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Purpose: This study introduces two-dimensional (2D) Kernel Density Estimation
(KDE) plots as a novel tool for visualising Training Intensity Distribution (TID) in
biathlon. The goal was to assess how KDE plots, alongside traditional training
metrics, might provide a more detailed understanding of heart rate (HR)
intensity patterns, aiding in the evaluation of training quality and compliance.
Methods: Fifteen elite-level youth biathletes from two national academy
programmes were monitored over 5–6 weeks using HR monitors. Training
sessions were measured via time-in-zone (TIZ) within a five-zone HR model
with any time accumulated below the threshold for Zone 1, considered Zone
0. Sessions were dichotomised into those planned as low-intensity training
(LIT) or those planned with high-intensity training (HIT). KDE analyses were
conducted in MATLAB (Version R2020b) using the “ksdensity” function to
create 2D KDE plots that visualise HR intensity accumulation across each
programme, session type (e.g., Low-intensity training: LIT; High-intensity
training: HIT), and individual athlete responses. Traditional histogram plots and
grouped bar charts were also used for comparison.
Results: For LIT sessions, athletes performed less time in Zone 1 than planned,
while performed time exceeded planned time in Zone 2. For HIT sessions,
performed time in Zone 5 was lower than planned. All sessions contained
unplanned time in Zone 0. The 2D KDE plots provided a continuous and
detailed representation of HR intensity accumulation throughout training
sessions, revealing patterns and intensity fluctuations that complement
traditional TIZ analyses.
Conclusions: 2D KDE plots might serve as a valuable complementary tool for
assessing TID in biathlon, offering a more nuanced and continuous view of HR
intensity. By identifying discrepancies between planned and performed training
intensity, coaches can refine strategies and provide individualised feedback.
Incorporating KDE plots into training monitoring could improve training
alignment, helping reduce overtraining or undertraining risks and optimising
athlete development.
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Introduction

Biathlon is a unique Olympic sport that combines the physically

demanding discipline of cross-country skiing with the technical

precision of marksmanship (1). This dual nature makes biathlon

training particularly complex, as athletes must develop both

exceptional endurance and skiing efficiency alongside the fine

motor skills and mental focus required for accurate shooting. The

sport also demands adaptability, as biathletes navigate varying

terrain and employ different sub-techniques during cross-country

skiing, depending on the conditions and course profile.

Training sessions in biathlon can be broadly categorised into

those conducted with the biathlon rifle (WR) and those without

it (No-Rifle: NR). NR training allows athletes to focus on

developing physiological components, such as cardiovascular

fitness, power, and efficiency in the various sub-techniques on

skis or roller-skis. In contrast, WR training introduces additional

layers of complexity: carrying the rifle alters skiing biomechanics

(2, 3) and increases the physiological demands (4–6), while

shooting practice adds a significant mental load as athletes must

maintain focus and precision under physical fatigue (7, 8).

To optimise training adaptations in biathlon, it is essential to

monitor both the external demands of training, such as duration,

speed, or power, and the corresponding internal responses, which

reflect how the body reacts to these demands (9). Internal

responses are typically measured using physiological and

perceptual markers like heart rate (HR), blood lactate, and

ratings of perceived exertion (9, 10). In biathlon, HR monitoring

is the most commonly used method for prescribing and assessing

training intensity. Sessions are often structured around

predefined HR-based training zones to target specific

physiological adaptations. Low-intensity training (LIT), generally

performed at 60%–80% of HRmax, aims to develop aerobic

capacity through prolonged efforts. In contrast, high-intensity

training (HIT) involves shorter, more intense bouts designed to

improve V̇O₂max, anaerobic capacity, and neuromuscular

efficiency (11).

A widely used framework for prescribing and monitoring HR-

based training is the time-in-zone (TIZ) model, which quantifies

the duration spent in each training zone to describe the overall

training intensity distribution (TID) (12). While TIZ offers a

practical summary of the internal responses to training, this

approach has several limitations. By condensing complex,

continuous time-series data into simplified zone-based

summaries, TIZ may result in the loss of valuable information

about session dynamics (13). Moreover, aggregating separate

constructs of external demand and internal response into a single

summary metric can mask meaningful differences in how

athletes respond to different training stimuli (14–16). As a result,

two sessions with identical TIZ profiles may impose very

different physiological loads (14, 17) particularly when intensity

fluctuates between higher and lower zones rather than

maintaining a stable, continuous effort. These fluctuations can

stem from unstable internal conditions, such as a drift from low-

intensity training (LIT) to high-intensity training (HIT) zones.

However, they more commonly arise from external factors, such

as terrain variations, which require increased effort on inclines

and reduced effort on descents. These terrain-driven intensity

shifts are particularly relevant in real-world settings and can lead

to unintended training stimuli, despite apparent compliance with

the planned duration. This underscores the need for more

nuanced tools to assess session execution and overall

training quality.

To address these gaps, two-dimensional (2D) Kernel Density

Estimation (KDE) plots have been introduced as a novel tool for

visualising the interplay between external demands and internal

responses in endurance sports, such as speed skating (17). KDE

is a statistical technique that estimates the probability density

function of continuous data, allowing for a more nuanced

representation of the coupling of external demand and internal

response (18). When used alongside traditional analyses, KDE

might enhance training monitoring by providing deeper insights

into how training intensities are distributed over time and

whether the execution aligns with intended training prescriptions.

Training quality is central to this process. Sandbakk et al. (19)

describe a circular learning model for continuous improvement, in

which quantitative measures of training quality assess the

alignment between intended and executed training intensity. This

includes how physiological markers, such as HR, deviate from

planned targets. When combined with qualitative assessments of

training execution, such measures provide a more holistic

approach to evaluating training effectiveness.

Considering this, the purpose of this study is to explore the use

of 2D KDE plots as a complementary tool for visualising TID

within biathlon training programmes. By visualising TID using

KDE-derived insights along with traditional TIZ metrics, this

study aims to demonstrate how KDE might provide a more

detailed representation of TID. In doing so, KDE analyses could

offer a novel complementary approach to assessing training

quality and compliance, thereby helping coaches better align

performed training with planned training, optimising training

prescriptions and enhancing athlete performance.

Methods

Participants

Fifteen elite-level youth biathletes (age 16–19 years) across two

separate biathlon academy programmes (Programme 1: n = 6;

Programme 2: n = 9) volunteered to participate in this study. All

athletes were a part of a specialised biathlon youth academy

school programme and therefore classified as Tier 3 level athletes

according to the sports participant classification framework (20).

The Swedish Ethical Review Authority (Dnr: 202202826-01)

preapproved the research techniques and experimental protocols.

All participants provided written informed consent and agreed to

participate in this study. All research was conducted in

accordance with the Code of Ethics of the World Medical

Association (Declaration of Helsinki).
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Design

Training blocks from the two separate biathlon academy

programmes were monitored, making up two out the six

specialised biathlon youth academy programmes in Sweden.

Training blocks for both academy programmes were monitored

during similar periods of the season (February/March;

competition phase). Over a 5–6-week training block, athletes

wore HR monitors sampling at 1 Hz (Programme 1: H10, Polar,

Finland; Programme 2: Movesense, Model: HR2, Finland) during

all coach-planned training sessions, to objectively measure the

athletes’ internal responses. In Programme 1, data were collected

from 13 distinct training sessions, resulting in 60 individual

training session observations across 6 athletes. The number of

sessions contributed per athlete ranged from a minimum of 4 to

a maximum of 13. In Programme 2, data were collected from 26

training sessions, yielding 63 individual training session

observations from 9 athletes. Individual contributions ranged

from 1 to 14 sessions per athlete.

The coaches’ plan for training sessions were collected through an

online training platform. This information included a plan of duration

within a five-zone HR-based exercise intensity model used by the

Swedish Biathlon Federation (21) (Table 1), in addition with the

total planned training time. For example, a LIT session might be

prescribed as “90 min in Zone 1,” while a HIT session could be

planned as “20 min in Zone 4 and 60 min in Zone 2.”

Data analyses

HR data were initially trimmed to include only data captured

from the beginning to the end of the training sessions. For

training sessions that involved rifle shooting, the rifle “zeroing”

portion of the training session was excluded. HR data from each

training session were subsequently extracted and calculated as a

proportion of the individual’s most recently reported maximum

HR (%HRmax) and rounded to the nearest whole number. This

permitted the definition of individualised training zones for each

athlete, based upon their percentage of maximum HR, as

outlined in Table 1. HR values falling below the lower threshold

for Zone 1 were categorized as Zone 0, indicating activity below

the aerobic training range.

Training sessions were dichotomised into those planned as

low-intensity training (LIT) or those planned with high-intensity

training (HIT). Moderate-intensity sessions were not included as

a category due to the lack of sessions planned with zone 3

efforts. As such, LIT was defined as any training session planned

within only HR zones 1 and 2 and had session goals of

continuous, endurance-based exercise. HIT was defined as any

training session that involved any planned duration within HR

zone 3 or higher and were interval-based training sessions.

Additionally, training sessions were categorised as those planned

either no-rifle (NR) or with-rifle (WR). NR training sessions did

not involve rifle carriage or shooting and was XC skiing training

only. WR training sessions involved rifle carriage during XC

skiing and shooting training combined with XC skiing.

Statistical analyses

KDE analyses were performed in MATLAB (Version R2020b,

The MathWorks Inc) using the “ksdensity” function, applying a

kernel bandwidth as a smoothing parameter (22, 23). Two-

dimensional (2D) KDE heatmaps were generated to visualise the

distribution of time spent at each unique %HRmax value,

expressed as a proportion of total session duration (e.g., %

session time spent at 70%, 71%, 72%, etc.). Warmer colours in

the heatmaps (i.e., yellow and red) indicate high density at that

particular combination of % session time and %HRmax, meaning

that particular combination occurred frequently. Conversely,

cooler colours (i.e., blue) represent lower density regions,

meaning that particular combination occurred infrequently.

White regions indicate that those combinations of % session time

- %HRmax did not occur. These 2D KDE visualisations were used

at three levels: (1) individual level – to highlight intra-athlete

variability; (2) session-type level (LIT-WR, LIT-NR, HIT-WR,

HIT-NR); and (3) programme-level overview. To improve

interpretability and ensure that plots reflect only observed data,

KDE heatmaps were capped (i.e., truncated) at the maximum

observed values on both axes: %HRmax (y-axis) and time (% of

session) (x-axis). To reduce visual complexity in the KDE

heatmaps and maintain readability across figures, numerical

values were intentionally omitted from the x-axis. Including these

values would have resulted in inconsistent axis limits across plots

—since maximum proportional time accumulated at any given %

HRmax varies by session type and athlete—which could cause

confusion and distract from the primary visual message. The

purpose of the KDE plots is to highlight patterns of intensity

distribution over time rather than to convey precise timing,

which is instead provided in the accompanying histograms and

TIZ plots. These complementary visualisations present the same

data with numeric axes, allowing the reader to contextualise the

relative timing information as needed.

Importantly, these KDE plots serve as descriptive and visual

tools, intended to demonstrate a novel approach for representing

training intensity distribution (TID) on a continuous scale. No

inferential statistics were applied to compare training quality or

compliance across groups or athletes. We explicitly caution

against overinterpreting group-level KDE plots, as the unequal

number of training sessions and varying data contributions

TABLE 1 The five exercise intensity zones used by the Swedish
biathlon federation.

Zone Heart rate
(%max)

Expected
RPE

Expected blood
lactate (mmol·L−1)

1 54–<73 10–14 <1.2

2 73–<83 14–16 1.2–<2.0

3 83–<88 16–18 2.0–<3.6

4 88–<93 18–19 3.6–<5.7

5 ≥93 19–20 >5.7

RPE, rating of perceived exertion.

Staunton et al. 10.3389/fspor.2025.1546909

Frontiers in Sports and Active Living 03 frontiersin.org

https://doi.org/10.3389/fspor.2025.1546909
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


across athletes can introduce bias and obscure individual patterns.

This limitation is acknowledged in the discussion and further

motivates the inclusion of individual-level KDEs.

To complement the 2D KDE heatmaps, one-dimensional

(1D) KDE plots were also generated and displayed alongside

histograms to present the frequency distribution of %HRmax in

a more traditional format, using both discrete bins and

continuous density estimates. These support the interpretation

of time spent in various HR zones. Finally, grouped bar charts

were included to compare planned vs. performed time-in-zone

(TIZ) data.

Results

Training sessions

Programme 1 included 21 LIT-WR sessions (planned

duration: 93 ± 61 min); 20 LIT-NR sessions (planned duration:

126 ± 38 min); 19 HIT-WR sessions (planned duration:

83 ± 5 min); and 0 HIT-NR sessions. The average planned and

performed TIZ for all athletes across all training-session types

for Programme 1 are shown in Figure 1. In all LIT sessions

(WR and NR), athletes performed less time in Z1 than planned,

while performed time exceeded planned time in Z2. In HIT

sessions, performed time in Z5 was lower than planned. All

sessions contained unplanned time in Z0.

Programme 2 included 11 LIT-WR sessions (planned

duration: 93 ± 22 min); 34 LIT-NR session (planned duration:

107 ± 21 min); 12 HIT-NR session (planned duration:

93 ± 11 min); and 6 HIT-WR sessions (planned duration:

85 ± 8 min). The average planned and performed TIZ for all

athletes across all training-session types for Programme 2 are

shown in Figure 2. As with Programme 1, across all session

types, athletes performed less time in Z1 than planned, while

performed time exceeded planned time in Z2. In HIT sessions,

performed time in Z5 was lower than planned. All sessions

contained unplanned time in Z0.

Two-dimensional kernel density estimation

Individual-level visualisation
Figure 3 presents continuous 2D KDE plots (top row), 1D

KDE with corresponding histogram (middle row), and

planned vs. performed TIZ (bottom row) for four

individual athletes who were prescribed the same LIT-WR

training session (Programme 1; planned 90 min in Z1).

Despite identical training prescriptions and environmental

conditions, HR distributions varied considerably among

individuals. All athletes accumulated significant time in Z1

as planned; however, despite no scheduled time in Z0 or

Z2, all spent some time in these zones, with Athlete 2

extending into Z3 and Z4 (Note: Athlete 3 failed to

FIGURE 1

Average (± standard deviation – error bars) planned (blue) and performed (red) time in zone for all athletes for each session type for biathlon academy
programme 1. LIT, low-intensity training; HIT, high-intensity training; Z0 = <54; Z1 = 54–<73; Z2 = 73–<83; Z3 = 83–<88; Z4 = 88–< 93; Z5 =≥93 (all
represent %HRmax).
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complete the full session, completing only 49 min of the

prescribed 90 min).

Visualisation of TID between training session types
Figures 4, 5 visualise the TID for each specific

training session type (LIT-NR, LIT-WR, HIT-NR, HIT-

WR) for both biathlon training programmes using continuous

2D KDE plots (top row), 1D KDE with corresponding

histogram (middle row), and planned vs. performed TIZ

(bottom row).

Visualisation of programme-level TID

Figure 6 visualises the distribution of session intensity across all

training sessions for biathlon programme 1 (Figure 6A) and

programme 2 (Figure 6B) using 2D KDE plots, where %HRmax is

plotted against the accumulated session duration as a proportion

of total session time. Figure 6 illustrates that the 2D KDE plots

reveal a more detailed visualisation of the training

session intensity distributions compared with the TIZ plots

(Figures 1, 2). For example, it can be observed that both

programmes experience similar TID patterns, with the majority of

training session duration spent at intensities corresponding with

high-Z1/Z2, a tapering density at high intensities (Z4-Z5) but

with a clear difference in the accumulated time at low intensity

(Z0), where programme 2 has higher accumulated time in Z0.

Discussion

This study introduced two-dimensional Kernel Density

Estimation (2D KDE) plots as a novel and complementary tool

for visualising training intensity distribution (TID) across three

levels: the individual level – to highlight inter-individual

variability in training patterns; the session-type level – to

examine typical intensity distributions within different session

formats; and the programme level – to provide an overarching

view of intensity allocation across the full training block.

Importantly, the aim of this study was to present a novel

visualisation method for examining TID patterns—not to assess

training quality or compliance in this specific population.

However, by integrating KDE with traditional training metrics,

this approach might offer a more detailed assessment of training

quality, revealing whether sessions were performed as intended.

Coaches and athletes might be able to use these insights to

evaluate alignment between planned and executed training,

identify deviations that may impact adaptation, and refine

training prescriptions to optimise performance outcomes.

Individual response level

The combination of KDE plots, histograms, and TIZ analyses

offers a comprehensive visualisation of how training intensity was

FIGURE 2

Average (± standard deviation – error bars) planned (blue) and performed (red) time in zone for all athletes for each session type for biathlon academy
programme 1. LIT, low-intensity training; HIT, high-intensity training; Z0 = <54; Z1 = 54–<73; Z2 = 73–<83; Z3 = 83–<88; Z4 = 88–<93; Z5 =≥93 (all
represent %HRmax).
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planned and executed. For example, Figure 3 depicts the TID for

four different athletes who were prescribed the same LIT-WR

training session (Programme 1: planned time 90 min Z1).

Despite identical training prescriptions and environmental

conditions, HR distributions varied considerably among

individuals. All athletes accumulated significant time in Z1 as

planned; however, despite no scheduled time in Z0 or Z2, all

spent some time in these zones. Athlete 1 exhibited a high-

density heat spot in the middle of Z1 (as per planned training)

but also along the Z0–Z1 boundary, suggesting frequent

transitions between these zones, and the high-density heat spot

extending in Z2. This might indicate poor pacing during

undulating terrain where the athlete struggled to stay within Z1

during uphill and downhill sections. For example, high-level

coaches have discussed that it may be necessary to move into

Z2 HR to maintain good technique on uphill sections (24).

Additionally, shooting practice likely contributed to the

unplanned higher-density heat spot visible in Z0. In contrast,

Athlete 2 displayed a bimodal distribution with a primary high-

density heat spot on the upper border of Z1 but a secondary

heat spot in the lower left of the plot, suggesting an initial phase

at very low intensities and/or un-planned recovery periods. This

athlete accumulated the least time in Z0 but spent the longest

duration in Z2 and Z3. Athlete 3 accumulated most of their

training time in the lower portion of Zone 1. The main heat spot

extended into Zone 0, indicating a significant amount of time

spent at low intensity. Despite completing only 49 of the

prescribed 90 min, Athlete 3 accumulated over 10 min in Zone 0,

the longest duration observed in this zone. A secondary, less

prominent heat spot appeared in Zone 2, suggesting a brief

period of higher-intensity effort. Athlete 4 demonstrated a more

dispersed distribution of HR data, ranging from Z0 to Z2 but

centred in Z1, reflecting greater variability while still aligning

with the intended training intensity.

Taken together, these findings highlight notable inter-

individual differences in HR responses, even when prescribed the

same structured training session and the same external

environmental conditions, emphasising the potential influence of

physiological and behavioural factors on training execution.

Beyond a single session, the individual-level HR responses can

also be applied on a larger scale to help evaluate training execution

at the session-type and programme levels. By aggregating

individual responses across multiple sessions, it becomes possible

to compare how different athletes execute the same session type

or even how they perform throughout an entire training

programme. This allows for a more detailed comparison of

training execution, identifying whether certain athletes

consistently struggle to maintain prescribed intensities or

FIGURE 3

Individual session intensity plots for a single low-intensity & with-rifle session. The top row shows continuous two-dimensional (2D) Kernel Density
Estimation (KDE) plots, illustrating the accumulated time spent at each unique %HRmax level over the course of the session. The x-axis represents the
percentage of total session time (%), and the y-axis shows %HRmax. Warmer colours (e.g., red and yellow) indicate higher probability density, i.e., where
more accumulated time is concentrated at a given intensity, while cooler colours (e.g., blue and green) reflect lower probability density. Dashed
horizontal lines represent the boundaries of predefined heart rate training zones. To ensure the plots reflect only observed data, the axes are
capped at the maximum observed %HRmax (y-axis) and maximum accumulated time at any given %HRmax level (x-axis). The middle row presents
one-dimensional (1D) KDE plots overlaid on histograms, showing the frequency distribution of accumulated time within discrete %HRmax bins. This
provides a more traditional, discrete perspective on training intensity distribution while also including the smoothed probability density estimate.
The bottom row presents grouped bar charts comparing planned vs. performed time-in-zone (TIZ).
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whether they frequently exceed or underperform in specific

HR zones.

For example, at the session-type level, coaches or sports

scientists could use these KDE plots to assess whether athletes

tend to spend too much time in lower (Z0, Z1) or higher (Z2,

Z3) zones, deviating from the intended intensity. This could

highlight issues such as pacing difficulties, insufficient recovery,

or even an athlete’s unplanned fatigue accumulation. Similarly,

across a training programme, the cumulative data could reveal

trends over time, such as consistent deviations or improvements

in maintaining the prescribed intensity, providing valuable

insights into the athlete’s adaptation to training.

Session-type level

Across both biathlon academy programmes, training

prescriptions for each session type were generally similar, and the

execution followed comparable patterns. For instance, LIT-WR

sessions (Figures 4A, 5A) were primarily prescribed in Z1, with a

smaller proportion in Z2, and no planned training in Z0 or

Z3–Z5. The KDE plots for these sessions illustrate a bimodal

intensity distribution, with the majority of training time

accumulating at 70%–80% HRmax (borderline Z1/Z2), and a

secondary, lower-intensity peak in Z0. This bimodal pattern is

confirmed by the histograms, which highlight that the majority

FIGURE 4

Session intensity plots for programme 1. The top row presents continuous two-dimensional (2D) Kernel Density Estimation (KDE) plots, illustrating the
proportion of total session time spent at each unique %HRmax value across session types (LIT-NR, LIT-WR, HIT-WR; note: no HIT-NR sessions were
performed in programme 1). Warmer colours (e.g., red and yellow) indicate higher probability density—i.e., more frequent occurrences of that specific
%session time–%HRmax combination. Cooler colours (e.g., blue) indicate lower density, and white regions represent combinations of %session time
and %HRmax that were not observed. Dashed horizontal lines mark the boundaries of predefined heart rate training zones. To ensure plots reflect only
observed data, axes are capped at the maximum observed %HRmax (y-axis) and maximum accumulated session time at any given %HRmax value
(x-axis). The middle row presents one-dimensional (1D) KDE plots overlaid on histograms, showing the frequency distribution of accumulated time
within discrete %HRmax bins. This provides a more traditional, discrete perspective on training intensity distribution while also including the
smoothed probability density estimate. The bottom row presents grouped bar charts comparing planned vs. performed time-in-zone (TIZ) as a
percentage of total session duration. LIT-WR = 21 sessions from 6 athletes (min: 1; max 5); LIT-NR = 20 session from 6 athletes (min: 1; max: 5);
HIT-WR = 19 sessions from 6 athletes (min: 1; max 5). Group-level analyses may be more influenced by some individuals who contributed more
session data than others.

Staunton et al. 10.3389/fspor.2025.1546909

Frontiers in Sports and Active Living 07 frontiersin.org

https://doi.org/10.3389/fspor.2025.1546909
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


of the training time is spent in the 70%–80% HRmax bin. However,

the histogram also suggests some distribution into the 80%–90%

HRmax bin, though much of it is likely within the 80%–83%

HRmax range—still within Z2, not Z3. While no training time

was explicitly planned for Z0, its presence might be reasonably

expected due to the inclusion of shooting practice in WR

sessions, pointing to the possibility that this factor is not always

accounted for in training prescriptions.

In contrast, LIT-NR sessions (Figures 4B, 5B), designed for

continuous low-intensity endurance, also display a bimodal

distribution. Ideally, a well-executed LIT session would show a

single high-density heat spot in the low-intensity zones (Z1–Z2),

with minimal or no time spent in higher intensity zones

(Z3–Z5). The presence of deviations from this pattern, such as

time spent in Z3–Z4 or excessive time in Z0, could indicate

issues such as difficulty maintaining intensity due to terrain,

pacing difficulties, or environmental factors that influence

intensity control. The KDE plots here offer a visual

representation of these potential deviations, which might

otherwise be overlooked in summary statistics.

For HIT sessions, KDE plots are expected to display distinct

peaks corresponding to alternating high-intensity work intervals

and low-intensity recovery periods. According to the planned

training, high-density heat spots would be expected in Z3–Z5

during work intervals and in Z1 during recovery, with minimal

time spent in Z2. Deviations from this expected pattern, such as

a lack of clear separation between work and recovery intervals or

an accumulation of training time in Z2 instead of Z4/Z5, can be

visualised in the KDE plots.

The “regression toward the mean” pattern is a well-

documented training error among endurance athletes, where

high-intensity sessions are performed at a lower intensity than

intended, while low-intensity sessions drift too high (25). Similar

discrepancies between planned and executed training intensity

have been observed across various sports, including endurance

sports such as cycling (26) and swimming (27) and team sports,

like basketball (28) and tennis (29).

A key factor influencing recovery is rifle carriage (WR).

Figures 4C, 5C depict the TID for HIT-WR sessions. Here it is

apparent that WR limits recovery, as indicated by the lack of a

FIGURE 5

Session intensity plots for programme 2. The top row presents continuous two-dimensional (2D) Kernel Density Estimation (KDE) plots, illustrating the
proportion of total session time spent at each unique %HRmax value across session types (LIT-WR, LIT-NR, HIT-WR, HIT-NR). Warmer colours (e.g., red
and yellow) indicate higher probability density—i.e., more frequent occurrences of that specific %session time–%HRmax combination. Cooler colours
(e.g., blue) indicate lower density, and white regions represent combinations of %session time and %HRmax that were not observed. Dashed horizontal
lines mark the boundaries of predefined heart rate training zones. To ensure plots reflect only observed data, axes are capped at the maximum
observed %HRmax (y-axis) and maximum accumulated session time at any given %HRmax value (x-axis). The middle row presents one-dimensional
(1D) KDE plots overlaid on histograms, showing the frequency distribution of accumulated time within discrete %HRmax bins. This provides a more
traditional, discrete perspective on training intensity distribution while also including the smoothed probability density estimate. The bottom row
presents grouped bar charts comparing planned vs. performed time-in-zone (TIZ) as a percentage of total session duration. LIT-WR = 11 sessions
from 5 athletes (min: 1; max 5); LIT-NR = 34 session from 8 athletes (min: 1; max: 9); HIT-NR = 12 sessions from 6 athletes (min: 1; max: 3); HIT-
WR= 6 sessions from 3 athletes (min: 1; max 3). Group-level analyses may be more influenced by some individuals who contributed more session
data than others.
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bimodal pattern. Instead of bimodal heat spots between Z1 and Z4

(as per the training plan), the KDE density extends downward

through Z3 and Z2, which might indicate that HR remains

elevated during recovery periods but also represents natural

physiological HR recovery from intervals. Furthermore, in both

LIT and HIT sessions, WR conditions shift the HR distribution

upward compared to NR conditions, extending previous research

findings that indicate rifle carriage not only elevates HR but also

reduces recovery periods (2, 4, 5). This effect likely increases

overall session intensity and physiological strain, influencing how

training sessions are executed relative to their intended TID.

In summary, the KDE plots might offer a novel and

complementary tool for visualising TID at the session-type level.

By providing a detailed, real-time snapshot of how training is

executed relative to planned intensities, these plots allow coaches

and athletes to identify patterns and deviations that may not

be immediately apparent through traditional metrics. This

visualisation tool can help enhance the understanding of TID,

offering a more dynamic and individualized approach to

monitoring and refining training strategies.

Programme level

At the programme level, the 2D KDE plots (Figure 6) offer

valuable insights into the overall distribution of time spent across

various %HRmax intervals for all training sessions within each

biathlon academy programme. For example, Programme 2

displays a notable accumulation of time in Z0, which is

particularly prominent in the KDE plots. This finding is

intriguing, especially given the lower proportion of HIT and WR

sessions in Programme 2, as these session types typically involve

some time in Z0, even if not explicitly planned. A possible

contributing factor is the elevation difference between the

shooting ranges in the two programmes: in Programme 1, the

shooting range was located at a lower elevation, while in

Programme 2, it was situated at a higher elevation. This elevation

difference may influence recovery periods, impacting TID and

providing a further dimension for coaches to consider when

prescribing and monitoring training.

From a broader perspective, KDE plots provide a

complementary tool for assessing the alignment of training

execution with the intended TID models across programmes. In a

“polarized” training programme, the KDE plot should exhibit a

distinct bimodal distribution, reflecting the characteristic division

between LIT and HIT, with minimal time spent in moderate-

intensity zones. In contrast, Figure 6 visualises the typical TID of

a “pyramidal” training programme, where the KDE plot presents a

gradual distribution of time across intensities. Both programmes

display high-density heat spots in the lower-intensity zones

(Z1–Z2), moderate density in the mid-intensity zone (Z3), and a

tapering density in the high-intensity zones (Z4–Z5).

These visualisations offer a comprehensive tool for

coaches, enabling them to assess not only how training

FIGURE 6

Two-dimensional kernel density estimation plots illustrating training intensity distribution for both biathlon training programmes. Continuous two-
dimensional (2D) Kernel Density Estimation (KDE) plots, illustrating the proportion of total training time across all training sessions at each unique
%HRmax value for biathlon academy programme 1 (Panel A) and programme 2 (Panel B). Warmer colours (e.g., red and yellow) indicate higher
probability density—i.e., more frequent occurrences of that specific %session time–%HRmax combination. Cooler colours (e.g., blue) indicate lower
density, and white regions represent combinations of %session time and %HRmax that were not observed. Dashed horizontal lines mark the
boundaries of predefined heart rate training zones. To ensure plots reflect only observed data, axes are capped at the maximum observed %HRmax

(y-axis) and maximum accumulated session time at any given %HRmax value (x-axis).
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sessions are executed but also how they compare across

different programmes. By using KDE plots to monitor TID,

coaches can identify areas for improvement in training

execution, fine-tune prescriptions, and ultimately ensure

that training is aligned with the planned intensity model.

This approach can help reduce discrepancies between the

prescribed and performed TID, enhancing the overall

quality of the training programme and contributing to more

effective training adaptations.

Practical applications – implications
for training monitoring

This study illustrates the use of 1D and 2D KDE plots as

a complementary tool for visualising TID in biathlon. The 1D

KDE plot shows the estimated density of a single variable

(i.e., %HRmax), while the 2D KDE plot estimates the joint

density of two simultaneous variables (i.e., the combination

of %HRmax and %session time). When used alongside

traditional metrics like TIZ analyses, KDE plots offer a

more detailed, continuous view of HR magnitude and

duration for individuals, training session types and

training programmes.

Unlike TIZ or histogram-based methods, which divide HR data

into fixed zones, KDE plots show intensity as a smooth, continuous

distribution. This enables a more nuanced understanding of how

training intensity fluctuates throughout a session and might

reveal patterns that could otherwise be missed.

KDE plots could be particularly useful as a complementary tool

for coaches aiming to evaluate and fine-tune training execution.

They can help to:

• Support individualised feedback: Compare how different

athletes respond to training and adjust future

prescriptions accordingly. Individual-level analyses should

be completed on single training sessions and also on

combined data from all sessions of a given type. This

could be extended across the individual’s total training

across all session types to provide the best feedback

regarding training alignment.

• Identify mismatches between planned and performed sessions:

Detect deviations from intended TID in specific session types

(e.g., LIT vs. HIT, WR vs. NR).

• Assess programme-level TID patterns: For example, verify

whether a program follows a polarized or pyramidal model by

visualising time spent in low, moderate, and high

intensity zones.

By integrating KDE plots into the circular learning process

described by Sandbakk et al. (19), coaches could make data-

informed adjustments to improve training alignment and quality

over time. Thereby, KDE plots offer a novel approach which

might help reduce the risk of unintentional over- or under-

training., ultimately supporting better decision-making and

enhancing athlete development.

Limitations and perspectives

The intensity distribution patterns displayed in this study are

based purely upon internal responses (i.e., HR). It is important

to consider that such responses are subject to delayed

responsiveness to changes in intensity due to physiological lag

(6). Conversely, analysis of the TID patterns based upon external

demand might produce a different TID pattern. In fact, previous

research has shown that TID can vary when measured as

external demand (power output) or internal response (HR) (30).

Despite these known limitations, internal responses (HR) were

measured in this study because this approach remains the most

common approach to training intensity quantification in

biathlon. Although estimates of power output are possible using

wearable sensor technology, these approaches are not commonly

adopted in practice.

Additionally, an important consideration is that the group-level

analyses presented in the present study may be more influenced

by some individuals who contributed more session data than

others. No weighting or normalisation procedures were applied

to balance contributions from each athlete. Individual-level

contributions should be more carefully controlled in future

applications of this method, particularly in studies aiming to

compare training strategies or outcomes across groups. However,

it was not the aim of this research to evaluate training

compliance or quality but rather to present a novel method to

visualise TID, which, in turn, might help to evaluate these factors.

Finally, the small sample size used in this study limits the

generalisability. Future research with a larger and more diverse

group of athletes can help to further validate these insights and

enhance their applicability to broader populations.

Conclusion

This study demonstrates that 1D and 2D KDE plots could offer

a complementary approach to traditional methods of visualising

training demands. While traditional metrics like TIZ or

histograms focus on summarising data into discrete bins, KDE

plots provide a continuous representation of HR variations across

training sessions. This added layer of detail might allow coaches

to gain a deeper understanding of TID, enabling data-informed

adjustments to improve training alignment and quality. By

incorporating KDE plots alongside existing tools, coaches could

enhance their ability to match performed training with the

planned intensity, helping to reduce the risks associated with

overtraining or undertraining. Ultimately, KDE plots have

potential to serve as a valuable complement to traditional

training metrics, providing a more comprehensive view of TID.
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