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Objective: Low-Frequency Vibration (LFV) is a type of sound therapy used for

relaxation and stress management. This study investigated the effects of LFV

on heart rate variability (HRV), compared to a session without any vibrations

(No-vibration) in healthy male participants.

Methods: Intra-individual comparative study: participants experienced two

blinded 40-minutes sessions, separated by a week of wash-out period, a LFV

and a No-vibration one, in a soundproof environment. HRV temporal and

frequential parameters were measured before, during, and after each session.

Results: Both sessions showed a decrease in heart rate between pre-session

(64.2 ± 1.9 and 61 ± 1.9 BPM) and during intervention (58.7 ± 2.1 and

58.6 ± 1.7). Only LFV was associated with enhanced HRV variables at 30 min

post-intervention compared to pre-session (78.9 ± 15.1 u.a vs. 112.6 ± 27.8 u.a).

LFV significantly increased parasympathetic activity, as evidenced by higher

HRV variables measures 30 min post-session, compared to the No-vibration

session (p=0.007).

Conclusion: Vagal tone was improved 30 min after a LFV session in healthy

active male participants, indicating its potential utility as a recovery modality.

Further research is warranted to assess long-term effects and applications in

diverse populations.

KEYWORDS

heart rate variability, autonomic nervous system, whole-body vibration, low-frequency

sound, recovery, sport performance

1 Introduction

Vibroacoustic therapy (VAT) is a type of sound therapy that involves passing low

frequency sine-wave vibrations into the body. This method aims to provide both

auditory and vibratory stimuli (1). Many recent studies have analyzed the effects of

VAT on pain management and on spasticity in post-stroke neurorehabilitation showing

a neuromodulator and a muscle relaxation effect (2, 3). Low-frequency vibration (LFV)

is a form of VAT that is emphasizes its effect on vibrations and is not sound-based.

However there is significant variability in how VAT is applied across studies, including

differences in frequency ranges, session durations, and exposure conditions (4). In most

research, a frequency of 40 Hz is used for its potential relaxation effects after a 20 min

exposure (5–7). VAT is also hypothesized to enhance cardiac vagal regulation and

physical relaxation by reducing heart rate (HR) (8, 9). Indeed, it has been showed that

VAT can interact with tissues through mechanotransduction via the Pacini corpuscles

TYPE Original Research
PUBLISHED 27 June 2025
DOI 10.3389/fspor.2025.1573660

Frontiers in Sports and Active Living 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fspor.2025.1573660&domain=pdf&date_stamp=2020-03-12
mailto:rafael.hauser@unil.ch
https://doi.org/10.3389/fspor.2025.1573660
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspor.2025.1573660/full
https://www.frontiersin.org/articles/10.3389/fspor.2025.1573660/full
https://www.frontiersin.org/articles/10.3389/fspor.2025.1573660/full
https://www.frontiersin.org/journals/sports-and-active-living
https://doi.org/10.3389/fspor.2025.1573660
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


and Merkel cells, directly influencing the autonomic nervous

system (ANS) (10). AudioVitality®, a company specialized in

VAT, has developed a unique approach involving 40-minute

sessions with a combination of 40–80 Hz fundamental

frequencies and harmonics. Such harmonic distortions have been

shown to generate specific electrical responses in the human

brain (11). AudioVitality® RubesaSoundsTM apply harmonic

distortions in the original and unique context of

continuous sounds.

Heart rate variability (HRV), a non-invasive measure of

autonomic cardiac control, is increasingly used to assess stress

and recovery (12–14). The utility of HRV as a broad-spectrum

health indicator with possible application to both clinical and to

healthy population has only begun to be explored recently. HRV

is offering insight into the balance and interactions between the

sympathetic and parasympathetic branches of the ANS (15).

High HRV temporal metrics generally indicating greater

parasympathetic activity and better recovery (16, 17). Some key

HRV metrics, including the root mean square of successive beat-

to-beat interval differences (RMSSD) and the high-frequency

(HF) power spectrum, have been shown to reflect cardiac vagal

tone, giving clinical insight on recovery status in patient (17, 18).

Recent studies have shown that VAT, can positively affect the

parasympathetic nervous system, particularly in post-exercise

recovery (19, 20). Enhanced vagal tone, which correlates with

improved well-being and performance, has been observed with

multiple interventions using vibrations (21–23). Despite VAT

and LFV showing promising benefits in managing stress, the

number of objective research on LFV’s impact on heart rate

variability (HRV) is limited.

The objective of this study was to examine the effects of Low-

Frequency Vibration (LFV) on short-term cardiac autonomic

regulation in healthy male participants.

2 Materials and methods

2.1 Study group

Twenty-nine male participants were included in the study.

Participants were recruited through posters posted on the

university campus, at the sports medicine unit from Lausanne

University Hospital or by direct contact with sports club. The

participants had to be regularly active [Tier 1–2 of participant

Classification Framework (24)], men, between the age of 18 and

40 and in good general health. The participants were excluded

from the study if they already participated in a AudioVitality® or

any other LFV session, suffered from any acute injury

or pathology that may prevent the proper course of the study or

endanger their own health. We also excluded participants with

known sound hypersensibility and those not accepting to be

informed of incidental findings. Every participant was contacted

by one of the co-investigators for an initial screening of the

inclusion and exclusion criteria. Participants signed an informed

consent before the beginning of the study.

In total, 29 participants were included in the study. Among

them, two were excluded from the analysis: one because he freely

decided to stop after the first session and one who showed signs

of arrhythmia on heart rate recordings and was referred for a

cardiac check-up. A final number of 27 men were included in

the analysis. The mean age of the population was 28 ± 5 years,

mean height was 182.8 ± 6.7 cm, and mean weight was

79.4 ± 9.8 kg.

2.2 Experimental design

This prospective observational study focused on the state of

HRV variables before, during and after a LFV session and a No-

vibration session with a within-subjects analysis.

The participants only received partial information on LFV

prior to the study to avoid any expectation bias and offer a semi-

blinded design. Randomization in the order of the sessions was

not achievable to avoid expectation bias because LFV is felts

significantly by the participants. All participants went then

through the No-vibration session first, and the LFV session

second. The participants were told they would go through two

different kinds of LFV sessions without any explanations of the

No-vibration session. A detailed explanation of the entire

process, including a description of both sessions and their

differences was given to every participant at the end of the study.

Every session took place in AudioVitality® soundproof studios

(Figure 1). The participants were lying on a bed for the whole

intervention. The beginning of each AudioVitality® session is

guided by a pre-recorded voice to help the participant to deeply

relax before the session. This 4-minutes introduction was

performed in both sessions (No-vibration and LFV). The first

session consisted of a 40-minute-long silence with no frequencies

emitted (referred as No-vibration in the article). HRV was

monitored during the entire session. After the session, the

participants stayed in the studios for another 30 min to allow for

multiple post-session short-term HRV measurements. The

second session took place in the same conditions and consisted

of a standardized 40-minute low-frequency sound session. The

experimental procedures were explained to all the participants,

following the Declaration of 92 Helsinki, and approved by the

local ethics committee (CER-VD #2023-01296).

2.3 Heart rate variability

2.3.1 Acquisition
R-R intervals were collected during the entire protocol using a

heart rate monitor (H10, Polar Electro Oy, Kempele, Finland) (25)

and a dedicated smartphone-based application (Polar Sensor

Logger app, Jukka Happonen, Finland). The measurement started

5 min before the session and lasted until 30 min post-session.

Analyses were performed in supine position on six different

five-minutes samples taken at specific time point. Pre-session

(pre), at 20 min during the session (during-20), at 40 min during
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the session (during-40), 5 min post session (post), 15 min post-

session (post-15) and 30 min post-session (post-30).

2.3.2 Confounding factors
As HRV is influenced by many external factors and has high

inter-individual variations, a within-subject design has been

highly recommended in the literature (26). This design helps to

offer optimal experimental control, contribute to the reduction of

individual differences in respiratory rates, offer an increased

statistical power, and reduce the impact of external factors (17).

As testing occurred with 1 week in between, the time of

experimentation was kept exactly the same for each individuals

to avoid circadian differences in HRV (27).

We designed the study to control as much as possible external

factors, including the measuring environment, which was kept as

stable as possible (place, time, room temperature, air humidity,

noise, devices used, persons present during the measurements).

Furthermore, all electronic devices were removed from the

proximity of the participant during the study.

We instructed participants to strictly control internal factors,

which mainly comprise: stopping intense physical efforts 48 h

before examination, stop alcohol and analgesics 12 h before,

avoid wearing confining clothes, corsets or supports stockings on

the day of their venue and avoid any intake of nicotine, coffee

and food 3 h before examination (28). The importance of coming

to both visits in similar settings was repeated to the participants.

Prior to the start of the session, participants were asked to go to

the bathroom if needed and then lie down in the studio

comfortably. To keep the measurements as standardized as

possible, communication between the investigator and the

participant was restricted to the minimum.

2.3.3 Analyses

The analysis of raw R-R intervals at the 6 time points was

conducted using Kubios Premium software (Kubios, Finland).

Each dataset underwent a manual and automatic review in

Kubios Premium to identify and correct any artifacts or ectopic

beats (29, 30). Time- and frequency-domain HRV analyses were

conducted on the final 4 min of five-minute R-R interval samples

in a supine position, adhering to the international standards (31,

32). Following the latest guidelines by Laborde et al. (17), HRV

was assessed in three conditions: resting (measured during a five-

minute supine rest prior to sessions), reactivity HRV (analyzing

changes in HRV variables from baseline to during-event), and

recovery HRV (evaluating changes in HRV variables from

during-event to post-event measurements). This three phase

experimental structure is advocated as optimal for HRV analysis

(17, 33), facilitating comprehensive assessments at each phase and

measuring HRV’s stimulus-response capabilities. Focus was given to

vagally-related HRV variables, logarithmic transformation of the

Root Mean Square of Successive Differences (LnRMSSD), Heart

Rate (HR) and Low-Frequency +High-Frequency divided by Heart

Rate [(LF +HF)/HR]. All the variables are further described in the

cited sources (34). We calculated LnRMSSD with a logarithm

transformation from RMSSD creating a new variable. Applying a

logarithmic transformation (Ln) to RMSSD helps normalize the

FIGURE 1

AudioVitality® soundproof studio. Participants were lying on the bed during the entire intervention. Low-frequency sounds vibrations were emitted

from the 3 bass speakers, all oriented towards the participant.
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data distribution, thereby reducing the impact of extreme values and

improving comparability between individuals (35). Moreover,

LnRMSSD has been shown to be a reliable and sensitive indicator of

recovery and training load, particularly in elite athletes (36).

2.4 Low-frequency sounds

To accurately analyze inter-participants responses, the exact

same protocol of low-frequency sounds was used for every

LFVsession. It consisted of twelve, equally long, continuous

sounds. Each sound followed the same cycle: 3 s of linear fade-in

(from silence to “full intensity”), 3 min of sounds at full intensity

(70 dB), 3 s of linear fade-out (from full intensity to silence), and

finally 9 s of silence before starting the cycle again for the next

sound. At “full intensity”, the sound pressure level, measured at

the head was, on average, 72 dB. Each sound contains a low-

frequency fundamental frequency (between 40 and 80 Hz) with

several of its harmonics. The fundamental frequency was the

most prominent (intensity-wise). Harmonics did not exceed

1,000 Hz. The relationship between the sounds’ harmonics is a

copyrighted technology AudioVitality® RubesaSoundsTM.

Sounds were diffused through three speakers mounted to the

ceiling of the room. All speakers were focused on the center of

the room, where the bed was positioned. One speaker was

located above the head, and the other two towards the bottom of

the bed, one bye each foot. A subwoofer was also used under the

bed, pointing towards the bottom of the bed.

2.5 Statistical analysis

All data passed normality Shapiro–Wilk test and are expressed

as mean ± standard deviation (SD). All data were presented as

absolute and as normalized to a percentage of individual pre-

values. HRV time-course analysis as a function of session (No-

vibration or LFV) was analyzed using a 2 (session) × 6 (recovery

time points) simple repeated-measures ANOVA. The Bonferroni

correction post hoc test was applied when F was significant in the

ANOVA. For all statistical analyses, an α value of 0.05 was

accepted as the level of statistical significance. Statistical analyses

were performed with JASP version 0.18.3.

A two-way repeated measures ANOVA with SESSION (LFV vs.

No-vibration) and TIME (PRE, DURING, POST) as within-subject

factors was conducted to assess the effects of the session type and

measurement timing on key HRV-related variables.

In our study, all missing values were handled using the Mean

Substitution method. Specifically, we replaced missing values

(n = 12) with the mean of the available data for the

corresponding variable. This method is widely used in scientific

research as it helps maintain the overall distribution

characteristics of the dataset while minimizing data loss (37).

Additionally, mean substitution provides a straightforward

approach to handling missing data, especially when the

proportion of missing values is low, ensuring that the integrity of

the dataset is preserved for subsequent analyses (38).

3 Results

3.1 Comparison between sessions in
pre-session values

Pre-session HR was statistically slightly higher in LFV in

comparison to No-vibration (p-value 0.023) (Figure 2). However,

no significant difference was found in pre-session lnRMSSD or

(LF + HF)/HR between the two sessions (p-value 0.164 and

p-value 0.645 respectively) (Figure 3).

3.2 Reactivity HRV

The reactivity HRVs (between pre and during-20) were not

different in all variables for LFV and No-vibration session

(p-value >0.05). A significant drop in HR between pre- and

during-40 was found in both sessions (p-value <0.001).

Additionally, we found a significant difference between No-

vibration and LFV at the during-20 time point showing a drop

of RMSSD only in the LFV session (p-value <0.001).

3.3 Comparison between pre-session and
post-30 min in both sessions

A significant time effect between pre- and post-30 was

observed for HR (p-value 0.003), which decreased, and

(LF + HF)/HR which increased in the LFV session only

(Figure 4) (p-value 0.035). No significant difference was observed

in RMSSD between pre- and post-30 in both sessions

(p-value >0.05).

3.4 Recovery HRV

The recovery HRVs (comparison between during-20 and post-

30) were significant in LFV for (LF + HF)/HR (p-value 0.007) and

lnRMSSD (p-value 0.015). No significant difference was seen

between during-20 and post-30 in all HRV variables and HR for

the No-vibration sessions (Figure 3).

3.5 Comparison between both sessions in
post-30 values

Post 30 min HR and HRV variables were not significantly

different in both sessions (p-value >0.05).

4 Discussion

This study aimed to investigate how HRV was modulated

during and after a LFV session compared to a No-vibration

session in healthy male participants. Consistent with the

literature on whole-body vibrations (39, 40), our findings
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revealed a significant increase in some parasympathetic nervous

system metrics 30 min after the LFV session.

It is well known that other interventions such as mindfulness

and short sleep can positively influence HRV variables (41–43).

Both sessions created relaxing environment, as participants were

free from distractions during the intervention. We observed HR

fluctuations during the No-vibration and the LFV session with a

significant decrease between baseline and during the intervention,

showing an increase in parasympathetic tone in both sessions,

that could be attributed to the environment of the experiment.

We found significant reactivity HRVs (changes in HRV

variables between pre- and during-20) only for the LFV session

FIGURE 2

State of HR (BPM) according to time in No-vibration and LFV. State of heart rate (BPM during sessions phases in two tests conditions (black: LFV; white:

No-vibration). *p < 0.05 significant differences with Pre; ***p < 0.001 significant differences with Pre; ££p < 0.01 significant difference with 20 min;
$$$p < 0.001 significant difference with 40 min; ☥p < 0.05 significant difference with Post; ##p < 0.01 significant difference with LFV session. The

analysis revealed significant main effects of SESSION [F(1,130)= 6.12, p= .0147, η2≈ 0.045] and TIME [F(2,130)= 5.71, p= .0042, η2≈ 0.042]. A highly

significant SESSION × TIME interaction was also observed [F(2,130)= 36.45, p < .0001, η2≈ 0.22], showing a more pronounced heart rate reduction

following the LFV session.

FIGURE 3

State of lnRMSSD according to time in No-vibration and LFV. State of Ln RMSSD during sessions phases in two tests conditions (black: LFV; white: No-

vibration). **p < 0.01 significant differences with PRE; ££p < 0.01 significant differences with 20 min; $$p < 0.01 significant differences with 40 min;
##p < 0.01 significant differences with post 5 min; &p < 0.05 significant differences with LFV session; &&p < 0.01 significant differences with LFV

session. A significant main effect of SESSION was found [F(1,130)= 4.61, p= .034, η
2
≈ 0.035], along with a significant main effect of TIME

[F(2,130)= 6.56, p= .0019, η
2
≈ 0.048]. There was also a significant SESSION × TIME interaction [F(2,130)= 32.51, p < .0001, η

2
≈ 0.20], indicating a

stronger time-dependent modulation under the LFV condition.
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in lnRMSSD, while the No-vibration session showed no difference

in HRV. Additionally, a significant difference was found at during-

20 between both sessions with a lower lnRMSSD in LFV. LFV

therefore seems to create an acute stress reaction on the body of

the participants, showing a decrease in HRV variables during the

session. It has been previously demonstrated that chronic

exposure to high dose of low-frequency noise during a lifetime

can induce vibroacoustic disease, showcasing the stressor effect of

such frequencies on the body (44, 45).

In contrast, recovery HRVs (comparison between during-20

and post-30) were found to be statistically different in two

variables (lnRMSSD and LF + HF/HR) for the LFV session

only. As this increase of HRV variables was also coupled to a

decrease in HR, we can assume an enhanced parasympathetic

tone thus favoring recovery capacity of the body after a LFV

session in comparison to the No-vibration session. When

analyzing the reactivity and recovery HRV metrics during the

LFV session, we observe a highly dynamic pattern, indicating

a significant physiological and psychological response to the

vibrations. In contrast, the No-vibration session demonstrates

relatively stable HRV metrics, reflecting minimal changes in

reactivity and recovery. The effect of a controlled acute

stressor on the body could therefore lead to an enhanced

recovery reaction of the body.

Comparing HRV variables between baseline (pre-session) and

after the intervention (post-30), we found no significant difference

in all HRV variables and HR in the No-vibration session between

pre- and post-30 measures. In contrast, LFV is showing a relative

boost (140.68%) in vagally-mediated HRV variables at 30 min

post-session in (LF + HF)/HR coupled by a decrease of HR.

A better understanding of the physiological process of LFV

would help understanding how the recovery could be affected by

this enhancement of HRV variables at 30 min post LFV.

Protocols of other studies investigating the link between LFV

and HRV being widely unhomogenized especially in the type of

vibrations and length of exposition, a direct comparison of our

results is not possible. Most of the literature is based on shorter

LFV sessions or is analyzing long-term effect of professional

exposure to LFV (5–7).

Despite variations in exposure frequencies, LFV has

consistently been shown to influence HRV. LFV has been shown

to modulate the ANS through various physiological mechanisms,

primarily via mechanotransduction and neural stimulation.

Mechanotransduction, the process by which mechanical stimuli

like vibration are converted into biochemical signals, occurs

through specialized mechanoreceptors such as Pacinian

corpuscles and Ruffini endings (46). These receptors transmit

afferent input to the central nervous system, where some signals

—particularly those originating from visceral or cervical regions

—may engage vagal afferents, contributing to increased vagal

tone and parasympathetic activation (47–49).

Additionally, vibration therapy has been linked to pain relief,

supported by the Gate Control Theory of Pain, where

mechanoreceptive input overrides nociceptive signals, thus

reducing pain and indirectly modulating the ANS by decreasing

stress (50, 51). Low-frequency vibrations influence central

nervous system pathways in the brainstem, creating a positive

feedback loop, leading to greater parasympathetic activation and

FIGURE 4

Comparison of (LF +HF)/HR between pre- and post-30 in No-vibration and LFV. Focus on the differences of (LF +HF)/HR between pre- and post 30 in

LFV (black) and No-vibration (white), *p < 0.05 significant differences with pre-. We can see a 166% increase in (LF + HF)/HR between pre- and post-30

in the LFV session vs. 121% in the No-vibration session. A strong main effect of SESSION was observed [F(1,130)= 27.24, p < .0001, η2≈ 0.17], while the

TIME main effect was not significant [F(2,130)= 1.67, p= .1917]. However, the SESSION × TIME interaction was significant [F(2,130)= 19.66, p < .0001,

η
2
≈ 0.13], suggesting a treatment-specific effect in the modulation of the (LF +HF)/HR ratio.
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a relaxation response (52–54). Finally, vibration affects muscle

spindles and Golgi tendon organs, proprioceptive receptors that

play a key role in muscle tension and tone regulation,

modulating both muscular and autonomic responses (46, 55).

The modulation of blood flow, facilitated by vibration-induced

muscle stimulation and enhanced circulation, may further

promote parasympathetic dominance, influencing blood pressure

regulation and overall autonomic tone (56, 57). Collectively, these

mechanisms suggest that LFV can be a valuable tool for

enhancing autonomic regulation.

Our study offers a new perspective on exposure to LFV on

HRV. It is important to note that AudioVitality’s technology is

unique and therefore making a direct comparison with previous

studies impossible. Nevertheless, our study results are going in

the same direction as previous literature, showing a positive

effect of LFV on HRV mediated variables and ANS stimulation.

Our study-design additionally offers an intra-subjects’

comparison which limit the high inter-individual’s differences in

HRV. Further studies with a similar technology could confirm

the validity of these results and put into perspectives the validity

of our results.

4.1 Limitations and recommendations

In our study, HRV measurements were limited to 30 min post-

intervention, raising questions about the duration of the post-

treatment effects. It remains unclear whether the observed effects

persist for a significant period, warranting further research into

the chronic impact of LFV. Additionally, our study examined the

effects of a single LFV session on HRV, while most AudioVitality

protocols involve multiple sessions. Despite the short duration of

our protocol, the results offer promising insights into the acute

effects of LFV and highlight the need to explore its potential

long-term benefits.

The study group consisted of healthy participants with no

major symptoms of fatigue nor pain. The extrapolation of the

results to other populations will need to be further assessed in

future studies.

The study’s design was constrained by the available technology,

as both LFV and No-vibration sessions needed to occur in the same

specialized environment. The lack of randomization possible with

such technology created an inherent limitation to our study

reducing internal validity. Another potential limitation of within-

subject designs is participant habituation to experimental

conditions (17). Nonetheless, our within-subject comparison

helps mitigate high inter-individual variability, strengthening the

reliability of the results despite these constraints.

We implemented strict standardization in measures, including

pre-test instructions and consistent measurement protocols.

However, some variations were still observed, such as a higher

resting heart rate in the LFV session. This suggests that stricter

control of external factors affecting HRV could be beneficial to

reduce variability and enhance the reliability of future studies

on LFV.

5 Conclusion

This study aimed to assess the impact of LFV on the ANS by

measuring heart rate variability in a healthy active male cohort.

Our findings demonstrated a significant increase in some vagal

tone markers post-intervention in the LFV session compared to

the No-vibration session. Although our technology differs from

those commonly cited in the literature, the results align with

other. Enhancing vagal tone through LFV could introduce a

novel approach to recovery technologies, with potential

applications extending to stress management. Further research on

LFV is needed to validate these findings and explore

broader applications.
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