

specific axes demonstrated lower correlations, underscoring certain

constraints in terms of precision.

Two studies utilized the force plate as a reference standard (24,

25). In the study conducted by Fernandez et al. (24), the force plate

was employed to validate two-dimensional motion tracking to

measure the kinetics associated with a calf raise test. In contrast,

in the study by Stanton et al. (25), the force plate was utilized to

validate jump height measurement by employing time-of-flight

recordings. The results of the study by Stanton et al. (25)

demonstrated good to excellent validity and excellent intra- and

interrater reliability. The correlation between the MyJump

application and the force plate for jump height measurement was

r > 0.99 (p < 0.001) for both the CMJ and DJ, indicating near-

perfect agreement between the two measurements. The intraclass

correlation coefficients (ICC) for evaluating intrarater reliability

were 0.99 (95% CI: 0.98–0.99) for the CMJ and 0.99 (95% CI:

0.60–0.99) for the DJ, indicating excellent consistency between

the measurements. In addition, the Bland-Altman analyses for

the CMJ demonstrated minimal dispersion around the mean,

with most measurements falling within the 95% confidence

limits, confirming good agreement without significant systematic

bias. A slight systematic bias was observed in the DJs, with

higher jump heights tending to be measured with the force plate

rather than the application [t(26) =−10.02, p < 0.01]. In the study

by Fernandez et al. (24), the force plate and the 3D motion

capture system were used as a reference standard to record the

kinetics and kinematics of the calf raise concurrently. The 3D

motion capture system was utilized to accurately quantify

movement kinematics, focusing on the marker positions on the

lateral malleolus and heel, which mapped the spatial movement

of the joints. On the other hand, the force plate was employed to

record ground reaction forces, which were subsequently utilized

to calculate kinetic parameters such as peak force, positive and

negative work, and fatigue index. The findings revealed a high

degree of concordance between the Calf Raise application

(CRapp) and the reference system, particularly in the kinematics

of the lateral malleolus (ICC: 0.963–1.00). However, for certain

kinetic measurements, such as heel displacement and fatigue

index, the coefficient of variation for the fatigue index at the

lateral malleolus was 15.3% and at the heel 33.3%, indicating a

lower precision. Consequently, Fernandez et al. (24) have

validated the validity and reliability of the CRapp for evaluating

the outcomes of the calf raise test in healthy adults.

Two studies did not use any traditional reference system. The

experiment by Li et al. (27) showed a positive correlation

between the swing score and stroke distance, indicating that the

scoring method differentiates between swings of varying quality.

Research has demonstrated a consistent correlation between

higher scores and longer swing distances. Several significant

biomechanical factors, including hip width and the angles of the

arms and legs, determine the swing’s quality. However, the

authors did not provide statistical values. Jeon et al. (26) used a

fitness motion database [Microsoft COCO: Common Objects in

Context; (28)], which contained pre-recorded fitness actions

with ideal joint positions as a reference for comparing user

movements. The application utilizes a numerical score to

calculate the user’s joint dynamics and then compares it to the

database. The application demonstrated a 97.39% accuracy rate

in identifying fitness exercises, correctly recognizing 560 out of

575 movements. A closer examination of the model reveals an

average precision of 65.2% on the Microsoft COCO dataset

and an improved average of 89.6% on the fitness dataset. This

finding underscores the model’s capacity for adaptation and

enhancement in recognizing particular fitness movements.

Notably, Pham et al. (22) did not provide an external reference

standard. The reported accuracy of 98.33% refers to internal

classification performance using a trained machine learning

model, rather than validation against an external reference

standard. As such, this metric reflects the model’s internal

effectiveness but should be interpreted with caution when

assessing validity.

The study results indicate that smartphone-based applications

can potentially serve as a promising and practical tool for

movement screening. The validity and reliability of these

applications have been demonstrated to be comparable to that of
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established reference standards, such as motion capture systems

and force plates. This comparison has mainly focused on

assessing fundamental fitness exercises, gait, and sport-specific

movements. However, the study populations varied in age,

physical ability, and size, and many samples were relatively

small, which may limit generalizability. Furthermore, although

quantitative feedback is frequently offered, personalized and

qualitative feedback concerning movement execution remains

deficient in most applications, underscoring a pivotal domain for

future development.

3.3 Limitations of the included studies

A range of limitations in different categories were examined

in the studies. As evidenced by studies such as those conducted

by Aoyagi et al. (23) and Fanton and Harari et al. (20), the

systems utilized exhibit limited validation and reliability. Aoyagi

et al. (23) emphasize that the application’s capacity to monitor a

single individual simultaneously necessitates high-quality video

recordings. Fanton and Harari et al. (20) have also criticized the

lack of validation for sub-values of mobility, stability, and

posture, which are crucial for a comprehensive understanding of

physical performance. Identifying specific weaknesses or areas for

improvement becomes challenging without the validation of

these components. As Stanton et al. (25) have observed, intra-

rater reliability is contingent upon the expertise of the users. The

incorporation of substantial measurement errors by novice users

further restricts the generalizability and practical application of

the findings. It is imperative to acknowledge the limitations of

the study by Fernandez et al. (24), which exclusively included

healthy adults, thereby constraining the external validity of its

findings to other demographic groups, such as older adults,

children, or individuals afflicted with chronic diseases.

Additionally, Fanton and Harari et al. (20) underscore the

constrained sample size and absence of heterogeneity, which

further restricts the generalizability of the results.

Technical limitations include difficulties in capturing small

joint segments (21), the necessity for high-quality video

recordings (23), and challenges due to disparate camera positions

and possible vibrations (25). Li et al. (27) underscored the

significance of incorporating additional critical elements specific

to movement, such as timing, swing speed, and stance during a

baseball swing, into the analysis. This oversight may compromise

the precision of the findings, as these elements are indispensable

for performance assessment. Li et al. (27) observed that achieving

a high score does not guarantee optimal performance,

underscoring the necessity of incorporating movement quality

metrics. Pham et al. (22) proposed expanding the range of

exercises the system can recognize, aiming to enhance both

applicability and user engagement. In this regard, Fanton and

Harari et al. (20) mentioned the potential for over- or under-

representation of specific movement patterns, which may be

influenced by the system’s reliance on a movement database to

compare and analyze these movements (26). Some studies

emphasized the necessity for enhancements in user feedback and

movement quality. Pham et al. (22) suggested implementing

supplementary assessments to offer more detailed feedback,

allowing users to make specific improvements and identify areas

that need attention.

A comprehensive review of the extant literature reveals

significant shortcomings in the studies reviewed. These

shortcomings pertain to the validity and generalizability of the

studies, the technical requirements of the studies, and the

movement analysis in the studies. The shortcomings highlight

the necessity for more robust validation, enhanced adaptability to

diverse user groups, and improvements in system functionality.

These improvements are crucial to ensure more accurate

and comprehensive performance assessments, especially

regarding feedback.

3.4 Risk of bias assessment

The studies demonstrate a substantial degree of variation in the

level of detail provided regarding the recruitment of participants.

The studies conducted by Fernandez et al. (24), Fanton and

Harari et al. (20), and Stanton et al. (25) provide comprehensive

descriptions of their recruitment processes and inclusion criteria,

thereby enhancing the internal validity of their results.

Conversely, studies such as Aoyagi et al. (23), Jeon et al. (26),

Tran et al. (21), and Pham et al. (22) prioritize technical aspects

and provide minimal information on recruitment, which raises

concerns about potential selection bias. Tran et al.’s (21) study is

a case study involving a single participant, which limits the

generalizability of the results compared to the other studies. In

contrast, the other studies avoided a case-control design by

recruiting from broader populations or activity groups without

medical pre-selection, enhancing their external validity.

Most studies ensured that all participants were included in the

analysis, contributing to reliable results by minimizing the potential

for bias from excluding specific individuals. In contrast, Fernandez

et al. (24) included all participants who completed the CRT

sessions, while Fanton and Harari et al. (20) included all 150

participants, even those who could not complete all tasks.

However, Tran et al. (21), Pham et al. (22), and Aoyagi et al.

(23) did not provide adequate details on the inclusion criteria

for participants, which may have resulted in ambiguity and

potential bias in the research findings. The number of participant

exclusions was minimal. The exclusion of participants with

injuries by Fernandez et al. (24) was justified. Stanton et al. (25),

Pham et al. (22), Aoyagi et al. (23), and Jeon et al. (26) did not

specify exclusion criteria. Fanton and Harari et al. (20)

endeavored to ensure diversity within the study, yet due to safety

concerns, certain participants were excluded. Stanton and

colleagues (25) documented two exclusions in the Drop Jump

trials due to improper landings, yet otherwise ensured

comprehensive inclusion. In general, the majority of studies

demonstrated a high level of transparency. However, some

studies could benefit from enhancing the clarity of their

participant inclusion criteria.
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The studies utilized varied reference standards, demonstrating

varying degrees of methodological rigor. Several studies employed

well-established methodologies for motion analysis, including the

Vicon Motion System (21, 23), while others utilized force plates

(24, 25) to assess the validity and reliability of their mobile

systems. These methods are regarded as highly accurate and

provide an excellent reference for motion data. Conversely,

alternative reference standards have been employed in other

studies. While these standards are not regarded as gold, they are

nonetheless based on biomechanical rules. For instance, Li et al.

(27) used the baseball swing as a reference standard, while Jeon

et al. (26) employed fitness exercises. These approaches provide

a reasonable basis for comparison when evaluating the

performance of the mobile systems despite the potential for less

accurate results compared to the gold standards. Fernandez et al.

(24) and Tran et al. (21) conducted simultaneous tests with the

reference standard, whereas Stanton et al. (25) tested the

MyJump application under controlled conditions. Fanton and

Harari et al. (20) validated the Amazon Halo movement using

standardized conditions, and Aoyagi et al. (23) tested their

smartphone application in conjunction with the reference

standard. These methodological approaches ensured stable

conditions and supported result accuracy.

The discrepancies in study design, participant recruitment, and

the utilization of reference standards across these studies

underscore the inconsistencies in study quality that impact the

results’ internal validity, reliability, and generalizability.

3.5 Usability and motivation in camera-
based movement screening apps

A key factor for the long-term acceptance and effectiveness of

camera-based movement analysis applications is their usability.

This includes not only intuitive navigation and ease of use but also

the clarity of feedback and comprehensibility of exercise

instructions. Studies such as that by Jeon et al. (26) show that real-

time feedback is only effective when presented in a clear and

immediately actionable way. Their mobile system combines visual

feedback with a standardized movement database, enabling users to

instantly recognize how their movement deviates from the ideal

form—a form of usability that encourages active engagement with

one’s own movement behavior. Pham et al. (22) likewise emphasize

that the combination of a user-friendly graphical interface and

precise motion evaluation at both the frame and sequence level is

essential for app acceptance. The provision of clearly structured

scores and feedback allows users to track their training progress in

a transparent and motivating way. In addition, motivation plays a

central role in user retention. The Halo Movement app (20) uses a

scoring system based on various functional movement tests that

culminates in a comprehensive and easy-to-understand overall

score. This score enables users to monitor their “movement health

status” over time and document improvements—a motivational

mechanism that encourages regular engagement with the

application. The authors also point out that for healthy adults in

particular, the preventive nature of such feedback is often perceived

positively and reinforces continued use. However, several studies

also revealed that poor usability—for example, due to complex

menu navigation, unclear feedback, or limited customizability—can

hinder both usage frequency and overall effectiveness [e.g., (23)].

Future development should therefore prioritize adaptive user

interfaces and personalized feedback systems to foster high user

engagement and sustained adherence.

4 Discussion

The rapid expansion of mobile applications within the health

and fitness industry has facilitated enhanced access to health

monitoring tools (29). This growth is indicative of two major

factors: significant advancements in technology and a pervasive

shift towards self-management in health and fitness. This trend is

further fueled by consumer demand for customized, accessible

solutions (30). As mentioned in the introduction, validating these

mobile applications is imperative, particularly in movement

screening. This systematic review aims to provide a comprehensive

overview of camera-based mobile movement screening applications

in healthy adults. It focuses on these applications’ particular skills

and capabilities and examines their accuracy and limitations.

4.1 Comparison with established methods
and technological challenges

Optical 3D motion capture systems are regarded as the gold

standard in motion analysis and are renowned for their

precision. Nevertheless, these systems’ high cost and complexity

have primarily restricted their use to clinical and research settings,

severely limiting access to the general population (16). In contrast,

smartphone-based systems offer a more economical and available

option (31). The question of the extent to which this low-cost,

app-based alternative is comparable to established methods gives

rise to the following points for discussion. The applications still

require enhanced sensitivity to precisely detect fine-motor

movements, such as those of smaller body parts (21). Furthermore,

technical challenges must be considered, including but not limited

to optimal camera positioning. Moreover, mitigating movement

disturbances under real-world conditions is imperative to ensure

the desired level of precision (25). Standardization is required to

ensure validity and reliability (20). Moreover, the question of

generalizability to more complex movement patterns remains

unanswered (24). These challenges highlight the need to improve

the precision and validity of mobile applications, particularly in

dynamic movement contexts where accuracy tends to decline

significantly (32). This underscores the importance of

systematically evaluating their reliability under real-world

conditions and across various devices [see also (33)]. Despite these

limitations, the accelerated evolution of mobile technologies

suggests that smartphone applications for motion analysis have the

potential to surpass traditional marker-based systems in terms of

efficiency in the future.
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4.2 Pose estimation frameworks and
movement-specific reference standards

The reviewed applications employ a variety of pose estimation

frameworks, each of which affects both the functional scope and

the validity of movement assessment. OpenPose, as used by Li

et al. (27), and TensorFlow-based real-time estimation networks

(26) serve as the backbone for applications focused on immediate

movement correction and performance monitoring. These

models allow for dynamic feedback and deviation detection

during exercise execution, making them particularly relevant for

qualitative movement screening or coaching-oriented scenarios.

In contrast, MediaPipe, as implemented by Pham et al. (22), is

primarily used for static joint angle classification and activity

recognition. However, due to the absence of an external reference

standard or biomechanical validation, the interpretability of the

reported accuracy metrics remains limited. As such, MediaPipe-

based applications may be better suited for informal fitness

guidance rather than structured movement diagnostics. Aoyagi

et al. (23) introduced a distinct approach with their custom-built

TDPT-GT framework. This system utilizes a deep learning model

trained on synthetic motion data to enable three-dimensional,

full-body gait tracking. While promising in scope, the use of

synthetic training data and the lack of external benchmarking

currently restrict its applicability in clinical or high-performance

sports contexts.

Importantly, due to the diversity of movements assessed,

different reference standards were applied across studies—further

limiting comparability. For instance, force plates were used as the

reference standard in counter-movement jump analyses (25),

while Vicon motion capture systems were employed in gait

assessment (21, 23). These methodological differences underscore

the need to interpret psychometric properties—such as validity

and reliability—within the specific context of the movement and

its corresponding measurement standard.

4.3 Feedback

Absent direct feedback, users cannot ascertain the accuracy of

a movement recorded on a smartphone. It is also crucial to

differentiate between the various forms of feedback (34).

A simple binary score like “correct” or “incorrect” is inadequate

for providing constructive feedback. It fails to inform users

which aspects of their performance need improvement or how

to execute the movement more effectively (34). Moreover, a

binary score merely indicates the extent to which a movement

deviates from the ideal execution, providing no specific

guidance on correcting or improving the performance (34).

Therefore, real-time coaching has been shown to offer several

immediate advantages, particularly in maintaining the quality of

movement and reducing the risk of injury, primarily when users

perform the exercises independently (34). The provision of

direct feedback has been demonstrated to play a pivotal role in

the prevention of erroneous movements that have the potential

to result in injury. Additionally, it has the potential to alleviate

pressure on overloaded healthcare systems by reducing

healthcare costs (34, 35). However, providing real-time feedback

is contingent upon a robust technological infrastructure and a

well-designed user interface, which is necessary to achieve the

aforementioned benefits. A salient finding is the paucity of

personalized feedback in most reviewed applications.

Pham et al. (22) and Jeon et al. (26) were demonstrating the

potential for real-time correction. Pham et al. (22) employed

MediaPipe to analyze individual joint movements and provided

users targeted feedback for improving performance. Jeon et al.

(26) implemented a 2D pose estimation system that was

integrated with an action database, facilitating real-time detection

of deviations and corrective feedback. Both studies were notable

for using real-time pose estimation technologies, structured

movement evaluations based on established criteria, and

comprehensive joint-specific motion analysis. The MyJump app

delivers instant feedback by displaying the achieved jump height

after each jump, giving athletes direct performance insights (25).

Similarly, Amazon’s Halo Movement app provides an immediate

movement quality score upon completing a movement screening

(20). Of the eight applications included, three systems provide

direct feedback on movement execution according to current

data. While MyJump and Halo Movement display characteristic

values such as jump height or movement score immediately after

the action, Jeon et al. (26) even provide camera-based real-time

feedback through movement detection and deviation analysis

during the exercise. Other systems such as CRapp or the

framework developed by Pham et al. (22) also offer feedback, but

based on downstream analysis and not in real time. In contrast,

the remaining applications either deliver their analysis with a

delay after the activity or solely record data without offering any

live guidance. The Calf Raise App (CRapp), for example, uses

computer vision to automatically measure metrics such as

repetition count and lift height during a calf raise test (24).

However, it lacks interactive real-time corrections or personalized

feedback for the user. Overall, many of the reviewed applications

did not incorporate personalized real-time feedback mechanisms,

emphasizing the need for further advancements in this area.

4.4 Population

Except for Fanton and Harari et al. (20), the included studies

had a limited sample of participants. As indicated by the findings

in Table 2, most of the extant studies exhibited inadequate

sample sizes, raising concerns regarding the generalizability of

the results. Sample size requirements should be aligned with the

study’s objective. As Sim and Wright (36) emphasize, studies

assessing reliability or agreement require adequate sample sizes

based on statistical criteria, such as the expected level of

agreement. Tools like G*Power (37) offer practical guidance for

power analysis in planning such studies, particularly in validation

contexts. This highlights the importance of tailoring sample size

to methodological rigor and study design.
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5 Limitations

In addition to the constraints inherent to the studies included

in this review, this analysis is also subject to certain limitations. As

delineated in the present analysis, incorporating an additional

search term, such as “direct feedback” or “user experience,” could

have been a valuable addition during the review process of the

articles. However, this may have resulted in an even lower

number of hits. A further limitation of this review is the

exclusion of studies dealing with children and adolescents. This

exclusion may have reduced the number of studies identified,

and more applications could have been analyzed. This exclusion

may have reduced the number of studies identified, and more

applications could have been analyzed. Additionally, the absence

of a quality assessment checklist poses another limitation, as no

suitable checklist was available. Developing customized quality

assessment instruments that address the particular requirements

of interdisciplinary studies in movement science would be

advantageous for future systematic reviews. In order to facilitate

more consistent evaluation and comparability across studies, it is

imperative that these tools consider diverse study designs and

technical criteria, including but not limited to sensor accuracy,

real-time feedback, and usability. Also, an important aspect of

this review is its focus on applications that have been examined

in peer-reviewed studies. As a result, not all potentially relevant

applications currently available on the market were included. The

absence of certain applications does not necessarily reflect low

quality, but rather a lack of published evidence. This highlights

the need for future research to expand and empirically evaluate

newer, widely used applications in order to assess their

effectiveness, accuracy, and usability

6 Conclusions

Despite the growing potential of camera-based smartphone

applications for movement analysis in healthy adults, this

systematic review reveals that their scientific validation remains

limited and heterogeneous. While some studies demonstrated

methodological transparency and high scientific rigor, others

exhibited notable weaknesses that compromise the reliability of

their findings. Of the eight included applications, only three

–MyJump, Halo Movement, and the system developed by Jeon

et al. (26)—provided camera-based real-time feedback, a key

component for effective movement coaching. The remaining

applications record motion data reliably but do not deliver

immediate feedback during exercise execution. For readers, this

review offers tangible practical value: it provides evidence-based

insight into which applications have been scientifically validated,

which types of movement they address, and whether they offer

real-time user feedback. This makes the review a valuable decision-

making resource for professionals in sports, therapy, and public

health, as well as for developers of digital health technologies. At

the same time, there is considerable room for improvement in

terms of measurement accuracy, user-friendliness, and the range of

movement patterns analyzed. Advances in both hardware and

software—particularly more powerful smartphone cameras and

more precisely calibrated algorithms—may significantly enhance

precision in the future (32). Their low cost and wide availability

render smartphone-based applications especially valuable tools in

rural or underserved areas where access to conventional sports and

health infrastructure is limited (38). However, successful

integration of camera-based movement analysis into existing

prevention, therapy, or training programs requires close

collaboration between app developers, healthcare professionals, and

sports scientists. The long-term success of such applications

depends on high accuracy in movement detection, clear and

comprehensible instruction of the required movement, and

sustained user engagement supported by motivational, adaptive,

and user-friendly (i.e., high-usability) features.

7 Future research

Future research is required to enhance the accuracy and versatility

of smartphone-based screening applications in various everyday

settings for diverse population groups and a range of movements.

Evaluating the agreement between new measurement tools and

established gold standards using appropriate methodologies, such as

Bland-Altman analysis, is essential since correlation alone is

insufficient for establishing equivalence (39). A critical aspect of this

process involves the meticulous examination and refinement of

well-documented sources of error, such as the positioning of

camera equipment and the prevailing lighting conditions. The

applications should be designed to be user-friendly and made

accessible to any individual with a mobile device. Furthermore,

extending the range of exercises to encompass a more diverse array

of movement sequences is essential. Moreover, feedback

mechanisms must undergo revision and integration to facilitate

real-time corrections, thereby effectively minimizing erroneous

movements. The incorporation of artificial intelligence (AI) into the

feedback mechanisms has the potential to provide customized,

adaptive feedback based on individual user movement patterns over

time. Additionally, augmented reality overlays may offer intuitive,

real-time visual guidance by superimposing ideal movement

trajectories directly onto the user’s body. These technologies are

promising for enhancing user engagement, learning, and injury

prevention in future applications. Although this review did not

address user experience and engagement, these factors are critical

for the long-term application of these technologies. Ensuring a

positive user experience and maintaining user engagement is

imperative to guarantee these technologies’ long-term success. In

this context, sustainability should be a key consideration in

developing and deploying such applications. Moreover, beyond the

validation of newly developed applications, future research should

emphasize long-term and intervention-based studies to determine

whether these tools are truly effective and beneficial in real-world

settings over time. The terms “user experience,” “motivation,” and

“usability” were not included in the search criteria, which

represents a limitation of our study. In addition, ethical and privacy

considerations will be an important factor in the future
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development of these technologies. The collection and analysis of

sensitive individual movement data via smartphones pose privacy

risks that must be addressed by implementing appropriate

regulations and data security measures (40).

Author contributions

IE-R: Data curation, Investigation, Methodology, Validation,

Visualization, Writing – original draft. TK: Data curation,

Investigation, Methodology, Validation, Visualization, Writing –

original draft. HK: Data curation, Investigation, Methodology,

Validation, Visualization, Writing – original draft. NS:

Conceptualization, Funding acquisition, Methodology, Project

administration, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. VDI/VDE

Innovation+Technik GmbH Project Management Agency “Invest

BW” Funding code: BW1_1358/02.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Bitkom. Zwei Drittel Nutzen Fitness- und Gesundheits-Apps auf Ihrem Smartphone.
Berlin: Bitkom (2023). Available at: https://www.bitkom.org/Presse/Presseinformation/
Fitness-Gesundheits-Apps-Smartphone

2. Statista. Fitness Apps—Worldwide. Hamburg: Statista (2024). Available at: https://
www.statista.com/outlook/hmo/digital-health/digital-fitness-well-being/health-
wellness-coaching/fitness-apps/worldwide

3. Eser A. Global Fitness App Industry Statistics: Explosive Growth and Revenue
Surge. London: Worldmetrics (2024). Available at: Worldmetric.Org Report 2024.
https://worldmetrics.org/fitness-app-industry-statistics/

4. Liu Y, Avello M. Status of the research in fitness apps: a bibliometric analysis.
Telemat Inform. (2021) 57:101506. doi: 10.1016/j.tele.2020.101506

5. Statista. Number of Apps Available in Leading App Stores as of August 2024.
Hamburg: Statista (2024). Available at: https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/

6. Angosto S, García-Fernández J, Valantine I, Grimaldi-Puyana M. The intention to
use fitness and physical activity apps: a systematic review. Sustainability. (2020)
12(16):6641. doi: 10.3390/su12166641

7. Feng W, Tu R, Hsieh P. Can gamification increase consumers’ engagement in
fitness apps? The moderating role of commensurability of the game elements.
J Retail Consum Serv. (2020) 57:102229. doi: 10.1016/j.jretconser.2020.102229

8. Thompson D, Rattu S, Tower J, Egerton T, Francis J, Merolli M. Mobile app use
to support therapeutic exercise for musculoskeletal pain conditions may help improve
pain intensity and self-reported physical function: a systematic review. J Physiother.
(2023) 69(1):23–34. doi: 10.1016/j.jphys.2022.11.012

9. Pfeifer AC, Uddin R, Schröder-Pfeifer P, Holl F, Swoboda W, Schiltenwolf M.
Mobile application-based interventions for chronic pain patients: a systematic
review and meta-analysis of effectiveness. J Clin Med. (2020) 9(11):3557. doi: 10.
3390/jcm9113557

10. Nussbaum R, Kelly C, Quinby E, Mac A, Parmanto B, Dicianno BE. Systematic
review of mobile health applications in rehabilitation. Arch Phys Med Rehabil. (2019)
100(1):115–12. doi: 10.1016/j.apmr.2018.07.439

11. Moreira R, Teles A, Fialho R, Baluz R, Santos TC, Goulart-Filho R, et al. Mobile
applications for assessing human posture: a systematic literature review. Electronics
(Basel). (2020) 9(8):1196. doi: 10.3390/electronics9081196

12. Milani P, Coccetta CA, Rabini A, Sciarra T, Massazza G, Ferriero G. Mobile
smartphone applications for body position measurement in rehabilitation: a review
of goniometric tools. PM R. (2014) 6(11):1038–43. doi: 10.1016/j.pmrj.2014.05.003

13. Silva R, Rico-Gonzalez M, Lima R, Akyildiz Z, Pino-Ortega J, Clemente FM.
Validity and reliability of mobile applications for assessing strength, power, velocity,
and change-of-direction: a systematic review. Sensors. (2021) 21(8):2623. doi: 10.
3390/s21082623

14. Suleman M, Soomro TR, Ghazal TM, Alshurideh M. Combating against
potentially harmful mobile apps. In: The International Conference on Artificial
Intelligence and Computer Vision; Cham: Springer International Publishing (2021).
(pp. 154–73).

15. Tharatipyakul A, Srikaewsiew T, Pongnumkul S. Deep Learning-Based Human
Body Pose Estimation in Providing Feedback for Physical Movement: A Review.
Amsterdam: Heliyon (2024).

16. Uhlrich SD, Falisse A, Kidziński Ł, Muccini J, Ko M, Chaudhari AS, et al.
Opencap: human movement dynamics from smartphone videos. PLoS Comput Biol.
(2023) 19(10):e1011462. doi: 10.1371/journal.pcbi.1011462

17. Mousavi Hondori H, Khademi M. A review on technical and clinical impact of
microsoft kinect on physical therapy and rehabilitation. J Med Eng. (2014)
2014(1):846514. doi: 10.1155/2014/846514

18. Clark RA, Mentiplay BF, Hough E, Pua YH. Three-dimensional cameras and
skeleton pose tracking for physical function assessment: a review of uses, validity,
current developments and kinect alternatives. Gait Posture. (2019) 68:193–200.
doi: 10.1016/j.gaitpost.2018.11.029

19. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD,
et al. The PRISMA 2020 statement: an updated guideline for reporting systematic
reviews. Br Med J. (2021) 372:n71. doi: 10.1136/bmj.n71

20. Fanton M, Harari Y, Giffhorn M, Lynott A, Alshan E, Mendley J, et al.
Validation of Amazon halo movement: a smartphone camera-based assessment of
movement health. NPJ Digit Med. (2022) 5(1):134. doi: 10.1038/s41746-022-00684-9

21. Tran TX, Kang CK, Mathis SL. Lower-gait tracking mobile application: a case
study of lower body motion capture comparison between Vicon T40 system and
apple augmented reality. In: 2020 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM); IEEE (2020). pp. 2654–6.

22. Pham QT, Nguyen VA, Nguyen TT, Nguyen DA, Nguyen DG, Pham DT, et al.
Automatic recognition and assessment of physical exercises from RGB images. In:
2022 IEEE Ninth International Conference on Communications and Electronics
(ICCE); IEEE (2022). (pp. 349–54).

23. Aoyagi Y, Yamada S, Ueda S, Iseki C, Kondo T, Mori K, et al. Development of
smartphone application for markerless three-dimensional motion capture based on
deep learning model. Sensors. (2022) 22(14):5282. doi: 10.3390/s22145282

El-Rajab et al. 10.3389/fspor.2025.1531050

Frontiers in Sports and Active Living 12 frontiersin.org

https://www.bitkom.org/Presse/Presseinformation/Fitness-Gesundheits-Apps-Smartphone
https://www.bitkom.org/Presse/Presseinformation/Fitness-Gesundheits-Apps-Smartphone
https://www.statista.com/outlook/hmo/digital-health/digital-fitness-well-being/health-wellness-coaching/fitness-apps/worldwide
https://www.statista.com/outlook/hmo/digital-health/digital-fitness-well-being/health-wellness-coaching/fitness-apps/worldwide
https://www.statista.com/outlook/hmo/digital-health/digital-fitness-well-being/health-wellness-coaching/fitness-apps/worldwide
https://Worldmetric.Org
https://worldmetrics.org/fitness-app-industry-statistics/
https://doi.org/10.1016/j.tele.2020.101506
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://doi.org/10.3390/su12166641
https://doi.org/10.1016/j.jretconser.2020.102229
https://doi.org/10.1016/j.jphys.2022.11.012
https://doi.org/10.3390/jcm9113557
https://doi.org/10.3390/jcm9113557
https://doi.org/10.1016/j.apmr.2018.07.439
https://doi.org/10.3390/electronics9081196
https://doi.org/10.1016/j.pmrj.2014.05.003
https://doi.org/10.3390/s21082623
https://doi.org/10.3390/s21082623
https://doi.org/10.1371/journal.pcbi.1011462
https://doi.org/10.1155/2014/846514
https://doi.org/10.1016/j.gaitpost.2018.11.029
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1038/s41746-022-00684-9
https://doi.org/10.3390/s22145282
https://doi.org/10.3389/fspor.2025.1531050
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


24. Fernandez MR, Athens J, Balsalobre-Fernandez C, Kubo M, Hébert-Losier K.
Concurrent validity and reliability of a mobile iOS application used to assess calf
raise test kinematics. Musculoskeletal Science and Practice. (2023) 63:102711.
doi: 10.1016/j.msksp.2022.102711

25. Stanton R, Wintour SA, Kean CO. Validity and intra-rater reliability of MyJump
app on iPhone 6s in jump performance. J Sci Med Sport. (2017) 20(5):518–23. doi: 10.
1016/j.jsams.2016.09.016

26. Jeon H, Kim D, Kim J. Human motion assessment on mobile devices. In: 2021
International Conference on Information and Communication Technology Convergence
(ICTC); IEEE (2021). pp. 1655–8.

27. Li YC, Chang CT, Cheng CC, Huang YL. Baseball swing pose estimation using
openpose. In: 2021 IEEE International Conference on Robotics, Automation and
Artificial Intelligence (RAAI); IEEE (2021). pp. 6–9.

28. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft
coco: common objects in context. In: Computer Vision–ECCV 2014: 13th European
Conference; September 6–12, 2014; Zurich, Switzerland; Proceedings, Part V 13;
Springer International Publishing (2014). pp. 740–55.

29. Silva AG, Simões P, Queirós A, Rodrigues M, Rocha NP. Mobile apps to quantify
aspects of physical activity: a systematic review on its reliability and validity. J Med
Syst. (2020) 44:1–19. doi: 10.1007/s10916-019-1506-z

30. Treier M. Corporate Health Management 4.0 in the Digital Age. Berlin/
Heidelberg: Springer (2023).

31. Amagai S, Pila S, Kaat AJ, Nowinski CJ, Gershon RC. Challenges in participant
engagement and retention using mobile health apps: literature review. J Med Internet
Res. (2022) 24(4):e35120. doi: 10.2196/35120

32. Peart DJ, Balsalobre-Fernández C, Shaw MP. Use of mobile applications to
collect data in sport, health, and exercise science: a narrative review. J Strength
Cond Res. (2019) 33(4):1167–77. doi: 10.1519/JSC.0000000000002344

33. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng.
(2009) 22(10):1345–59. doi: 10.1109/TKDE.2009.191

34. Zhao W. On automatic assessment of rehabilitation exercises with real-time
feedback. In: 2016 IEEE International Conference on Electro Information Technology
(EIT); IEEE (2016). pp. 0376–81.

35. D’Onofrio S. Der digitale Wandel im Gesundheitswesen. HMD Praxis der
Wirtschaftsinformatik. (2022) 59(6):1448–60. doi: 10.1365/s40702-022-00930-4

36. Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and
sample size requirements. Phys Ther. (2005) 85(3):257–68. doi: 10.1093/ptj/85.3.257

37. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*
power 3.1: tests for correlation and regression analyses. Behav Res Methods. (2009)
41(4):1149–60. doi: 10.3758/BRM.41.4.1149

38. Goel A, Taneja U. Mobile health applications for health-care delivery: trends,
opportunities, and challenges. J Public Health. (2023) 31:1–12. doi: 10.1007/s10389-
023-02165-z

39. McLaughlin P. Testing agreement between a new method and the gold
standard—how do we test? J Biomech. (2013) 46(16):2757–60. doi: 10.1016/j.
jbiomech.2013.08.015

40. Sajid A, Abbas H, Saleem K. Cloud-assisted IoT-based SCADA systems security:
a review of the state of the art and future challenges. IEEE Access. (2016) 4:1375–84.
doi: 10.1109/ACCESS.2016.2549047

El-Rajab et al. 10.3389/fspor.2025.1531050

Frontiers in Sports and Active Living 13 frontiersin.org

https://doi.org/10.1016/j.msksp.2022.102711
https://doi.org/10.1016/j.jsams.2016.09.016
https://doi.org/10.1016/j.jsams.2016.09.016
https://doi.org/10.1007/s10916-019-1506-z
https://doi.org/10.2196/35120
https://doi.org/10.1519/JSC.0000000000002344
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1365/s40702-022-00930-4
https://doi.org/10.1093/ptj/85.3.257
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.1007/s10389-023-02165-z
https://doi.org/10.1007/s10389-023-02165-z
https://doi.org/10.1016/j.jbiomech.2013.08.015
https://doi.org/10.1016/j.jbiomech.2013.08.015
https://doi.org/10.1109/ACCESS.2016.2549047
https://doi.org/10.3389/fspor.2025.1531050
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/

	Camera-based mobile applications for movement screening in healthy adults: a systematic review
	Introduction
	Methods
	Protocol and registration
	Eligibility criteria
	Literature search
	Identification and selection of studies
	Data extraction
	Study risk of bias assessment

	Results
	Study selection
	Characteristics of studies
	Limitations of the included studies
	Risk of bias assessment
	Usability and motivation in camera-based movement screening apps

	Discussion
	Comparison with established methods and technological challenges
	Pose estimation frameworks and movement-specific reference standards
	Feedback
	Population

	Limitations
	Conclusions
	Future research
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


