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Introduction: Despite extensive testing efforts in anti-doping work, a persistent

gap remains between low doping detection rates and substantially higher

estimated doping prevalence in sports. Sample Retention and Further Analysis

(SFA), which allows samples to be stored for up to ten years for future testing,

offers a potential strategy to close this gap by increasing both detection and

deterrence of doping.

Methods: This study employs an agent-based modeling approach to simulate

interactions among key stakeholders: athletes, anti-doping organizations,

laboratories, and event organizers. The model captures athlete decision-

making regarding doping, influenced by perceived sanction certainty and

swiftness. SFA parameters, such as number of stored samples and duration of

storage, were systematically varied to assess their impact.

Results: Simulations show that increasing both the quantity of stored/retested

samples and the storage duration reduces doping prevalence. A combined

approach yields the strongest effect, with higher detection rates and lower

doping behavior. However, regression analysis reveals diminishing returns at

higher implementation levels, suggesting a non-linear effect.

Discussion: The findings provide quantitative evidence that SFA enhances not

only detection capacity but also deterrence by increasing the perceived long-

term risk of sanctions. Effective SFA implementation requires strategic

calibration to optimize impact. These results underscore the potential of SFA

as a key component in anti-doping strategies and call for empirical validation

and integration of additional behavioral factors in future research.
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Introduction

Deterrence against the use of prohibited substances in sports relies heavily on anti-

doping testing and sanctions, such as bans from competition when doping is detected

(1). Detection-based deterrence is a central paradigm of the global anti-doping system

(2). This is demonstrated by approximately USD 500 million allocated to anti-doping

efforts annually, with 48% of an Anti-Doping Organization’s (ADO) budget spent on

testing (3). However, the testing regimes of ADOs face criticism for their limited

detection rates (4, 5). This is because the percentage of positive test results is rather low
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at around 0.7%–1.2% WADA (6–15), while estimates on doping

prevalence in sports are considerably higher, with most ranging

between 5% and 18% [for a systematic review on doping

prevalence rates, see (16)]. Ideally, all instances of doping

contributing to prevalence would be detected, aligning the

prevalence rate with the incidence rate. However, current

statistics indicate a considerable gap between these rates,

highlighting the challenges faced by anti-doping efforts.

Thus, there is an ongoing debate about whether the

effectiveness of anti-doping can be adequately evaluated based on

detection rates (17). The effectiveness of anti-doping testing

hinges on its ability to accurately capture true positives, which

comprises two critical components: identifying all actual cases of

doping (maximizing sensitivity) and ensuring that as few false

positives occur as possible (maximizing specificity). However, the

limited alignment between incidence rates (the percentage of

positive test results) and estimated prevalence rates raises

questions about the information value of testing statistics. Testing

figures alone, such as the incidence rate, are not sufficient to

comprehensively evaluate the effectiveness of anti-doping

measures because testing serves a dual purpose: it not only

detects doping cases but also acts as a deterrent against doping

behaviors (17). Therefore, the success of anti-doping testing

cannot be judged solely by the proportion of positive results it

yields, as an effective deterrence mechanism reduces the

prevalence of doping by discouraging athletes from engaging in

such practices, irrespective of detection rates. Low incidence rates

might not necessarily indicate ineffective testing; they could also

reflect successful deterrence, where athletes are discouraged from

doping due to the perceived risk of detection and associated

penalties (18). Conversely, high incidence rates might indicate

robust detection capabilities but could also suggest limited

deterrence, as more athletes are willing to risk using prohibited

substances. To accurately evaluate the effectiveness of testing, it is

essential to consider both its ability to detect true positives and

its broader impact on reducing the overall prevalence of doping

in sport. Detection-based deterrence of testing can be perceived

as a credible deterrent if the certainty of a test result turning out

positive is perceived to be reasonably high (18, 19). This dual

role emphasizes the importance of integrating detection

capabilities with preventive strategies, such as education, to create

a comprehensive and effective anti-doping framework. Therefore,

it is unsurprising that a Delphi study with an international panel

of experts from both academia and anti-doping practice

identified the “effectiveness of anti-doping interventions” as the

most critical focus area in the research agenda for doping

prevention [(20), p. 7; (21)].

From the viewpoint of reliable doping detection, various

conditions must be met to effectively detect doping. WADA

guidelines addressed towards ADOs on how to implement

effective testing regimes (22), supplemented by technical

documents and letters [e.g., (23–25)] to address specific issues

(e.g., sport specific analysis, Athlete Biological Passport, dried

blood spot, specific drugs, etc.) are in place to serve this purpose.

For example, the doping sample must be collected at the right

time (i.e., at a time at which the doping substance is detectable

within the sample). Also, there must be knowledge of which

prohibited substances are potentially being used by the athlete

subject to testing. Moreover, the anti-doping laboratory’s sample

diagnostics must be reliable in detecting those targeted substances.

Machine learning approaches and Artificial Intelligence (AI),

enable to integrate diverse data sources, may support ADOs’

existing approaches of doping risk assessment based on data

such as competition results, biological markers, or demographic

factors of athletes (26, 27). Recent studies have leveraged

machine learning and other AI techniques in areas such as

performance monitoring, biomarker analysis (27, 28), or sample

fraud detection (29). These techniques were used, for example, to

flag anomalous performances or suspicious biological profiles

indicative of doping and demonstrated improved accuracy

compared to traditional approaches (27, 29). However, the

effectiveness of such AI-based methods depends heavily on the

quality and relevance of the underlying data and should be

complemented by domain-specific insights and established

profiling methods (30). When applied with care, AI techniques

and machine learning have the potential to support more

nuanced doping risk profiling, improve the timeliness and

accuracy of doping detection, and enhance the overall

effectiveness of ADOs’ testing strategies. Still, testing effectiveness

in detecting doping depends on intelligence, knowledge,

algorithms, and diagnostics available at the specific point in time

the risk assessment of testing regimes is conducted (22).

To bridge deficits in intelligence, knowledge, algorithms, or

diagnostics at that given point in time, WADA allows ADOs to

store collected anti-doping samples for up to ten years for future

re-analysis, referred to as sample retention and further analysis

(SFA) (22, 31). ADOs may initiate the re-analysis of a stored

sample, allowing them to retrospectively exploit newly gathered

intelligence on doping or improved detection diagnostics and

increase the long-term detection potential of testing (31).

Literature evidence supports this approach. For example,

analyzing data on Anti-Doping Rule Violations (ADRVs) in

international weightlifting, Kolliari-Turner et al. (32) showed that

61 weightlifters competing in the 2008 and 2012 Olympic Games

produced retrospective ADRVs due to the discovery of long-term

metabolites in the targeted re-analysis of retained doping control

samples, with 34 original medalists among the convicts. Kolliari-

Turner et al. (33) extend the analysis to ADRVs that have

impacted medal results at the Summer Olympic Games from

1968 to 2012, finding that 57% of all 134 ADRVs impacting

medal results were uncovered in the course of the SFA

application. These findings underline SFA’s ability to enhance the

long-term reliability of doping detection.

Recalling testing’s second goal of reducing doping prevalence

by imposing deterrence (17), deterrence theory postulates that a

higher (1) certainty, (2) severity, and (3) celerity of punishment

consequential to a crime leads to lower rates of criminal behavior

(19). From an athlete’s perspective, more reliable testing regimes

increase the perceived certainty of being caught and punished for

an anti-doping rule violation (ADRV), influencing an athlete’s

doping decision (18, 34). In sight of SFA application, the celerity

(or speed) of uncovering an ADRV through testing and imposing
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sanctions subsequently becomes relevant as another dimension of

effective deterrence due to allowing re-analysis of stored anti-

doping samples for up to 10 years (22). Following deterrence

theory, punishments or sanctions consequential to criminal acts

should arrive sooner rather than later after the offence to

increase deterrence (35). Consequently, SFA application presents

a trade-off between certainty and celerity of sanctions. The

longer anti-doping samples are stored, the higher the probability

of diagnostics improvement or new intelligence coming to light

that can be exploited for doping detection (as illustrated by

Kolliari-Turner et al. (32), but the lower the celerity of sanctions

consequential to an ADRV and the least it serves as an

effective deterrent.

Underlining this complex trade-off, Westmattelmann et al.

(34), surveying 146 elite athletes, highlight that SFA, despite its

ability to effectively detect doping retrospectively (32, 33), is

perceived by athletes as only a moderately effective anti-doping

measure. Athletes emphasize that “lost moments” (such as medal

ceremonies and media recognition following major victories)

cannot be fully restored after several years, and any financial

compensation provided is typically insufficient (27, 34, 36, 37).

Similarly, Kuuranne and Saugy (38) stress the importance of the

timeline defined for retesting in maximizing SFA’s deterrent

effect. Using a game-theoretic interaction model, Goetsch and

Salzmann (39, 40) explore how the implementation of SFA

influences athletes’ doping intensity within the framework of an

anti-doping testing strategy. They theoretically establish the

existence of a “doping-minimizing retesting scheme” and propose

that a coordinated, strategic application of SFA achieves greater

deterrence than randomized testing.

The discrepancy between actual doping behavior (represented

by the estimated doping prevalence rate) and detected doping

(represented by the share of positive test results) necessitates

further assessments of testing effectiveness. Previous research on

the effectiveness of anti-doping measures has focused on athletes’

perceptions [e.g., (34, 41, 42)], which do not reveal how the

extent of implementation affects athletes’ choices regarding

doping use, and, ultimately, the prevalence of doping. Only a

limited number of studies were conducted on athletes actually

sanctioned for ADRVs, with mixed results. Kirby et al. (43) and

Engelberg et al. (44) reveal that both individual psychological

factors and broader cultural influences play significant roles in

doping decisions, with athletes emphasizing that, e.g., guilt of

shame were predominant deterrents to doping rather than testing

and sanctions. Furthermore, these studies indicate that doping

tends to begin early in athletes’ careers and is normalized within

certain sporting cultures, complicating the establishment of

effective deterrents. Cox et al. (45) highlight similar issues among

a sample of Welsh rugby players, where concerns about the

effectiveness and legitimacy of doping controls underscore the

need for more research into the effectiveness of testing regimes.

Quantifying the effectiveness of anti-doping measures like SFA

and their effect on doping prevalence presents a major challenge

since reliable estimates of doping prevalence are lacking (16), and

no reliable indicator to measure anti-doping effectiveness exists

(46). To overcome the significant challenge of measuring the

effectiveness of long-term storage and sample retention—given

the lack of reliable empirical data and indicators—this study

employs an agent-based modelling approach. Agent-based

modelling allows for the simulation of individual athletes’ doping

behaviors and their interactions within an artificial environment,

capturing the complex dynamics of how athletes respond to

different anti-doping measures over time (47). By modelling

these micro-level decisions and interactions, agent-based

modelling enables us to predict and quantify the impact of

various SFA strategies on both doping prevalence and detection

rates (48, 49). This approach not only helps to fill the gaps left

by insufficient empirical estimations but also aids in identifying

effective strategies for long-term storage and sample retention. In

doing so, this study aims to quantify how SFA contributes to

testing’s dual objectives of deterrence (represented by SFA’s

influence on actual doping behavior) and detection (represented

by SFA’s influence on the share of detected doping). The

following research question guides the investigation:

What effect does SFA application in anti-doping testing have

on doping behavior and detected doping?

To address this research question, we employ an agent-based

modelling approach to simulate the impact of SFA application

on both doping behavior and detection rates among athletes. The

study is structured to first detail the methodology behind the

agent-based model, including the design of the model and the

parameters used for simulation. We then present the results of

our simulations, highlighting how variations in the number of

retested samples and storage durations influence doping

prevalence and detection. This is followed by a discussion of the

findings in relation to existing literature, emphasizing the

implications for both research and anti-doping practice. Finally,

we acknowledge the limitations of our study and suggest avenues

for future research to enhance the effectiveness of anti-doping

measures further.

Materials and methods

Methodology

This study seeks to predict how athletes’ doping behavior

changes in response to SFA strategies implemented by ADOs. To

achieve this, we develop an Agent-Based Model (ABM). The

ABM approach allows us to simulate a social system where

interactions among members result in emergent behavioral

patterns that cannot be fully understood by isolating individual

behaviors (50). This makes agent-based modelling a suitable

method for capturing the complexity of these interactions (51).

Furthermore, ABM provides a dynamic framework that more

closely mirrors real-world scenarios (52). Within this model,

entities, referred to as agents, interact in the social system

according to predefined rules, random elements, and diverse

decision-making processes (53). The capacity of agents to factor

in environmental conditions and the behavior of others when
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making decisions allows for a certain degree of autonomy in their

actions (50). As athletes make decisions regarding doping by

considering the behavior of other athletes, as well as potential

rewards or penalties related to competition outcomes, agent-

based modelling is a suitable tool for analyzing doping behavior

in elite sports with a high level of complexity (49).

Model description

The ABM integrates insights from previous research on anti-

doping as well as established practices in the field. The primary

objectives are twofold: first, to create a model that accurately

mirrors real-world scenarios, and second, to identify behavioral

tendencies or changes when varying model parameters related to

SFA application. Our Doping ABM simulates the interactions

between four key entities: (i) a sports event organizer, (ii) an

anti-doping organization, (iii) an anti-doping laboratory, and

(iv) athletes.

The Sports Event Organizer is responsible for planning and

executing a specific sports event, setting the prize money (PM),

and paying athletes based on their final rank in the

competition (54).

The Anti-Doping Organization (ADO), which represents

institutions like WADA, national anti-doping agencies, or

(International) Sports Federations, oversees doping prevention in

competitive sports. The ADO sets the Complexity of Anti-

Doping Rules (CAR), determining how intricate the rules are for

athletes to follow. Additionally, the ADO enforces sanctions,

such as bans (BAN) for athletes caught using performance-

enhancing drugs and may impose fines (FIN). Given that real-

world ADOs, as well as federations at both national and

international levels, have the authority to sanction athletes [see

(1)], this assumption is well-founded. For simplicity, the model

explicitly includes the role of ADOs in administering sanctions

while implicitly acknowledging the overlapping authority of

federations. Athlete agents, thus, face a system of punishment,

which serves as a potential deterrent to doping.

The Anti-Doping Laboratory is tasked with conducting

doping tests, much like WADA-accredited laboratories [see, (1)].

Two types of testing are considered: (1) regular testing, where all

collected samples are analyzed, and (2) long-term storage and

retesting of a subset of these analyzed samples. In regular testing,

the top three athletes by performance are tested (55). In

addition, while real-world testing is based on testing plans

developed through risk assessments and includes athletes from

the Registered Testing Pool (RTP) who are prioritized for testing

more frequently (22), this model simplifies the selection process

by randomly selecting additional athletes for testing, irrespective

of their rank (56, 57). This approach was chosen for three

reasons. First, publicly available information on the procedures

that ADOs use for targeted testing and SFA allocation is

extremely limited, so calibrating a realistic dynamic strategy

would require unverifiable assumptions. Second, a constant

selection procedure allows us to isolate the marginal deterrent

effect of SFA without conflating results with complex, uncertain

selection heuristics. Finally, a parsimonious representation keeps

the model tractable and the findings interpretable, thereby

providing a transparent baseline for subsequent extensions. This

simplification aligns with the aim of modeling general trends

rather than replicating exact operational processes. In this model,

the number of athletes tested regularly (NTE; Number Tested) is

fixed at 10. Thus, the top three athletes are always tested, with

seven more selected randomly. Future versions of the ABM can

replace the fixed NTE parameter with a risk-based sampling

function that maps athlete- or sport-specific indicators (e.g.,

performance variations, whistleblower information, biological

passport irregularities) to testing probabilities once those

indicators are empirically validated. Moreover, while all collected

samples must be analyzed immediately under current regulations,

a portion of these samples analyzed may also be stored for long-

term retesting, in accordance with WADA guidelines. The ADO

determines how many of these samples will be stored

(retesting_NTE) and the duration for which they will be stored

(stored periods). As previous studies [e.g., (58)] indicate, anti-

doping tests are not perfect since not all substances and methods

can be detected at any time, and this is reflected in our model.

Doping controls (both regular and retests) conducted by the

Anti-Doping Laboratory are imperfect, meaning not all doped

athletes are caught even if tested.

Our model assumes that diagnostic testing improves over time

as analytical techniques advance. In line with Westmattelmann

et al. (49), the control efficiency for regular testing is set at 20%.

However, the control efficiency for retesting (retesting_CEF)

increases incrementally, improving by 0.1 every two periods for

stored and retested samples, so that after two periods, it is 0.2;

after four periods, 0.3; and after eight periods, 0.4. In diagnostic-

testing terminology, the control-efficiency parameters (CEF,

retesting_CEF) capture the probability of a false negative, i.e., a

doped athlete who is not identified even when sampled and

tested. This may occur in instances where prohibited substances

or methods and their associated markers cannot be identified

through the utilised testing methodology. Alternatively, a false

negative of a doped athlete may occur when the substance is

actually not present in the sample, due to the collection of

the sample occurring outside the detection window of the

targeted doping substances or methods. The impact of false

negatives on an athlete’s doping decision can be attributed

to the “rational” athlete behavioral type, explained in the

following. A complementary event, the false-positive (clean

athlete incorrectly declared doped), is not modelled because its

empirical frequency in WADA-accredited laboratories is very

low, and every presumptive adverse finding is confirmed (or

refuted) through an obligatory B-sample analysis if requested by

the tested athlete (59). Nevertheless, we acknowledge that even a

very small false-positive risk may influence athletes’ subjective

perceptions of procedural justice. To make this explicit, we

assume the probability of a false positive to be 0 in the

baseline model.

The Athletes in the model are heterogeneous in their attributes,

with their main objective being income generation through

participation in competitions. The income is dependent on their
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ranking (RR) in the competitions (similar assumptions can be

found in (57, 60, 61). An athlete’s rank is a reflection of their

performance (PF) relative to other competitors. Performance is

determined by three factors: Fitness (FI), representing an athlete’s

talent, which can be enhanced through training; Constitution

(CO), representing their overall physical condition; and a

disturbance factor (DI), a random variable accounting for

external factors during the competition. Each of these

components is weighted (WF for fitness, WC for constitution,

and WD for disturbance) in the model (49). Hence, the athlete’s

performance can be defined in Equation 1 as:

PF ¼ WF�FI þWC�COþWD�DI

subject to: WF þWC þWD ¼ 1; WF, WC, WD � 0
(1)

At the start of the simulation, each athlete is randomly assigned

values for FI, CO, and DI within a range of 0–100. In subsequent

periods, FI and DI can be influenced by the athlete’s decision to use

doping, while DI remains randomly determined in each period. FI

reflects an athlete’s short-term condition, whereas CO represents

long-term physical health. Doping harm (DH) is introduced in

the model, as doping use is assumed to deteriorate the athlete’s

constitution over time. Eber and Thépot (62) introduce the

concept of health costs in their model, and Birzniece (63)

provides a comprehensive review of medical studies highlighting

the long-term effects of doping. In this model, doping harm

increases after doping use reaches a peak and then gradually

diminishes in the following periods.

The model also incorporates doping efficiency (DE), as

numerous studies suggest that doping enhances short-term

fitness [e.g., (60, 61)]. In our simulation, doping efficiency spikes

immediately after doping use and then gradually fades over the

next two periods. To calculate an athlete’s income for any given

period (IP), the model considers their prize money (PM)

alongside potential expenses like fines or doping costs, which are

influenced by their decision to dope (DO). Based on Haugen

et al. (64), the model distinguishes between three income scenarios:

1. The athlete dopes but is not caught. In this case, income equals

prize money from doping (PM_+) minus doping costs (DC).

2. The athlete dopes and is caught. Here, income equals PM_+

minus the penalty (LO), such as fines or a ban, and DC.

3. The athlete does not dope, resulting in income solely from prize

money (PM_-).

Lastly, following Hokamp and Pickhardt (65), who applied an

ABM to tax evasion, athletes in this model fall into one of four

behavioral types (BT): A-Type (rational), who weighs the costs

and benefits of doping (2); B-Type (suggestible), whose doping

decisions are influenced by their social environment; C-Type

(compliant), who refrains from doping due to moral reasons; and

D-Type (erratic), who may dope unintentionally due to a lack of

knowledge about anti-doping rules or mistakes in handling

potential contaminants that can lead to an AAF unintentionally.

B-type athletes, in particular, form social networks that may

include athletes from other behavioral categories.

Model execution

The model operates through a nine-step process in which the four

entities described earlier interact, adhering to predefined rules and

characteristics associated with their behavioral type. These

characteristics are set at the beginning of the simulation process.

The first step in the simulation process is to increase the agents’ age

by 1 year. Athletes who retire due to age are replaced by younger

athletes who enter the system with the same initial attributes. Before

the competition begins, athletes decide whether to engage in doping

for the upcoming competition. This decision is influenced by their

specific behavioral type, individual circumstances, and experiences

from previous simulation rounds. After this decision-making phase,

the competition takes place, and an initial ranking is generated

based on the athletes’ performance. Once the competition

concludes, the ADO implements its testing plan, which consists of

two parts. First, athletes are selected for regular testing based on

both the competition results and a randomized testing strategy. In

the second part, the ADO decides how many of the samples

collected during regular testing will be placed in long-term storage

and for how many storage periods these samples will be kept.

Following this, the analysis of samples from the current period is

executed by the Anti-Doping Laboratory, along with the analysis of

stored samples that are scheduled for retesting after their designated

storage duration has expired. Athletes caught using banned

substances or methods based on regular or retesting are sanctioned

by the ADO. These sanctions result in disqualification, which leads

to a revised ranking of the current competition if doping was

detected based on regular testing or to a revised ranking of a

competition finished a couple of periods ago based on retesting.

Based on these updated rankings, the prize money is redistributed

among the athletes who were not disqualified. Following this, the

ADO publishes statistics related to doping cases. The process then

repeats for subsequent periods. For a more detailed description of

each simulation step, please refer to Westmattelmann et al. (49).

Figure 1 illustrates the overall simulation process.

The Agent-Based Model (ABM) was developed using NetLogo,

version 6.1.1 (66). In the simulation, the number of stored and

retested samples (Retesting_NTE) was varied across five levels [2, 4,

6, 8, 10, while the storage duration (Stored periods) was varied

across four levels [2, 4, 6, 8]. These different combinations of stored

and retested samples, along with their storage durations, were

simulated in a total of 20,000 runs. Each simulation produced two

key outcomes:

1. Actual doping behavior is represented by the prevalence rate,

i.e., the share of athletes in the population who engaged

in doping.

2. Detected doping reflects the share of athletes who were caught

using banned substances during testing.

Model calibration

To ensure that our model accurately reflects real-world

conditions, we follow the parameter set proposed by
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Westmattelmann et al. (49), who calibrated their ABM with empirical

evidence wherever such data were available. Accordingly, for

example, BANned periods (BAN) were set to 4 periods, as

according to the WADC, a ban of up to four years is imposed for

first-time doping offenses (1). Following this, we assessed the

effects of different retesting strategies by varying the number of

stored and retested samples (retesting_NTE) and the storage

periods to evaluate their influence on both the share of doped

athletes (prevalence rate) and the proportion of detected athletes.

We began by simulating a status quo scenario to verify whether

the model could replicate a realistic setting. In this baseline scenario,

all four measures were set at 100% effectiveness. Specifically, this

scenario included an NTE of 10 athletes, a CEF of 20%, FIN set to

100 tokens, a BAN lasting four periods, a retesting_NTE of 4, and

a storage duration of four periods. To ensure comparability across

all simulated scenarios, the distribution of behavior types was kept

constant: A-type athletes made up 40%, B-type athletes 30%,

C-type athletes 20%, and D-type athletes 10% of the sample. For a

detailed overview of the parameter settings used in the model

calibration, refer to the Appendix Table A1.

Empirical plausibility checks

Research on doping prevalence highlights a wide range of

reported doping rates in competitive sports. These large

discrepancies are driven by high variability in athlete populations,

with factors like gender, sport-specific demands, or regional

disparities in anti-doping enforcement playing a key role.

Moreover, methodological variation across studies on doping

prevalence distorts comparability and the derivation of a robust

estimation (16). Prevalence estimates vary between 0% and 66.7%

based on self-reports and 0%–48% based on biological markers,

highlighting challenges of deriving a robust and meaningful

empirical estimation of doping prevalence. Within the ABM, the

status quo scenario simulation output yielded a share of doped

athletes of 26.15%. While our model does not aim to predict the

true doping prevalence precisely, the prevalence rate yielded by the

status quo simulations underlines that the ABM provides an

empirically sound framework that allows us to observe general

trends in how SFA application influences doping behavior.

Regarding the detection of doping, the share of detected

athletes in the status quo scenario simulation was on average

0.95%. This detection rate, as the second output of the

simulation model, aligns closely with the actual shares of Adverse

Analytical Findings (AAF) fluctuating around 1% reported by

WADA since 2013 and illustrated in Figure 2. Thus, the share of

detected athletes of 0.95% in the model can be considered a

reliable representation of real-world anti-doping enforcement,

also allows us to observe general trends in how SFA application

influences doping detection. Note that AAFs depicted in Figure 2

are inclusive of TUEs, which accounts approximately 10% of all

athletes with AAF, and athletes can have more than one test, and

more than one AAF, especially with TUE, in any given year.

The analysis of the simulation results consists of two parts.

First, the influence of the number of stored and retested samples,

the storage duration, and a simultaneous variation of both

measures on the prevalence rate and the proportion of detected

doping is visualized using two sensitivity analyses. Second, the

effect of stored and retested samples and storage duration on

both the prevalence rate and the proportion of detected doping is

quantified using regression analysis.

Sensitivity analysis

The sensitivity analysis conducted in this study aims to explore

the influence of two critical factors—(1) the number of stored and

FIGURE 1

Simulation process in the agent-based model for doping behavior and detection. Source. In accordance with Westmattelmann et al. (49).
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retested samples and (2) the storage duration—on both doping

behavior and the detection of doping. This analysis examines

how varying these two measures impacts the share of doped

athletes and the share of detected doping in the population over

time. Figures 2, 3 illustrate the outcomes of these variations

using three scenarios: number of retested samples, stored periods,

and simultaneous variation of both.

Doping behavior

As shown in Figure 3, the sensitivity analysis reveals a clear

inverse relationship between the implementation of anti-doping

measures and the share of doped athletes. Across all scenarios, as

the number of retested samples and storage periods increases, the

prevalence of doping behavior decreases. Notably, the simultaneous

variation of both retesting and storage periods (blue line) shows the

strongest effect in reducing doping behavior, suggesting that a

combined approach is most effective. In contrast, the effect of

adjusting the number of stored and retested samples alone (yellow

line) or storage periods alone (green line) is less pronounced but

still discernible. Increasing either measure individually results in a

gradual decline in the share of doped athletes. Here, the impact of

increasing storage periods is slightly larger than the impact of

increasing the number of stored and retested samples, illustrated by

the slightly steeper overall gradient of the green line.

Detected doping

The effect of retesting strategies on detected doping is

illustrated in Figure 4. Here, we observe a positive effect of the

intensity of anti-doping measures on the share of detected

doping cases. Like the doping behavior results, the simultaneous

variation scenario (blue line) produces the most significant

increase in detection rates, reaching over 2% at the highest levels

of implementation. This indicates that combining both the

number of retested samples and storage duration significantly

enhances the detection of doping over time. The number of

retested samples alone (yellow line) also has a considerable effect

on detected doping, with detection rates increasing steadily as

more samples are stored and retested. On the other hand,

varying the storage periods alone (green line) produces a more

gradual increase in detection rates, suggesting that the number of

retested samples is a more critical factor than storage duration

when it comes to improving detection.

Overall, the sensitivity analysis demonstrates that both the

number of stored and retested samples and the storage duration

have a significant impact on doping behavior and detection.

However, a combined approach that simultaneously increases

both measures yields the most effective results, reducing the

prevalence of doping while substantially increasing the

detection rate.

Quantifying effectiveness

To quantify the effect of the number of retested samples

(Retesting_NTE) and storage duration (StoredPeriods) on both

the share of doped athletes and the share of detected athletes, we

conducted two separate regression analyses. These analyses use

transformed predictor variables by taking the square root of

Retesting_NTE and StoredPeriods, which accounts for the non-

linear relationship observed in the sensitivity analysis. This

transformation helps to capture the diminishing returns of

increasing the number of retested samples and storage durations

FIGURE 2

Share of AAFs (2013–2022). Source. In accordance with WADA (6–15) results.
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FIGURE 3

Impact of retesting strategies on doping behavior: sensitivity analysis results.

FIGURE 4

Impact of retesting strategies on detected doping: sensitivity analysis results.
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on doping prevalence and detection rates. As the sensitivity

analysis demonstrated, the relationship between these anti-doping

measures and the share of doped and detected athletes is not

perfectly linear. Initially, small increases in retested samples or

storage duration lead to significant changes in doping behavior

and detection rates, but the marginal effects decrease as these

measures are scaled up. This finding is reflected in the non-linear

regression model, where the square root transformation accounts

for the non-linearity.

Shareof dopedathletes ¼ aþ b�(retesting NTE)^0, 5

þ c�(StoredPeriods)^0, 5þ 1

Shareof detectedathletes ¼ aþ b�(retesting NTE)^0, 5

þ c�(StoredPeriods)^0, 5þ 1

These equations indicate that the dependent variables (share of

doped athletes and share of detected athletes) are modelled as a

function of the square root of the independent variables

Retesting_NTE and StoredPeriods, plus a constant (a) and an

error term (ϵ). The regression coefficients (b and c) represent the

rate of change in the share of doped or detected athletes with

respect to each predictor, but at a diminishing rate, consistent

with the non-linear trends observed in the sensitivity analysis.

This approach allows for a more accurate representation of how

these anti-doping measures influence doping behavior and

detection over time.

Share of doped athletes

The first regression analysis examined the relationship between

the number of retested samples, storage duration, and the share of

doped athletes in the population. As shown in Table 1, both

predictor variables, the square root of Retesting_NTE and the

square root of StoredPeriods, had significant negative effects on

the share of doped athletes. The model’s constant was 44.78,

indicating that, without any retesting or storage interventions, the

baseline doping prevalence would be around 44.78%.

The coefficient for Retesting_NTE was −0.38 (p < .001),

meaning that as the number of retested samples increased, the

share of doped athletes decreased. Similarly, the coefficient for

StoredPeriods was −0.62 (p < .001), demonstrating that longer

storage durations also led to a reduction in doping prevalence.

Both factors contributed to a statistically significant model, with

an R2 value of 0.095, indicating that approximately 9.5% of the

variance in doping behavior could be explained by the retesting

and storage strategies [F(2, 19,998) = 1,054.2, p < .001].

Share of detected athletes

In the second regression analysis, the same predictor variables

were used to analyze their effect on the share of detected athletes.

As reported in Table 2, both variables showed a significant positive

effect on detection rates. The constant for the model was −1.09,

suggesting that without retesting or storage, the detection rate

would be close to zero, as expected, given the limitations of

immediate testing.

The coefficient for Retesting_NTE was 0.66 (p < .001),

indicating that increasing the number of retested samples

significantly raised the share of detected athletes. Likewise, the

coefficient for StoredPeriods was 0.41 (p < .001), meaning that

longer storage periods also contributed to higher detection rates.

The model explained 10.5% of the variance in detection

outcomes, with an R2 of 0.105 [F(2, 19,998) = 1,172.0, p < .001].

Discussion

Using an ABM, we quantified how variations in storage duration

and the number of retested samples influence athlete doping behavior

and detection efficacy. The sensitivity analysis and regression models

revealed that the number of stored and retested samples, along with

the duration of storage, significantly influence doping behavior and

detection outcomes in the implemented ABM. How ADOs could

improve the effectiveness of their testing regimes requires the right

combination of sample storage and retesting policies, tailored to

the specific context (e.g., country and sport-specific parameters).

Various scenarios to facilitate the contextually best strategies for

SFA application are discussed below.

Effectiveness of varying storage duration
and number of retested samples

When examining the effects of increasing the storage duration

and number of retested samples in isolation, an inverse relationship

emerges: An increase in storage duration has a greater impact on

reducing doping behavior. In contrast, an increase in the number of

retested samples has a stronger effect on increasing the detection

rate. This relationship is also reflected in the regression analysis,

where storage duration proves comparatively more effective in

reducing doping behavior, whereas the number of retested samples

is more effective in enhancing the detection rate. ADOs can

leverage this insight to design their testing regimes strategically.

TABLE 2 Regression results share of detected athletes.

Predictor B SE t P 95% CI

Constant −1.09 0.06 −19.93 <.001 [−1.19, −0.98]

sqrt(Retesting_NTE) 0.66 0.02 42.79 <.001 [0.63, 0.69]

sqrt(StoredPeriods) 0.41 0.02 22.63 <.001 [0.37, 0.44]

TABLE 1 Regression results share of doped athletes.

Predictor B SE T P 95% CI

Constant 44.78 0.19 233.9 <.001 [44.40, 45.17]

sqrt(Retesting_NTE) −0.38 0.05 −7.76 <.001 [−0.47, −0.29]

sqrt(StoredPeriods) −0.62 0.06 −11.28 <.001 [−0.73, −0.52]
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Following deterrence theory, the effect of increasing storage

duration on doping behavior implies that athletes perceive the

increasing certainty of detection over time (e.g., through novel

testing methods or advancements in intelligence and

investigations) as a particularly effective deterrent (19). Thereby,

the deterrent effect of increased certainty of sanctions outweighs

the negative impact of decreased celerity (swiftness) of sanctions.

Increasing storage duration consistently exerts a negative effect

on doping behavior. However, sensitivity analysis shows that the

effectiveness of longer storage durations diminishes over time:

The higher the storage duration, the flatter the marginal effects

on doping behavior if storage duration further increases. This

can be rationalized from the athlete’s perspective: If no sanctions

are feared over several years due to prolonged storage durations,

the short- to medium-term advantages of doping become more

attractive. In professional sports, short- to medium-term career

planning is predominant because of 4-year Olympic cycles (67)

or even yearly major championships [e.g., in athletics, (68)].

Larger prize money can be realized more immediately and with

greater certainty due to short-term doping advantages, while the

discounted value of a sanction decreases as its occurrence recedes

further into the future. This is especially relevant for athletes at

the end of their career, as the perception of risks, e.g., regarding

the consequences of prolonged bans from competition, is lower

compared to athletes at the beginning of their career (49).

Nonetheless, the marginal effect of extending storage duration

remains positive, even at already high levels.

Higher numbers of stored and retested samples are effective in

increasing the detection rates of doping. As underlined by Kolliari-

Turner et al. (33), a majority of ADRVs impacting Olympic medal

results can be attributed to the re-analysis of stored samples. This

can be explained based on the suboptimal efficiency of doping

controls, concerning available knowledge on doping, as well as

limited intelligence insights. Storing more samples for future re-

analysis using improved detection methods and leveraging gathered

intelligence likely increases the chance of positive findings through

more sophisticated, targeted retesting. The simulation results

indicate that increasing the number of stored and retested samples

can be an effective long-term strategy to enhance detection rates.

The results suggest that a combined approach, simultaneously

increasing both storage duration and retesting frequency, yields the

most effective outcomes in reducing doping behavior and

increasing the detection rate over time. ADOs employing SFA

should recognize that an intelligent combination of extended

storage durations and strategic retesting is the most effective

approach to reduce doping behavior and enhance doping detection

simultaneously. These findings provide implications for developing

effective testing strategies considering SFA implementation.

Contributions and implications

Methodological

The employed ABM presents a novel and robust

methodological approach in sports management research to

quantify the effectiveness of anti-doping measures, specifically

SFA application in testing regimes. This provides a substantial

methodological contribution to research aiming to quantify

anti-doping effectiveness, relating implementation levels of

anti-doping measures to two outcome variables: doping

detection rate and the doping behavior of athletes. By

establishing doping behavior as a quantitative indicator of

testing’s ability to deter doping practices, the research

addresses previous calls for clear indicators to measure doping

deterrence [e.g., (4, 17)].

Beyond its application to anti-doping, the ABM offers a flexible

framework that can be adapted to study other areas where

individual decisions impact collective outcomes. Importantly, the

model allows for capturing complexity and interactions by

enabling the simultaneous manipulation of multiple parameters,

such as the number of stored and retested samples and the

storage duration and observing their combined and non-linear

effects. This approach reveals that the impact of one measure

cannot be fully understood in isolation from the other,

underscoring the importance of considering the entire system

when evaluating anti-doping strategies.

Moreover, the ABM approach facilitates identifying optimal

parameter combinations. The results show that improving both

storage duration and the number of retested samples

simultaneously leads to more pronounced effects than varying

these parameters independently. This finding provides a

methodological advancement in guiding decision-makers in anti-

doping policy design, allowing them to strategically calibrate

multiple measures rather than relying solely on incremental

changes to individual parameters.

Even though comprehensive empirical validation against

longitudinal data that simultaneously track athlete doping

behaviour and detection trends under systematic SFA

implementation is not yet possible, the model is built on

assumptions that reflect the core architecture and processes of

the anti-doping system—explicitly representing Sport Event

Organizer, Anti-Doping Organization, Anti-Doping Laboratories,

and athletes. Its calibration draws on the latest anti-doping

governance instruments (e.g., the 2021 WADA Code, ISTI) and

current empirical research, ensuring that behavioural and

operational parameters are evidence-based (69). Consequently,

the two model outputs—overall doping prevalence and detection

rate—fall within empirically observed ranges reported for elite

sport (7–16), underscoring their realism. Empirically testing

whether the magnitudes of the SFA effects revealed by our

simulations mirror real-world outcomes is, however, impossible

with the data presently available. No longitudinal dataset links

specific sample-retention parameters to subsequent ADRVs.

Although case-based evidence such as Kolliari-Turner et al. (32,

33) indicates that SFA can uncover additional ADRVs, these

fragmented data are insufficient for a formal validation of our

system-level findings. This paucity of comprehensive field data

highlights the necessity of alternative approaches like ABM,

which allow researchers and policy-makers to explore and

optimise anti-doping strategies that cannot yet be

examined empirically.
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Theoretical

In quantifying the effectiveness of SFA application in reducing

doping behavior and increasing detection rates, this study

contributes to delineating the dual objectives of testing regimes

(17). It provides actionable advice on how to adjust testing

efforts targeted towards effective deterrence or reliable doping

detection. From the perspective of deterrence theory (19), an

increase in the certainty of punishment through SFA application,

enabled by retaining doping control samples for future analysis,

comes at the expense of the celerity of punishment. The

simulation results suggest that increasing storage duration

significantly contributes to the deterrence effect of SFA,

suggesting that increased certainty of being caught doping and

sanctioned outweighs the reduced celerity of sanctions.

Moreover, the findings highlight non-linear deterrence

dynamics, demonstrating that the effects of SFA measures do not

scale proportionally with their intensity. As implementation levels

of SFA rise, the marginal gains in deterrence begin to decrease.

This non-linear pattern enhances our theoretical understanding by

indicating that simply increasing SFA measures without

considering their diminishing returns may be less effective in the

long run. Further, the results underscore the temporal dimension

of deterrence, showing that the prospect of eventual detection—

due to sample storage and the later application of improved

diagnostics—shapes athletes’ decision-making beyond immediate

competitive cycles. Over time, this introduces a forward-looking

consideration for athletes, who must weigh the risk of being

caught in the future against the short-term benefits of doping.

Thereby, a contribution to further understanding the

dimensions of deterrence theory is given in the context of

detection-based deterrence through anti-doping testing.

Accordingly, the SFA application in anti-doping presents

insightful evidence of celerity as a highly relevant dimension of

deterrence outside the criminal justice system, as suggested by

Pratt and Turanovic (70). This study advances the social science

literature on anti-doping by quantifying the effectiveness of

applying SFA in testing regimes. It directly aligns with the anti-

doping research priorities highlighted in a Delphi study by

Boardley et al. (20), which stressed the need to assess the

effectiveness of anti-doping interventions and education programs.

Practical

ADOs and (International) Sports Federations responsible for

planning testing regimes should recognize that at the time of

sample collection and initial testing, not all factors critical to

effective doping detection are known. For instance, knowledge of

abused substances is limited, and detection methods of anti-

doping laboratories or (AI) algorithms supporting ADOs’ doping

risk assessment are still under development. Although intelligent

and fast detection of doping through testing would be desirable,

current testing statistics on low detection rates suggest that a

satisfactory detection rate cannot be achieved in current testing

regimes. Therefore, our results underline that designing testing

strategies with a priority on SFA application can enhance the

long-term effectiveness of detection.

If detection is focused, emphasis should be placed on extensive

and targeted retesting of stored samples. Particular attention

should be paid to the quality of collected doping control samples

(e.g., simultaneous long-term storage of both urine and whole

blood samples), which are robust in results management and

well-established to be subject to a multitude of analytical

approaches (58). Storage duration should be sufficiently long to

enable effective detection. ADOs must carefully consider the

right timing of targeted retesting, considering factors such as

emerging intelligence or new detection methods of anti-doping

laboratories that present promising opportunities for identifying

doping violations. While advancements in artificial intelligence

(AI) and machine learning offer promising tools for refining

doping risk profiling, their use must be guided by specific

intelligence and supported by meaningful data. As highlighted in

recent studies [e.g., (30)], performance profiling based on

physiological and competitive data may currently offer a more

robust and validated approach. ADOs should therefore carefully

consider not only emerging technologies but also the contextual

relevance, interpretability, and quality of the data they are based

on when determining the timing and targets for sample storage

and retesting.

Conversely, if the aim is to reduce doping behavior through

deterrence in the first place, the results suggest that samples

should be stored for longer periods to maximize the deterrent

effect. To achieve a sufficient deterrent effect within the overall

athlete population, samples of a multitude, if not all, athletes of a

testing pool should be stored for extended durations, making

adequate storage capacity a priority. The number of samples

retested should be sufficient to uphold the credibility of testing

and sanctions as a deterrence mechanism. Analytical detection

methods employed should be chosen appropriately, particularly

when no specific evidence on doping exists for the retested

samples and re-analysis is conducted for preventive reasons. For

deterrence purposes, sample types that can be collected in large

quantities and are easy to store for long periods, such as dried

blood spot samples, are particularly suitable (71, 72).

Our results show that both the number of stored samples and

the number of retested samples decrease the doping behavior and

increase the detection rate. Those effects are strongest when SFA

is (initially) introduced in a small scale and weaken with

increasing scopes of implementation. In practical anti-doping

work, ADOs must consider their unique conditions under

which SFA shall be implemented (e.g., testing budget and

personnel, laboratory and storage capacities, or number of

athletes overseen in testing pools). As a general baseline,

WADA provides a template for developing an SFA strategy

compliant with current regulations (73). Especially for ADOs

not currently implementing SFA, our results underline that a

small-scale implementation with manageable complexity can be

an effective anti-doping measure. Also, anti-doping laboratories

or testing service providers offer flat fees for sample analysis,

storage and retesting, facilitating their consideration in the

ADOs anti-doping budget (3, 74). With larger-scale
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implementation and diminishing returns of SFA implementation,

prioritization frameworks suitable to the ADOs unique conditions

are essential. More sophisticated decision-support tools and (AI-

assisted) algorithms are likely necessary to transfer SFA

strategies compliant with current anti-doping regulations into

actionable and effective test distribution plans under

consideration of an ADOs unique budgets, costs, and resources.

Additionally, effective communication of testing activities to

athletes is crucial to make SFA a credible deterrent. Informing

athletes about, e.g., sample storage durations, retesting

procedures, and advancements in detection methods reinforces

the perception of SFA as an effective measure against doping.

Limitations and future research

The current simulation model primarily emphasizes testing

and SFA application as detection-based deterrence measures,

omitting other anti-doping measures, such as whistleblowing

systems or anti-doping education to detect doping or prevent

doping in the first place (34). Future iterations of the ABM could

integrate these additional measures to offer deeper insights into

their effectiveness. Nonetheless, any extensions to the model

should be added incrementally to allow for a clearer

understanding of emergent effects. Additionally, while the

model’s approach to selecting athletes for testing simplifies the

real-world process by relying on random selection (beyond the

top three performers), actual anti-doping testing plans are based

on risk assessments and prioritize Registered Testing Pool

athletes for more frequent testing. This simplification does not

fully capture the risk-based, intelligent testing strategies employed

by ADOs, where testing plans are continuously adapted based

on, for example, intelligence, athlete performance profiles, or

sport-specific doping risks. While our simplification facilitates

model tractability, it limits external validity, and future iterations

of the ABM could integrate intelligent testing strategies better

mirroring real-world practices of ADOs. WADA testing statistics

highlight that not all adverse analytical findings through testing

are actual ADRVs (11). More specifically, although the model

accounts for imperfect detection efficiency in the form of false

negatives, we do not endogenize false-positive findings. While

this reflects their very low empirical incidence, future ABM

extensions could test how even minimal false-positive risks alter

athletes’ cost–benefit calculus.

Moreover, the ABM represents athletes through four behavioral

archetypes (rational, suggestible, compliant, and erratic). Although

these categories are grounded in empirical observations [see

(49, 69)], they cannot encompass the full range of moral

reasoning, psychological traits, and social influences that shape

doping behavior. In reality, athletes may display mixtures of the

four archetypes whose relative weight shifts across contexts and

over time (49). Therefore, the current model does not capture

dynamic moral disengagement processes or affective states that

recent literature identifies as critical determinants of doping

decisions (75, 76). Future versions of the ABM could move

toward hybrid or continuous behavioral profiles and allow these

to evolve longitudinally in response to life events or policy changes.

Finally, even though our model’s simulated detection rate

closely matches WADA’s official statistics, and the estimated

doping prevalence, while inherently difficult to measure, is

reasonably accurate (16), simulation models for prediction often

face criticism [e.g., (77)]. The simulation results should,

therefore, not be treated as empirical evidence but rather as

quantitative indications of SFA effectiveness that may guide its

practical implementation in ADOs testing regimes.

Conclusion

This study underscores the potential of SFA implemented into

anti-doping testing regimes, demonstrating its ability to inform

anti-doping strategies that can both reduce doping prevalence

and enhance detection rates. The findings highlight that longer

storage durations effectively deter doping by increasing the

perceived certainty of detection, while higher retesting

frequencies are able to increase detection rates. Importantly, a

combined approach yields the most impactful outcomes,

reducing doping prevalence and increasing detection rates

simultaneously. As the ABM simulation results are validated

against real-world statistics, this study enables the derivation of

actionable recommendations for ADOs on how to apply SFA in

a variety of testing scenarios. Future research should explore the

application of SFA together with complementary measures to

provide a more comprehensive approach to doping deterrence.

These insights contribute to advancing both research on the

effectiveness of anti-doping work (17) as well as anti-

doping practice.
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Appendix

TABLE A1 Overview of parameter setting for ABM.

Variable Function Value Calibration

Sports event organizer

PM Prize money for

tournament

[0; ∞] 100,000

Anti-doping organization

CAR Complexity of anti-

doping rules

[0; 1] 0.2

BAN Number of banned

periods after being

detected

[0; 8] 4

FIN Fine after being detected [0; 400] 100

Anti-doping laboratory

CEF Control efficiency [0; 1] 0.2

NTE Number of tested athletes [0; N] 10

Retesting_CEF Control efficiency of

retesting

[0; NTE] See analysis

Storage

duration

Periods of sample storage [0; 8] See analysis

NDO Number of doped athletes [0; N] Endogenous

SDO Share of doped athletes [0; 1] Endogenous

NDE Number of detected

athletes

[0; N] Endogenous

SDE Share of detected athletes [0; 1] Endogenous

Athletes

AD Indicates whether athlete

is detected

[“yes”;’ no’] Endogenous

AG Athlete’s age [minage, maxage] At random

BA Indicates whether athlete

is banned

[0;1] Endogenous

BT Behavioral type [A; B; C; D] A = 0.4

B = 0.3

C = 0.2

D = 0.1

CO Athlete’s constitution [0; 100] At random

DB Decision value for

comparison with CAR for

BT D

[0; 1] At random

DC Doping costs [0; ∞] 10

(Continued)

TABLE A1 Continued

Variable Function Value Calibration

DE Doping efficiency [0; 1] 1

DH Doping harm [0; 1] 0.5

DI Athlete’s disturbance [0; 100] At random

DO Doping decision [‘-’; ‘+’] Endogenous

FI Athlete’s fitness [0; 100] At random

FT Athlete’s initial fitness [0; 100] At random

ID Unique ID for every

athlete

[0; N-1] Endogenous

IP Income for respective

period

[0; PM] Endogenous

IW Hypothetical income

WITH doping

[0; PM] Endogenous

IX Hypothetical income

WITHOUT doping

[0; PM] Endogenous

LO Loss by getting detected

as doper

[0; PM] Endogenous

PF Athlete’s performance [0;

maxperformance]

Endogenous

RD Hypothetical rank if

athlete is doped

[1; 100] Endogenous

RN Hypothetical rank if

athlete is not doped

[1; 100] Endogenous

RR Realized rank [1; N] Endogenous

SD Share of doping in

network

[0; 1] Endogenous

SN Social network [(list)] At random

SO Successful doping in

social network

[0; 1] Endogenous

SP Subjective detection

probability

[0; 1] At random

SR Subjective risk perception [0; 1] At random

SS Size of social network [0; N] At random

TY Tournament year [1; 21] Endogenous

UD Utility for doping [0; 1] Endogenous

UN Utility for NO doping [0; 1] Endogenous

WC Weighting of constitution [1—(WD +WF)] 0.4

WD Weighting of disturbance [1—(WC +WF)] 0.2

WF Weighting of fitness [1—(WC +WD)] 0.4

Source. In accordance with Westmattelmann et al. (49).
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