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Muscle fascicle length
adaptations to high-velocity
training in young adults with
cerebral palsy
Tessa L. Gallinger1,2, Brian R. MacIntosh1 and Jared R. Fletcher1,3*
1Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,
2Canadian Paralympic Committee, Ottawa, ON, Canada, 3Department of Health and Physical
Education, Mount Royal University, Calgary, AB, Canada
Introduction: In individuals with Cerebral Palsy (CP), both muscle cross-
sectional area and fascicle length are reduced, contributing to decreased
muscle strength, muscle shortening velocity and muscle mechanical power
output, particularly in the plantarflexor muscles. A proposed mechanism to
target increased muscle mechanical power output is to incorporate high
velocity training (HVT) in these individuals, to increase fascicle length
via sarcomerogenesis. To determine the effects of HVT on changes in MG
muscle fascicle length and that impact on changes to MG muscle force-
length-velocity-power characteristics in young adults with CP.
Methods: 12 young adults with CP (GMFCS I or II, 22.8 ± 6.0 years) were
randomly allocated (some crossover) to no training (CP-NT, n= 8), or training
(CP-T, n= 8). 10 recreationally trained healthy adults (HA, 22.5 ± 2.8 years)
served as controls. CP-T performed 10-week training of biweekly sessions
consisting of progressive intensity 10 m sprints, plyometrics and agility tasks.
Triceps surae muscle force-power-velocity relationships were quantified with
isokinetic dynamometry and ultrasound imaging. Data are expressed relative to
pre-intervention values.
Results: HVT resulted in a significant increase in fascicle length in CP-T
(+1.92 ± 3.21 mm, p < 0.005) compared to a significant decrease in CP-NT
(−1.63 ± 3.00 mm, p < 0.013). While HVT did not result in significant changes in
maximal shortening velocity (Vmax) or maximal peak power output (Pmax), a
large effect size for vmax following training in CP-T was seen (+45.2 ± 76.4%,
d= 0.909, p=0.452), in contrast to CP-NT (+2.9 ± 70.5%, d= 0.059, p= 1.00).
HVT also resulted in a very large effect for Pmax in CP-T (+35.0 ± 49.1%,
d= 1.093, p=0.232), but only a small effect was observed in CP-NT
(+7.8 ± 49.1%, d= 0.245, p= 1.00). HA had significantly greater Pmax

(p < 0.001), longer resting and active fascicle lengths (p < 0.001) and greater
muscle force (p < 0.001), compared to CP-T.
Discussion: HVT is a feasible training intervention to increase triceps surae
muscle fascicle length in individuals with CP. HVT can partially mitigate losses
in Pmax in CP compared to healthy adults. Longer HVT programs may be
required to increase muscle mechanical power output in CP to levels
observed in HA.
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1 Introduction

Successful sport performance is largely dependent on

production of muscular power, or an ability to achieve maximal

force generation at high muscle shortening velocities. Muscular

power is influenced by specific muscle-tendon properties that can

be optimized through targeted training interventions. For

individuals with cerebral palsy (CP) to compete at a high level in

sport, it is critical to train in ways that enhance muscle

architectural properties, leading to functional improvements. Due

to an upper motor neuron lesion, individuals with CP present

with a series of permanent movement disorders and secondary

adaptations to muscle structure, function and composition1. This

includes impaired muscle growth as early as 12 months after

birth, impacting overall muscle volume (1). A reduced muscle

volume may result from shorter muscle fascicle lengths and/or

smaller physiological cross-sectional area (PCSA) (2), reducing

the number of sarcomeres working in series and/or in parallel.

While a muscle’s PCSA is directly related to its force output,

muscle length is an important determinant of a muscle’s

maximal shortening velocity (3). In CP, shorter muscle fascicle

lengths have been found, compared to those of healthy adults

(HA) without a neurological disorder (4, 5), where it appears

that serial sarcomere number is reduced and/or longer sarcomere

lengths are also present (6–8). These differences in muscle

structure can contribute to muscle weakness, limited range of

motion (ROM) and increased passive stiffness in even high

functioning individuals with CP (9).

The muscle weakness observed in CP is typically more

prevalent and pronounced in the distal muscle groups (10),

adversely affecting ambulation. Specifically, reduced preferred

and fast walking speeds, which have been correlated with

decreased muscle strength, rate of force development and

mechanical power generation at the ankle joint in CP (11–14).

Increasing plantarflexor power may contribute to a greater

velocity of the centre of mass at the end of the propulsive phase

of running and jumping, as well as improving ambulation in CP

(13, 14). A proposed mechanism to target improvements in

muscular power, is to incorporate strength training with

relatively high velocity contractions, with the intent to increase

the number of sarcomeres in series (15). This process is referred

to as sarcomerogenesis, where an increase in number of

sarcomeres within a muscle fascicle, can generate a higher

relative force for a given muscle shortening velocity (13, 16).

Although it is now well understood that maximal effort and

high-intensity exercise can be implemented safely, and without

adverse effect on muscle spasticity (14, 17–20), studies

incorporating high-velocity training (HVT) are limited. To date,

only two studies have evaluated changes in fascicle length with

HVT for people with high-functioning CP (Gross Motor

Classification, GMFCS I-III) (13, 21). Moreau et al. (2013)

observed increases in rectus femoris fascicle length, but not in

the vastus lateralis muscle, following progressive isokinetic

training at angular velocities of 30–120°•s−1. These slow

movement velocities cannot be considered within our definition

of true HVT (or sport-specific training velocity) as a comparison,
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individuals without a neurological disorder can reach knee

extension velocities of 800°•s−1 during the push-off phase of a

jump (22), and approximately 600°•s−1 during mid-stance sprint

running (23, 24). Alternatively, Gillet et al. (2018) did include

maximal short-distance sprint training (HVT), but this study

reported no changes to medial gastrocnemius fascicle length

following the intervention (21). Both studies did, however,

observe increases in maximal strength, muscle power and total

muscle volume, indicating a positive effect of resistance training

on muscle cross-sectional hypertrophy in CP.

There appears to be potential to improve functional mobility

of individuals with CP, as well as potential to change muscle

architecture with training. However, the literature on

sarcomerogenesis and/or use of HVT in CP is still limited,

constraining our ability to prescribe specific and targeted

training protocols. Additionally, a majority of studies have

concentrated their assessments of function on joint moment

data in CP, leaving gaps in our understanding of the specific

skeletal muscle mechanical properties adaptations from

exercise. Understanding how changes in fascicle length can

alter the muscle’s force-length and force-power-velocity

relationships is critical to our understanding of how muscle

mechanics influence movement and performance in

individuals with CP. If mechanical power is to be maximized,

then muscles should operate on the plateau of the force-length

and the power-velocity curves (25). This knowledge could

inform targeted training interventions in this population to

optimize muscle function and improve muscle power output.

In clinical situations, information about force-length and

force-velocity properties could be used to determine the

amount of muscle or tendon elongation is required to improve

plantarflexion function during ambulation (26, 27). Therefore,

the primary purpose of this study was to determine the effects

of HVT on changes in MG muscle fascicle length and that

impact on changes to MG muscle force-length-velocity-power

characteristics in young adults with CP. We hypothesized that

HVT would lead to increases in resting fascicle length and

translate to increased triceps surae muscle power output.
2 Materials and methods

2.1 Participants

12 ambulatory participants with CP and 10 recreationally

trained young healthy adults (HA) without a neurological

disorder participated in this study. Participant characteristics can

be found in Table 1. All participants were injury-free and had no

lower limb surgery or botulinum neurotoxin A (Botox) injections

within 6 months prior to the testing. Individuals training 3 or

more times per week were defined as recreationally active (n = 8),

and those who were identified as sedentary (n = 4) were not

meeting Canada’s Physical Activity Guidelines within the last 6

months. HA participants included those who were participating

in sprint-agility training 3 or more times per week.
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TABLE 1 Participant characteristics.

Group n Male/female Age Height Mass Diplegia/Hemiplegia GMFCS

(n) (years) (m) (kg) (n) (n)
HA 10 4/6 22.5 ± 2.8 1.67 ± 0.09 67.8 ± 8.8 n.a. n.a.

CP 12 8/4 22.8 ± 6.0 1.65 ± 0.11 61.9 ± 12.8 6/6 7 I, 5 II

Values are mean ± SD.

Abbreviations: n, number of participants; HA, healthy adults; CP, cerebral palsy; GMFCS, gross motor classification scale; GMFCS I, Ambulatory—no assistance; GMFCS II, Ambulatory—some

assistance for long distances;m, meters; kg, kilograms.

FIGURE 1

Flowchart depicting a cross-over design for the two-part study. Dashed line indicates the flow for pre and posttest assessments in the training group
(CP-T), with a cross-over to the no-training intervention (CP-NT). Dotted line indicates CP-T comparison to HA. CP, cerebral palsy; NT, no training; T,
training; HA, healthy adults.
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2.2 Interventions

To test the hypothesis that relatively high movement velocity,

which we term “high velocity training” (HVT) here, would alter

muscle architecture and muscle mechanical properties, the CP

participants (n = 12) were randomly allocated in a cross-over

design to either no training (CP-NT) (n = 6), or training (CP-T)

(n = 6) for 10 weeks (Figure 1). The training program performed

by the training group can be found in Figure 2. Within the CP-

NT group, 2 participants dropped out of the study prior to the

post assessment and 2 participants completed the training after

serving first as a participant in the no-training (CP-NT) group.

Within the CP-T group, 4 participants served as participants in

the CP-NT group after completing the training. This resulted in
Frontiers in Sports and Active Living 03
8 participants comprising each group, and each participant

completed a pre and post intervention assessment 10 weeks

apart. In cases where a crossover occurred, the first posttest

assessment served as the pretest assessment for the subsequent

condition. Following completion of interventions, the CP-T

group (n = 8) and CP-NT group (n = 8) were compared to assess

the effects of HVT on muscle architecture and muscle

mechanics. In part 2 of the study, post-training results for the

CP-T group (n = 8) were compared to a group of healthy adults

(HA) (n = 10) who completed one testing assessment.

Participants gave their informed written consent to participate in

the experimental procedures prior to data collection. The

University of Calgary Conjoint Health Research Ethics Board

approved the experimental protocol (REB15-2026).
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FIGURE 2

High-velocity training program for CP-T participants weeks 1-10. Multiplication values indicates number of sets completed, or number of repetitions x
number of sets. Time allotted to each exercise set is on the right-hand side, displayed in minutes. m, meters; E, each leg; Accel, accelerations; Decel,
decelerations; CMJ, countermovement jump;.

FIGURE 3

Experimental set-up. Placement of the ultrasound probe on the MG and sEMG electrodes on the LG and TA muscles, respectively (A) The
measurement of passive moment, avoiding any passive moment due to the weight of the foot and gravity, by having participants side-lying during
the passive assessments (B) Measurement of active ankle plantar flexor moment with the participant lying prone. (C) Adapted with permission
from Muscle Stock Vector | Adobe Stock, File # 83745249 by blueringmedia, licensed under standard license, stock.adobe.com.
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2.3 Muscle architecture

The experimental set up for the measurement of passive and

active moments is shown in Figure 3. Participants were

positioned on their side for passive measurements and prone

for active measurements with one foot affixed to the

dynamometer footplate (Biodex System 3, Shirley NY). Passive
Frontiers in Sports and Active Living 04
measurements were performed in the horizontal plane to

remove any gravitational moments resulting from the

weight of the footplate and the foot (28). The right foot was

used unless the left leg was more affected in any of the CP

participants. Images of the deep and superficial

aponeuroses and medial gastrocnemius (MG) fascicles were

acquired at 49 Hz using Ultrasound (12.5 MHz linear array,
frontiersin.org
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Philips Envisor, Eindhoven, Netherlands) imaging to a depth

of 3 cm.

Two surface electromyography (EMG) electrodes (Norotrode

20 bipolar Ag-AgCl electrodes, Myotronics Inc, Kent, WA, USA)

monitored muscle activation of the tibialis anterior (TA) and

lateral gastrocnemius (LG) muscles, with a ground electrode over

the medial malleolus. The ultrasound probe prevented

monitoring EMG of the MG, so the LG was chosen as a

surrogate (29). The EMG window length used to calculate RMS

was 100 ms around the peak MVC (i.e., 50 ms prior to 50 ms

after peak MVC). Muscle activation was defined as any EMG

root mean square (RMS) exceeding three standard deviations

(SD) from baseline noise (measured over a 3 s window prior to

the trial); however, this criterion was not met in any passive trial.

Co-activation of the TA muscle during the isokinetic and

isometric MVC trials, was quantified relative to the LG muscle

activation (TA:LG). Medial gastrocnemius fascicle length was

measured during the passive and active trials using publicly

available image analysis software (Image J, Baltimore, MD).
2.4 Muscle mechanics

2.4.1 Passive moment-fascicle length relationship
In the side lying position, passive rotation of the ankle by the

dynamometer occurred through the full range of motion at

0.17 rad·s−1 to avoid initiating a stretch reflex (30), as confirmed

by passive moment and EMG measurements. Maximal DF (0%

relative ankle ROM) and maximal PF (100% relative ankle ROM)

were determined with the dynamometer by having the

participant actively dorsiflex and plantarflex the ankle. Fascicle

length, passive ankle moment and absolute ankle angles were

recorded at each participant’s fixed relative percentage

(0-20-40-60-80-100%) of ankle ROM. Passive moment at any

ankle angle could then be estimated using a passive moment-

fascicle length quadratic formula. Resting fascicle length at a

common ankle angle of 105°, was also compared across CP and

HA participants.

2.4.2 Active moment-fascicle length relationships
Isometric MVCs of the plantarflexors were completed by each

participant at a fixed relative percentage (0-20-40-60-80-100%) of

their ankle ROM 0% was considered full dorsiflexion and 100%

was considered full plantarflexion. Participants were provided

with a two-minute rest period between repetitions at each joint

angle. The order of angle was randomized for each participant.

Absolute ankle angles were recorded at each relative ankle angle,

and the highest peak active isometric plantarflexion moment of 3

maximal efforts were analyzed. Active plantarflexion moment

was calculated by subtracting the passive dorsiflexion moment

measured at the corresponding fascicle length, thereby

accounting for fascicle length changes (and reduced passive

dorsiflexion moments) during contraction (31, 32). MG active

fascicle length (the fascicle length associated with peak MVC at

each angle), resting fascicle length (mm), pennation angle (deg)

and muscle thickness (mm) were recorded at the ankle angle
Frontiers in Sports and Active Living 05
where peak isometric moment occurred. Mean data were

obtained by averaging the measured variables across ankle angle

(as a %ROM).

Muscle fascicle shortening (as a % of resting fascicle length)

was calculated as:

[(resting fascicle length – active fascicle length)/resting fascicle

length] · 100
2.4.3 Active moment-active power-angular
velocity relationships

Following the isometric trials for the determination of

participant-specific force-length relationships, a three-minute

break was provided before participants performed isokinetic

MVCs at six pre-determined angular velocities (30, 60, 120,

180, 300, 500°•s−1) in a randomized order. While the

dynamometer was set at these pre-determined angular

velocities, not all participants achieved those fixed absolute

angular velocities. Therefore, the peak isokinetic angular

velocity achieved was recorded for each trial, and fascicle

length at peak isokinetic velocity was measured to calculate

active moment at that peak measured angular velocity.

Participants completed three MVCs consecutively per trial and

were provided a two-minute rest period between trials at each

angular velocity.

Muscle maximal power output (Pmax) and maximal angular

velocity (ωmax) can be determined with estimation by fitting

moment-angular velocity data to the Hill equation (33), or by

linear regression analysis (34). The Hill equation yields a

hyperbolic relationship between angular velocity and moment,

but lacks precision at high and low velocities. Mid-range of the

hyperbola appears to fit moment-angular velocity data well (34).

In addition, the angular velocity at which maximal power occurs

is termed optimal angular velocity (ωopt) and has been

determined using moment-angular velocity data for both linear

regression and fitting to the Hill equation (35, 36). Therefore, a

linear regression equation was fit to the active moment-angular

velocity data, using the measured peak isometric moment

determined from the active moment-fascicle length relationship,

as the y-intercept (Mo). Moment at any angular velocity (ω) can

then be determined using the calculated slope (m) and y-

intercept (Mo) according to the equation:

Moment ¼ mv þ Mo

Peak angular velocity (rad•s−1) was estimated as the x-intercept of

the fitted moment-angular velocity relationship, and can be

calculated where moment = 0,

v ¼ �moment= m

Peak angular velocity and peak moment (Mo) at peak angular

velocity were recorded for all participants. Optimal velocity

(ωopt) was determined as 50% of the estimated maximal angular

velocity. Where, moment = mv +Mo, power can be calculated at
frontiersin.org
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any angular velocity as:

Power ¼ moment � v

Peak power (Pmax) was calculated as the moment or force generated

at ωopt:

Pmax ¼ vopt � 0:5Mo

This point also corresponds to where slope of the power-angular

velocity relationship was equal to zero. Regression values were

used instead of observed/measured values for the product of peak

moment and the corresponding angular velocity.
2.4.4 Triceps surae moment arm
Triceps surae muscle moment arm (MA) for each participant

was quantified using both the tendon travel method (37), and the

visual method (38, 39). In a previous study, the visual method

resulted in a smaller mean bias (0.8 mm, CI: −1.80 to 2.78 mm)

between test/retest compared to the tendon travel method (6.2

mm, CI: −16.0 to 11.3 mm, 153 p < 0.001) (40). Therefore, only

values from the visual method were used in the current study.

Muscle force was then calculated as the ratio of the

plantarflexion moment generated during the trial and the

estimated triceps surae muscle MA.

Peak muscle force (Fmax) was calculated using the estimated

MA and calculated peak moment (Mo):

Fmax ¼ Mo= MA
2.4.5 Muscle force-power-velocity relationship
Peak muscle shortening velocity (Vmax) was calculated during

peak isokinetic MVC as the change in fascicle length over

contraction time:

ΔFascicle length = resting fascicle length – active fascicle length

Contraction time = Δtime at peak angular velocity ± 15 ms

Vmax = Δfascicle length/contraction time

Muscle shortening velocity, muscle force, and muscle power

were expressed as a percentage of pre-intervention peak across all

isokinetic trials and participants to assess the changes in the

force-velocity regression relationships following the intervention

period. This allowed for a clearer analysis of potential changes

between the CP-T and CP-NT groups by reducing the variability

observed in the raw data.
2.5 Statistics

Statistical analyses were conducted using JASP (Version 0.19.1;

JASP Team, 2024). For all analyses a greenhouse-geisser correction

was used where mauchlys test indicated that the assumption of

sphericity was violated. The Holm post hoc analysis was used to

test for significant differences. The a priori level of statistical
Frontiers in Sports and Active Living 06
significance was considered for p≤ 0.05. Values are presented as

mean ± SD.

2.5.1 Part I – training intervention
An independent t-test determined the differences between CP-

T and CP-NT groups at baseline for age, height, and weight. To

assess changes in the force-length relationship, a two-way

repeated measures analysis of variance (ANOVA) was used to

test for significant effects of group (CP-T or CP-NT) and time

(pre and post-intervention) on ROM and measures at peak

isometric MVC (muscle thickness, pennation angle, fascicle

shortening percentage, active fascicle length, peak moment, peak

force, and EMG RMS TA and LG). A three-way repeated

measures ANOVA was used to test significant effects of group

(CP-T and CP-NT), time (pre and post intervention), and

percentage of ankle ROM (0%, 20%, 40%, 60%, 80%, 100%) on

passive moment, resting fascicle length, percentage peak active

force, and active fascicle length. Measured peak isometric

moment and estimated isometric moment were compared across

MVC trials using an independent t-test, as well as an assessment

of the fit and slope of the moment-angular velocity relationships

using the measured and estimated isometric moments. To assess

changes in the force-velocity-power relationship, a two-way

repeated measures ANOVA was used to test for significant effects

of group (CP-T or CP-NT) and time (pre and post-intervention)

on mean relative changes to Vmax, Vopt, Fmax, Pmax and slope of

the force-velocity relationships. A three-way ANOVA was used to

test significant effects of group (CP-T and CP-NT), time (pre

and post intervention), and isokinetic angular velocity (30, 60,

90, 120, 300, 500°s−1) on mean relative muscle shortening

velocity, muscle force and power output.

2.5.2 Part II – CP compared to HA
An independent t-test determined the differences for age,

height, weight, ankle ROM, and moment arm. At peak isometric

MVC, a one-way ANOVA compared groups on peak moment,

muscle thickness, pennation angle, muscle fascicle shortening

percentage, and EMG RMS for the LG and TA. A two-way

repeated measures ANOVA was used to test significant effects of

group (CP-T and HA) and percentage of ankle ROM (0, 20, 40,

60, 80, 100%) on passive moment, peak force, active fascicle

length and resting fascicle length. A two-way repeated measures

ANOVA was used to test significant effects of group (CP-T and

HA) and isokinetic trial (30, 60, 90, 120, 300, 500°s−1) on peak

force, peak velocity and peak power.
3 Results

3.1 Part I - training intervention

3.1.1 Participant characteristics
At baseline there were no significant differences between CP-

NT and CP-T for age, height, or weight (Table 1). No significant

group (CP-T and CP-NT)×time (pre and post intervention)

interaction in maximum dorsiflexion angle, maximum
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plantarflexion angle, or total ROM was observed. A main effect of

time on dorsiflexion angle was found for CP-NT, [F(1) = 10.5,

p = 0.014].

3.1.2 Passive moment-length relationship
Passive ankle moment, during the passive rotation trial, did not

result in any meaningful muscle activation above the baseline noise,

confirming the absence of a stretch reflex and/or any active

moments generated during the passive trials. There were no

significant three-way group x time x ankle angle interactions for

passive moment. There was a significant three-way group x time

x ankle angle interaction for resting fascicle length (p = 0.038,

Figure 4). Training resulted in an increased mean resting fascicle

length at 40, 60, 80% and 100% of ROM in CP-T (p < 0.005),

compared to a significantly shorter resting fascicle length at

similar ankle ROM in CP-NT (p < 0.013).

3.1.3 Muscle activation
Co-activation of the TA and LG were apparent during the

isometric and isokinetic trials for the CP participants. There were

no significant two-way group x time interactions for co-

activation ratios calculated at peak isometric MVC, or main

effects of group or time. EMG RMS for both LG and TA can be

found in Table 2, along with the primary outcome measures at

MVC for CP-T and CP-NT, pre and post intervention.

3.1.4 Force-length relationship
The muscle force-fascicle length relationship prior to and

following the intervention period is shown in Figure 5. During

the isometric MVCs, there were no significant three way group x

time x ankle angle interactions for active fascicle length, or

changes in percent peak force. A significant group x time

interaction was demonstrated, indicating a significantly shorter

average active fascicle length following the intervention period in

CP-NT (p < 0.05), while remaining similar following the

intervention period in CP-T (p = 0.814).

3.1.5 Moment-power-angular velocity relationship
Using a linear regression to fit the measured moment-angular

velocity data, the measured peak isometric moment was

significantly higher than the estimated maximal isometric

moment (mean difference = 22.4 ± 8.6 Nm, p < 0.004). In

addition, when using the measured compared to estimated

relationships, Pmax was significantly higher (mean

difference = 25.8 ± 11.5 W, p = 0.003), along with a steeper slope

of the moment-angular velocity data (mean difference = 5.9 ± 3.0

Nm·s·rad−1, p = 0.02). No significant differences were found in

the calculated ωmax for measured compared to estimated

relationships (mean difference = 0.376 ± 0.438 rad·s−1, d = 0.303,

p = 0.398). The average fit of the linear regression relationship

was similar when using the measured compared to estimated

peak isometric moment (r2= 0.84 ± 0.08, r2 = 0.88 ± 0.07 for

measured and estimated relationships, respectively, p = 0.127).

Therefore, using the measured peak isometric moment to

calculate the slope of the moment-angular velocity-power

relationship was preferred.
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3.1.6 Force-power-velocity relationship
To assess differences between groups for peak muscle

shortening velocity (mm/s) and muscle force (N), muscle

shortening velocity was expressed relative to pre-intervention

(training or no-training) values (Figure 6). Vmax and Vopt were

increased by 45.2 ± 76.4% following training in the CP-T group;

however, this increase was not significantly different between

groups (d = 0.909, p = 0.452). In contrast, Vmax was unchanged

(+2.9 ± 70.5%, d = 0.059, p = 1.00) following the intervention

period in CP-NT. A very large effect size was also observed in

Vopt in CP-T following training (+22.6 ± 12.4%, d = 0.909,

p = 0.452), compared to CP-NT (−1.5 ± 12.4%, d = 0.059,

p = 1.00). There were no differences in Fmax between CP-T or

CP-NT following the intervention (mean difference

=−0.03 ± 0.1%, d =−0.117, p = 0.746), and the slope of the linear

force-velocity relationship was similar between groups (mean

difference =−0.14 ± 0.15, d = 0.342, p = 0.35).

Force-velocity-power relationships for CP-T and CP-NT

groups are shown in Figure 7. There was a very large effect size

for Pmax following the intervention period in CP-T (35.0 ± 49.1%,

d = 1.093, p = 0.232), and only a small effect observed following

the intervention period in CP-NT (7.8 ± 49.1%, d = 0.245,

p = 1.00). Training resulted in 5 of the 8 (62.5%) CP-T

participants increasing their Pmax (mean change across 5

participants = 355.0 ± 349.9W). These increases were primarily

due to increases in Vmax in all 5 participants. In the CP-NT, 2 of

the 8 participants (25%) increased their Pmax (mean change

across 2 participants = 1,179.0 ± 873.1W) following the 10-week

no training period.

A three-way repeated measures ANOVA showed no three-way

(group x time x isokinetic trial) interactions, no two-way (group x

time, group x trial, trial x time) interactions, or main effect of group

for muscle shortening velocity (p = 0.207), muscle force

(p = 0.388), and muscle power (p = 0.239). A post hoc

comparison for group x time indicated a moderate effect size for

peak muscle shortening velocity following training in CP-T

(22.3 ± 11.9%, d = 0.690, p = 0.484), compared to CP-NT which

appeared unchanged (1.1 ± 11.9%, d = 0.035, p = 1.000). post-hoc

analysis of group x time showed similar force levels pre to post

intervention for CP-T (2.1 ± 3.2%, d =−0.117, p = 1.00) and CP-

NT (5.1 ± 3.2%, d =−0.287, p = 1.00). post hoc comparison of

group x time indicated a large effect size for mean peak power

across the isokinetic MVCs in CP-T following training

(28.3 ± 13.8%, d = 0.844, p = 0.302), and medium effect size

observed in CP-NT following no-training (14.4 ± 13.8%,

d = 0.431, p = 0.943).
3.2 Part II – comparing CP to HA

3.2.1 Participant characteristics
There were no significant differences between HA and CP-T

groups for age (p = 0.651), height (p = 0.908) and weight

(p = 0.509). Total ROM was significantly lower in CP-T

compared to HA (CP-T: 45.6 ± 13.1°, HA: 67.22 ± 5.91°,
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FIGURE 4

Resting fascicle length-angle relationships in the MG muscle for pre (dashed line, open symbol) and post (straight line, filled symbol) intervention
during passive ankle rotation. Actual ankle angles are presented. Data are mean± SD. Indicates significant group x time x ankle angle interaction
(p < 0.04). (A) CP-NT (black , ). (B) CP-T (red , ).
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p < 0.001). In addition, significant differences in maximum

dorsiflexion (CP-T: 85.6 ± 9.8°, HA: 75.4 ± 4.11°, p < 0.005) and

plantarflexion (CP-T: 131.2 ± 8.6°, HA: 142.6 ± 4.13°, p < 0.001).

Triceps surae moment arm was significantly longer in

healthy adults (35.4 ± 3.6 mm) compared to the CP-T group

(29.1 ± 5.5 mm, p < 0.01).
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3.2.2 Passive moment-length relationship
Passive moment was significantly higher in CP-T across all

ankle angles compared to HA (p < 0.05). Co-activation ratio of

the TA muscle to MG was significantly higher in the CP-T

group (49.6 ± 34.0%) compared to HA (18.3 ± 12.2%, p = 0.014).

There was a significant group x ankle angle interaction for
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TABLE 2 Mean primary outcomes during MVCs for CP-T & CP-NT.

Variable CP-NT CP-T p-value

Pre Post Pre Post
Muscle thickness (mm) 13.79 ± 2.05 13.90 ± 1.90 13.42 ± 2.3 13.96 ± 2.10 0.895

Pennation angle (deg) 17.59 ± 3.82 18.68 ± 3.83 20.08 ± 4.15 21.06 ± 6.11 0.384

Fascicle shortening (%) 41.04 ± 11.6 46.06 ± 14.13 44.78 ± 16.4 45.63 ± 11.9 0.638

Active fascicle length (mm) 30.80 ± 8.81 31.73 ± 8.71 27.29 ± 8.22 29.25 ± 4.76 0.410

Peak moment (Nm) 59.69 ± 19.6 62.91 ± 22.3 54.84 ± 21.6 55.31 ± 23.8 0.548

Peak force (N) 2,191.1 ± 892.3 2,333.8 ± 981.0 1,849.4 ± 714.5 1,614.2 ± 631.3 0.209

EMG RMS LG 0.17 ± 0.17 0.07 ± 0.05 0.09 ± 0.06 0.11 ± 0.06 0.522

EMG RMS TA 0.07 ± 0.09 0.03 ± 0.01 0.04 ± 0.03 0.04 ± 0.01 0.594

Values are mean ± SD.
Abbreviations: CP-NT, cerebral palsy-no training group; CP-T, cerebral palsy-training group; EMG RMS, electromyography root mean square; LG, lateral gastrocnemius muscle; TA, tibialis

anterior muscle; mm, millimeters; deg, degrees; %, percentage; Nm, Newton meter; N, Newton.
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resting fascicle length (p < 0.001), where fascicle length was

significantly longer in HA compared to CP-T across all ankle

angles (Figure 8).

3.2.3 Active moment-length relationships
Mean primary outcomes for HA and CP-T during isometric

MVCs are found in Table 3.

Peak active force and peak isometric moment were significantly

higher across all ankle angles in HA compared to CP-T (p < 0.001),

as was active fascicle length (p = 0.010). Force-length relationships

for CP-T and HA can be found in Figure 9.

3.2.4 Moment-power-angular velocity
relationships

There was a significant group x isokinetic trial interaction for

ankle angular velocity (p < 0.01), moment (p < 0.01), and power

(p < 0.02), indicating significantly higher outcomes across all

isokinetic velocities for HA as compared to CP-T (Figure 10).
4 Discussion

One of the first of its kind, this study measured the active

triceps surae muscle force-length and force-velocity-power

relationships following 10 weeks of high-velocity sprint and jump

activities in young adults with CP. These relationships highlight

the compromised isometric and velocity dependent force

generation capability for young adults with CP, when compared

to HA without a neurological disorder. One of the key findings

was that HVT over a 10-week period resulted in a significantly

increased resting fascicle length in participants with CP

compared to pre-training (+1.92 mm, p < 0.005). Although our

original hypothesis was that increases in fascicle length would

result in increased muscle shortening velocities and muscle

power outputs, no significant changes in these metrics were found.
4.1 Inter-individual variations with training

Research in HA (15), older adults (41) and stroke patients (20)

have shown increases in muscle mechanical power output after
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resistance training with a focus on speed of movement during

the resistance training. The literature suggests that increased

fascicle length is a training-specific response to HVT like

sprinting, as demonstrated by longer MG muscle fascicle lengths

in elite sprinters (66.4 ± 13.2 mm) when compared to distance

runners (53.6 ± 7.2 mm) (42). For elite sprinters, fascicle lengths

are expected to exceed those observed in our HA data at similar

ankle angles (61.9 ± 9.4 mm). Training specific responses to

fascicle length were observed in the CP-T group, but large

differences still remain when compared to HA (mean difference:

−18.7 ± 5.1 mm, p = 0.001). Only two previous studies have

evaluated changes in fascicle length with HVT for people with

high-functioning CP (13, 21), and muscle fascicle length changes

were inconsistent with the improvements in muscle power output

observed in both studies. In Moreau et al. (2013), only the rectus

femoris muscle had a differential adaptation in fascicle length in

response to HVT, compared to no changes observed in the

vastus lateralis muscle. Although this study suggests the use of

HVT, the knee angular velocities reached during training (30–

120°•s−1), did not meet those observed in other studies during

self-selected walking pace in CP (180–220°•s−1) (26, 43). The

lack of fascicle length change in the Gillet et al. (2018) study,

could be attributed to the combination of HVT with heavier

resistance exercises (slower velocity), and/or attributed to the low

volume (2–3) high-velocity training exercises used in the protocol.

The variability observed among participants across training

studies may stem from differences in training protocols, but can

also be attributed to individual-specific adaptive responses to

training stimuli (44, 45). Our training intervention in CP was no

exception, with HVT resulting in considerable individual

variations in change scores, as observed by the large range and

standard deviations in values. The smallest worthwhile change

(SWC) is indicated by a grey bar in Figure 11, where a level of

0.5 was used to ensure the SWC was higher than the calculated

standard error of the mean (SEM= SD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sample size
p ). HVT resulted in

structural improvements (increases in fascicle length) in 7 of the

8 participants, and functional improvements (increases in Pmax,

Fmax and/or Vmax) in 5 of the 8 participants. 2 of the

participants who had an increased fascicle length following the

training period, did not demonstrate any significant functional

improvements. This variation in response is not a result of
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FIGURE 5

Force-length relationships for the MG muscle during pre (dashed line, open symbol) and post (straight line, filled symbol) intervention during isometric
MVCs. Data are mean ± SD. Isometric force is presented as the percentage of peak active force. (A) CP-NT (black , ) (B) CP-T (red , ).
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adherence to the training sessions, or differences in intensity and

volume for each participant, as all participants completed the

same standardized HVT program with high (≥95%) adherence

levels. It can be expected that a small proportion of participants

will respond negatively or not at all to training, as the
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HERITAGE Family study by Barber et al. (2022) found the

distribution of negative (low) training response scores to be

approximately 4.5% across four phenotype traits (45). The results

of this study were slightly higher, with approximately 12.5%

(n = 1) of participants having a negative response to training.
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FIGURE 6

Mean force-velocity (F-V) relationships for pre (dashed line symbol) and post (straight line) training in individuals with CP not performing the training
(A) and in individuals with CP performing the training (B) each participant is represented by a different color. Force and muscle shortening velocity data
are presented as a percentage of pre-training maximum (pre Fmax and pre- Vmax, respectively).
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4.2 Force-length relationships

The force producing capability of muscle is influenced by

several factors, and in this study, individuals with CP achieved

an Fmax of only 36% relative to the HA group. These findings are

supported by a significant reduction in triceps surae muscle MA
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(∼6.5 mm smaller), which would result in a decreased

mechanical advantage of the triceps surae in producing effective

moments during walking/running. A shorter MA would also

result in a reduced muscle excursion for a given ankle joint

rotation, allowing a slower muscle shortening velocity to achieve

a given joint angular velocity. A slower muscle shortening
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FIGURE 7

Mean force-velocity (F-V) from which mean power-velocity relationships were calculated. Power-velocity data were calculated from individual data
shown in Figure 6 for the pre (dashed line, open symbol) and post (straight line, filled symbol) intervention periods. Data are mean ± SD. (A) CPNT
(black □, ■), (B) CP-T (red Δ, ▲).
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velocity, while reducing maximal mechanical power output,

would also reduce muscle activation needed to achieve a given

muscle force. Our results revealed LG muscle activity to be

significantly lower in CP-T (32% relative to HA, p = 0.006),

along with a significantly higher plantarflexion co-activation

ratio in CP-T (49.6% TA:LG) relative to the HA (18.3% TA:
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LG). The reduction in maximal ankle plantarflexion force may

also be attributed to the increased passive force observed in

the CP group, compared to HA. Other researchers have linked

these differences in passive force to longer sarcomere lengths

(6–8) and/or increased connective tissue and collagen

deposition (6, 46).
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FIGURE 8

Mean resting fascicle length-angle relationship for CP-T ( ) and HA ( ) for the MG muscle during passive ankle rotation. Data are mean ± SD for CP-T
(n= 8) and HA (n= 10). Indicates significant group x ankle angle interaction (p < 0.001).

TABLE 3 Mean primary outcomes during isometric MVCs for HA and CP-T.

Variable HA CP-T p-value
Peak isometric moment (Nm) 146.81 ± 49.9 55.31 ± 23.8 <0.001*

Peak force (N) 4,237.46 ± 1,224.9 1,720.22 ± 646.7 <0.001*

Muscle thickness (mm) 18.15 ± 2.0 13.96 ± 2.1 0.001*

Pennation angle (deg) 16.21 ± 2.8 21.06 ± 6.1 0.046*

Active fascicle length (mm) 37.36 ± 6.6 29.25 ± 4.8 0.010*

Muscle fascicle Shortening (%) 48.08 ± 8.6 45.63 ± 11.9 0.652

EMG RMS LG 0.347 ± 0.201 0.111 ± 0.113 0.006*

EMG RMS TA 0.064 ± 0.046 0.043 ± 0.021 0.284

Values are mean ± SD.

*Indicates significant between group differences (p < 0.05).

Abbreviations: HA, healthy adults; CP-T, cerebral palsy trained group; EMG, electromyography;
RMS, root mean square; LG, lateral gastrocnemius; MG, medial gastrocnemius.
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The force-length relationship of muscle has been used in the

literature as an indicator for longitudinal muscle fascicle growth

(39, 47). A rightward shift in this relationship would indicate

peak forces occurring at longer muscle lengths and suggest

fascicle length has increased. This rightward shift was not
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observed in the force-length relationships for the CP-T or CP-

NT groups (Figure 4), instead an upward shift in the CP-T

group indicated participants were able to reach a higher

percentage of their peak force at similar fascicle lengths

following the training intervention. In the CP-NT group, a

leftward shift resulted in peak force occurring at significantly

shorter fascicle lengths following the intervention (p < 0.05),

and aligns with data indicating a reduced resting fascicle

length following the no-training period (p < 0.013).

Considering whole muscle force-length relationships are

accurately modelled as scaled sarcomeres, it’s possible to relate

these relationships to the sarcomere force-length relationship

(48). The literature has suggested individuals with CP may

have fewer sarcomeres in series for a given muscle length, and

this would result in a relationship where sarcomeres operate

on the descending region (longer sarcomere lengths) during

contraction. This relationship was observed prior to

interventions in 5 of the 8 CP participants (3 CP-T, 2 CP-

NT), and not in any of the CP-T participants following

training. Sarcomeres that operate on the ascending and plateau
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FIGURE 9

Fascicle force-length relationships of the MG muscle for CP-T ( ) and HA (●) during isometric MVCs. Data are mean ± SD for CP-T (n= 8) and HA
(n= 10). Indicates significant group x ankle angle interaction (p < 0.001).
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region of the relationship during contraction are considered to

be at optimal length, as force capability is near maximal or

maximal. This relationship was present in all (n = 8) CP-T

participants following training, indicating an improvement in

muscle force-length properties with HVT. It is also apparent

that the CP-T group may be operating at shorter sarcomere

lengths (on the ascending limb) during contraction, which may

indicate an increase in number of sarcomeres in series (Figure 12).
4.3 Force-velocity-power relationships

Our data confirm previous findings that individuals with CP

produce a reduced MG force at higher velocities of movement

(49) resulting in lower muscle power output. In addition, the

maximum isokinetic angular velocity (estimated from a linear

regression analysis) was significantly lower in the CP group

(166.2 ± 43.2 deg•s−1), compared to the HA (351.0 ± 33.6

deg•s−1, p < 0.001). The goal with HVT would be to increase the

muscles capability to shorten at higher velocities, which in turn
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would increase walking speeds and the ability to run and jump

at higher (sport-specific) velocities. It is expected that a muscle

with longer muscle fascicles will generate a greater force at the

same absolute shortening velocity, as the shortening speed of

each sarcomere in a fascicle would be relatively slower for a

given speed of whole fiber shortening (13, 16). The mechanical

power producing capability of a muscle can be evaluated through

the force-velocity relationship, where increases in muscle force

and/or muscle shortening velocity will result in increased peak

power output. Therefore, an increased muscle fascicle length

should result in a rightward shift of the force-velocity

relationship, as observed following the training intervention in

CP-T (estimated vmax increased by approximately 45%), but

overall, no significant changes in Pmax, vmax and Fmax were

observed. The variability in response between groups contributed

to the lack of significant changes observed, and can be partially

attributed to an increase in Pmax in 2 CP-NT participants

following the 10-week (no-training) period. One of the two CP-

NT participants reported completing training for an international

para track cycling competition (change in Pmax = + 1,796.41 W)
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FIGURE 10

Moment-angular velocity (dotted line, open symbols) and power-angular velocity relationships (straight line, filled symbols) for CP-T ( , ) and HA
(o,●) during isokinetic MVCs. Power was calculated from the linear moment vs. angular velocity relationship, derived frommean participant data. Data
are mean ± SD for CP-T (n= 8) and HA (n= 10).

FIGURE 11

Data are pre-training values subtracted from post-training values (positive bold numbers indicate a change greater than the SWC after the
intervention). SWC is indicated as the grey bar in each graph, and calculated as SWC= 0.5xSD. Pmax, peak power; mW, milliwatts; Fmax, peak
isokinetic force; N, Newtons; Vmax, peak muscle shortening velocity; mm/s, millimeters per second; SWC, smallest worthwhile change (0.5*SD).
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during the no-training period, which would have included training

at high power outputs. The second CP-NT participant completed

the training intervention first, and any post-intervention

extracurricular activity or lagging performance improvements is

unclear. The use of force-length and power-velocity relationships

provided meaningful insights into the implications of HVT,

suggesting this protocol will at the very least slow decrements

observed in CP muscle structure and function, and more
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importantly, highlight performance improvements for CP-

T participants.
4.4 Limitations

In this study, we focused specifically on the potential to

increase MG fascicle lengths following HVT, with the notion that
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FIGURE 12

Estimated sarcomere force-length relationships for pre (dashed line, open symbol) and post (straight line, closed symbol) interventions. Data are
mean ± SD. Active force is represented as a percentage of pre-intervention peak. (A) CP-NT ( , ). (B) CP-T ( , ).

Gallinger et al. 10.3389/fspor.2025.1558784
increased MG fascicle lengths would imply more sarcomeres in

series. The latter has the potential to amplify MG muscle power

output (the product of plantar flexor force and muscle-tendon

shortening velocity) as a result of higher maximal shortening

velocities. Because the aim of this study was to examine the

impact of HVT on MG fascicle length changes, we did not
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specifically quantify the impact of other factors that might

influence mechanical power output of the plantar flexors. For

example, we did not specifically examine changes in Achilles’

tendon properties as a result of HVT, which we acknowledge

may also increase plantar flexor mechanical power output

because tendons can return a portion of the mechanical strain
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energy stored during tendon stretch (50). Mechanical power output

may also be elevated following HVT due to changes in

neuromuscular activation (51) and/or total muscle volume (52).

Future research incorporating direct assessments of these

properties would provide a more comprehensive understanding

of triceps surae function following HVT.

It is not possible to assume this training intervention only

consisted of high velocity shortening contractions, as the

participants were instructed to control their jump landings and

decelerate after their sprints to minimize the chance of injury.

Lengthening contractions under load have also been found to

broaden the force-length relationship or the working range of

muscle length in CP (53), which we can also not discount

affecting the meaningful increase in fascicle lengths following the

intervention period. Fascicle length increases were used to infer

that increases in serial sarcomere number (sarcomerogenesis)

were observed, but sarcomeres in series and sarcomere lengths

were not directly measured in this study. This inference could be

more substantial in this population, as sarcomere lengths have

been found to be longer in individuals with CP (6–8).

Visualizing and tracking muscle fascicles using ultrasound

imaging can also be quite challenging in this population, due to

altered muscle pathology (increased connective tissue and

collagen deposition) (6, 46). These concerns are lessened in

trained populations with higher muscle quality (54). To

overcome these challenges, considerable care was taken, both in

placement and individual ultrasound settings of depth, focus,

power and gain to optimize the imaging of, and subsequent

measurement of, individual MG fascicle lengths. Exemplar

images of resting MG fascicles are shown in the Supplementary

Material. The measurement of muscle fascicle lengths has been

shown to be reliable across a broad range of experimental

conditions (55), including in individuals with CP (56–59).

We did not directly measure muscle shortening via

ultrasonography during the training intervention. We make the

assumption that the joint angular velocities during the running,

sprinting and jumping in this training program were truly high

velocity, and above the maximal plantarflexion push-off velocities

found in CP during walking (180–220°·s−1) (43).

Using exercises that could be implemented within the daily

training environment was a priority for researchers of this study

to be able to make realistic inferences on high-velocity training to

changes to muscle architecture, and accompanying functional and

performance changes. In a recent review of the literature, Davis

et al. 2020 supported the development of exercise protocols using

optimal training conditions (including exercise at an appropriately

high velocity) in order to increase fascicle lengths by increasing

the number of serial sarcomeres in spastic CP muscle (59).

Specifically, the training protocols should satisfy the following: (1)

involve eccentric exercise at relatively high velocity; (2) result in

stretching of the muscle fascicles and (3) momentary deactivation

of the stretched muscle (59). Our training protocol emphasized

high-velocity muscle shortening (concentric) contractions, to

stimulate increases in muscle fascicle length. It is important to

acknowledge, that eccentric contractions could not be entirely

eliminated during the HVT exercises, therefore, some fascicle
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stretch under load likely occurred. It is possible that the training

conditions used in our study may not have satisfied all of these

criteria, and thus been insufficient to observe structural or

functional changes in all participants. Because we did not directly

measure the stretching and activation of muscle during the

training, the precise mechanisms for increased sarcomerogenesis

with relatively high velocity training remains unknown. Some

participants may have benefited from an increased frequency of

sessions (> 2 sessions/week), or a longer training period

(>10weeks). The variability in response of each group could also

be attributed to our limitations to adequately control for training

or physical activity performed outside of the training and control

interventions. Lastly, the smaller sample size combined with high

variability observed in our study may have precluded achieving

statistically significant differences, particularly for the differences in

Pmax across training and CP vs. HA groups. We have also

reported effect sizes for this reason.
5 Conclusion

Although substantial differences between HA and CP remained

after 10 weeks of HVT, our findings support the use of HVT as a

viable intervention for improving muscle fascicle length, which

may indicate an increase in sarcomeres in series in this

population. Our study adds to the literature, how changes in

fascicle length influence muscle function through force-length and

force-velocity relationships of the plantarflexors in CP. Our

approach prioritized exercises that are feasible in daily training

environments, making the findings more applicable to the clinical

management of CP. This practical application also allows

practitioners the opportunity to broaden training prescriptions and

target specific muscle architectural and functional changes.

Additionally, our results highlight that high-functioning

individuals with CP can safely perform maximal exertion exercises

at high velocities, offering guidance for clinicians and strength &

conditioning coaches aiming to incorporate this type of training.

While promising architectural and functional adaptations to HVT

were observed, future research should investigate prolonged

training or the incorporation of movement-specific training and

testing to further reduce the gap that exists between HA and CP.

Overall, this study represents a key step toward more targeted and

intensive training programs for individuals with CP, with the aim

of improving both daily functioning and sport performance.
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