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Aim: This study aimed to assess the biomechanics of handcycling propulsion

under various exercise modalities in elite handcyclists with special emphasis

on the work distribution between the push and pull phases.

Methods: Three elite handcyclists in the H3/4 categories (women = 2)

performed several lab tests on their own handbikes that were equipped with a

powermeter (P9, SRM GmbH) to detect crank torque at 200 Hz. They

performed a submaximal graded exercise test, a ramp test until exhaustion,

two sprint tests, and a time-to-exhaustion trial at maximum aerobic power.

Crank kinetics and joint kinematics were synchronized with surface

electromyography of eight upper-extremity muscles.

Results: The female athletes relied more on the pull phase, while the male

handcyclist seemed to favor the push phase (∼10% more work). Shoulder and

elbow flexion were almost unaffected by intensity, whereas other shoulder,

wrist, and trunk angles changed individually. Even more differences were

found in muscular activation patterns between athletes and they demonstrated

high variability in the abdominals. During the time-to-exhaustion, we observed

intensified work distributions (for the push and pull phases) and constant

patterns. Muscular fatigue was identified in different muscles for the three

athletes and covered the descending trapezius, abdominals, and anterior

deltoid, respectively.

Conclusion: These findings indicate that the biomechanics of handcycling

propulsion are highly individual among elite handcyclists and may be

influenced by their classification, handbike setup, and muscular capabilities.

We encourage future research to replicate this study in a larger cohort and

examine how work distributions and other biomechanical parameters change

over time to individualize training prescriptions in athletes.

KEYWORDS

surface electromyography (sEMG), fatigue, wheelchair athletes, cycling, VO2max,
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1 Introduction

Biomechanical research is essential in Paralympic Sports to gain profound insights into

movements that are highly individualized. These insights allow for technical optimization,

injury prevention, evidence-based classification, and improved performance (1).

Measurements include assessment of kinetics, kinematics, muscular activity, and

musculoskeletal modeling approaches. Even though research mainly focuses on
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technical optimization (1), combinations of biomechanical and

physiological measures seem to be promising for holistic

characteristics of human exercise (2).

Handcycling is a form of paracycling for athletes with lower-

extremity impairments and/or spinal cord injury (SCI) who are

unable to ride a conventional road bike or tricycle (3). After

being included in the World Championships (1998) and

Paralympic Games (2004), handcycling has gained popularity as

a competitive and recreational sport (2, 3). Compared to manual

wheelchair propulsion, it allows one to cover larger distances in a

shorter period of time with less strain (4, 5).

Performance during time trials (15–22 km) in competitive

handcyclists seems to be related to several physiological

measures, including lactate threshold (r = 0.93), ventilatory

thresholds (r = 0.92–0.96), peak oxygen uptake (r = 0.88–0.89),

maximal aerobic power (r = 0.85), efficiency (r = 0.73–0.80), and

relative bench pull (r = 0.77) and press (r = 0.70) (6, 7). It was

found that persons with tetraplegia have a lower lactate threshold

compared to persons with paraplegia (54 ± 15 vs. 111 ± 25 W),

with similar differences observed between recreational

(91 ± 21 W) and competitive (137 ± 15 W) handcyclists (8, 9).

Optimizing the handbike-user configuration was highlighted to

be important in recreational and competitive users (2, 3). While

∼80% of recreational users found their pedal position to be

optimal, ∼50% stated that their sitting position needed

improvement (10). These statements highlight the need for an

individualized handbike configuration among recreational users. In

competitive handcyclists, comfort and stability were mentioned to

be crucial considerations, whereas the support and padding

solutions were found to be inadequate (11). A maximal crank

distance of 97%–100% of arm length (acromion to the end of the

fifth metacarpal) was found to be the most economical in terms of

oxygen consumption (12), whereas a narrower distance of 94%

was recommended to allow for a more even work distribution (13).

Synchronous handcycling propulsion is characterized by a

cyclic transition between the push and pull phases. The whole

cycle (360°) is usually characterized by the cranks pointing

forward (0°), downward (90°), backward (180°), and upward

(270°) (3). One revolution can be divided into six sectors that

characterize the push (150°–330°) and pull phases (330°–150°)

(14). The push phase includes the lift-up, push-up, and push-

down sectors and the pull phase covers the press-down, pull-

down, and pull-up sectors.

Most studies found a higher work distribution in the pull phase

(13–18), whereas one study in competitive handcyclists observed a

more productive push phase (19). Women (able-bodied) produced

even more work in the pull phase compared to men (14). Changing

the handgrip angle had a significant effect on the pull-down and

lift-up contributions (14), whereas an increase in crank distance

from 94% to 103% arm length resulted in an increase in pull

phase distribution from 62% ± 7% to 69% ± 8% (13). With longer

cranks, peak torque was higher and occurred earlier in the crank

cycle (19). In able-bodied participants, the pull phase distribution

increased during the course of a graded exercise test and during

a 30 min constant load trial at lactate threshold (17, 20). In a

recent review, inconsistencies in crank kinetics and joint

kinematics between studies were traced to variability in reporting,

experimental setup, handbike configuration, and the participants’

experience (21).

Joint kinematics of handcycling seem to be affected by the gear

ratio (22), crank position (13) and length (19), exercise intensity

and duration (17, 20, 23), and performance level (9). Despite

competitive handcyclists demonstrating more thorax flexion

(∼5°), shoulder extension (∼10°), and posterior scapular tilt

(∼15°), no differences in handbike configurations were found (9).

In able-bodied participants, an increase in shoulder abduction

and internal rotation and a decrease in shoulder and elbow

flexion were negatively associated with performance in a graded

exercise test (17). Cyclical motions of the limbs and joints are a

consequence of corresponding muscular activity, which is

predominantly assessed by surface electromyography (sEMG).

Muscular activity and its coordination profiles during

handcycling propulsion have been studied in able-bodied novices

(20, 23–25) and a single case of an elite handcyclist (26, 27).

Faupin et al. (24) published the first holistic combination of

synchronized crank kinetics, joint kinematics, and muscular

activity at moderate intensity in an able-bodied participant. In a

similar attempt, Litzenberger et al. (26, 27) assessed the effect of

backrest and crank position on kinematics and muscular activity.

While kinematics demonstrated only minor changes, a shift in

muscular activity on/offset was found (26, 27). In the 10 years

following this single case, there has not been a scientific update

on elite recumbent handcycling.

This study aims to assess the biomechanics of handcycling

propulsion under various exercise modalities in several elite

handcyclists with a special emphasis on the work distribution

between the push and pull phases. Thus, we build upon our

extensive work in able-bodied participants under various exercise

modalities (17, 20, 23, 25). Given the body of knowledge, it

seems obvious that elite handcyclists have to be studied in their

own individualized handbike, which makes measuring kinetics

quite challenging. A measurement device that detects tangential

torque at 200 Hz on the handbike seems to solve this problem.

Based on our previous work, we hypothesize that the pull phase

is used to a higher extent at (a) higher intensities and (b) during

the course of muscular fatigue.

2 Methods

2.1 Participants

Three elite recumbent handcyclists (two women, one unilateral

amputee, two athletes with an SCI) in the H3/4 categories

Abbreviations

BB, M. biceps brachii (Caput breve); DA, M. deltoideus (Pars clavicularis); DP,

M. deltoideus (Pars spinalis); FC, M. flexor carpi radialis (forearm flexors);

iEMG, integrated EMG (%MVIC); MVIC, maximum voluntary isometric

contraction; PM, M. pectoralis major (Pars sternalis); RA, M. rectus

abdominis; RPE, ratings of perceived exertion; SCI, spinal cord injury; sEMG,

surface electromyography; TB, M. triceps brachii (Caput laterale); TD,

M. trapezius, Pars descendens; tlim, time to exhaustion.
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participated in this study. All three athletes (P01, P02, and P03)

were (former) medalists at the World Championships and/or

Paralympics, including the 2024 Paris Games. P01 is a male H3

handcyclist with an SCI, P02 is a female H4 athlete with

unilateral amputation, and P03 is a female H3 athlete with an

SCI. All the tests were performed in 2023. The inclusion criteria

were defined as recent participation in international events and/

or membership of a national team. Medical peculiarities that

prevented participants from exhaustive exercise and acute

complaints of the upper extremities were the exclusion criteria.

Athletes gave their written informed consent before participating

in this study. The study was approved by Ethics Committee of

the German Sport University Cologne (112/2023) and complied

with the standards of the 1975 Helsinki Declaration modified

in 1983.

2.2 Procedures

The tests were performed on their own recumbent racing

handbike, which was mounted on a fully calibrated and validated

ergometer (Cyclus 2, 8 Hz, RBM electronic automation GmbH,

Leipzig, Germany). Crank arm length ranged from 155 (P02) to

165 mm (P01/P03). A powermeter (PM9, 200 Hz, Schobener Rad

Messtechnik GmbH, Jülich, Germany) was installed on the

handbikes to detect tangential crank kinetics and crank position

at a high temporal resolution. A cooling fan was used during

strenuous exercise testing.

The handcyclists performed all the tests on a single day with

physiological exercise testing until noon and biomechanical

measurements in the afternoon. After receiving a medical check-

up, including a resting electrocardiogram, the participants

performed a submaximal graded exercise test until lactate

concentration exceeded 4 mmol/L. The test started with an

intensity of 20 W and increased every 5 min by 20 W (17, 28).

At the end of each step, 20 µl blood samples were taken from the

right earlobe and analyzed using a stationary analyzer (Biosen

C-Line, EKF-diagnostics GmbH, Barleben, Germany). The power

output corresponding to a lactate concentration of 4 mmol/L was

interpolated linearly (29). Throughout the graded exercise test,

the participants wore an airtight silicone oro-nasal mask (7450

Series, V2TM, Hans-Rudolph, Inc., Shawnee, KS, USA) to record

oxygen uptake and carbon dioxide output breath-by-breath using

a metabolic cart (ZAN 600 USB, nSpire Health, Inc., Longmont,

CO, USA). After the graded exercise test, a 10 min cool-down at

a self-selected intensity was performed.

After 1 h of rest, the participants performed a ramp protocol

until voluntary exhaustion to determine maximal power output

and maximal oxygen uptake. The ramp test started with an

initial work rate of 80 W for 10 min, which increased by 5 W

every 15 s. Post-exercise lactate concentration was recorded

immediately after exhaustion, and at 3 and 6 min following

passive recovery. Afterward, a 10 min cool-down at a self-selected

intensity was performed, followed by a >2 h lunch break.

In the afternoon, the participants were prepared for motion

capture and sEMG. A total of 50 retro-reflective markers were

placed on the handbike, ergometer, and anatomical landmarks

according to the UpperLimb-Model and these were tracked by

infrared cameras (200 Hz, MF-F40/14, Vicon Motion Systems

Ltd., Oxford, UK). Kinematics included shoulder flexion,

abduction and internal rotation, elbow flexion, and wrist

movements (palmar flexion and radial duction). In accordance

with recommendations of the International Society of

Biomechanics (ISB), trunk orientation in the sagittal plane was

determined as previously described by using a marker array

attached to the sternum (17).

Wireless sEMG electrodes (Delsys® TrignoTM, Boston, MA,

USA) were used to record muscular activity of the M. biceps

brachii (BB); M. triceps brachii (TB); M. deltoideus, Pars

clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. pectoralis

major, Pars sternalis (PM); M. trapezius, Pars descendens (TD);

M. rectus abdominis (RA); and forearm flexors (FC). Electrode

positions and skin preparation were in accordance with the

guidelines of surface electromyography for the non-invasive

assessment of muscles (SENIAM) (30). Muscular activity patterns

were assessed as the crank angles where the sEMG values

exceeded a threshold of 30% of a muscle’s local amplitude/range

(max–min) (26, 27). The on- and offsets of this threshold and

the range of activation demonstrated good to excellent reliability

if 6–10 consecutive revolutions were averaged, respectively (25).

The normalization of sEMG signals was in accordance with

previous research, indicating that sport-specific maximum

voluntary isometric contractions (MVICs) are suitable for the

TB, DA, and DP (31). During these tasks, the ergometer was

blocked with a steel pin that was placed in a hole in the

ergometer’s brake disk (31). Accordingly, the participants

performed three MVICs for 2 s each at fixed crank angles of 0°,

90°, 180°, and 270°. Simultaneously, crank torque measurements

were recorded as sport-specific strength testing. Furthermore,

muscle-specific normalizations were performed for the FC

(hydraulic hand grip dynamometer), TD (shoulder elevation

task), BB (elbow flexion task), and RA (trunk flexion task) (31).

For biomechanical measurements, the participants performed

two 15-s all-out sprints that started at 0° (first sprint) and 180°

(second sprint), respectively. This was due to the fact that (1)

handcyclists tend to use different starting positions in a race and

(2) the starting position may influence kinetics, kinematics, and

muscular activity. Between the sprints, the athletes recovered for

>10 min. Afterward, the participants performed three trials each

at low and medium intensity at 50% and 100% of lactate

threshold power, respectively. Finally, a high-intensity and

fatiguing time to exhaustion test was performed at the maximal

power attained in the ramp test. Work distributions were

averaged in quartiles (Q1–Q4) to compare the athletes during

this trial. In other words, we quantified the average work

distribution from 0% to 25%, 25% to 50%, 50% to 75%, and 75%

to 100% of the individual time to exhaustion to account for

potential fluctuations in work distribution. To provide a more

practical illustration in a bar chart, work distribution was

expressed as a percentage that tended toward the push (positive

values) and pull phases (negative values). For example, if 60% of

the rotational work is performed in the push phase, a value of
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+10% would be illustrated. Conversely, if 55% of the rotational

work is performed in the pull phase, a value of −5% would

be illustrated.

2.3 Processing

Data processing was performed in RStudio 4.1 and augmented

by several packages and Python scripts that are available in the

provided code. Spirometric data were averaged for the last 30 s of

each step of the graded exercise test. The fractional utilization of

oxygen uptake at 4 mmol/L lactate concentration was linearly

interpolated. For the ramp test protocol, a fourth-order, zero-lag

Butterworth filter was applied to determine maximal oxygen

uptake (32). In terms of the power data, the first (in-) complete

revolution and the last two revolutions of each submaximal trial

were not used for data extraction. The only exception to this was

the sprint tests, which included the first revolution.

Biomechanical analog data were converted from .c3d to .csv

using Python code. sEMG data were rectified and filtered with a

200-ms moving average (31). Crank kinetics were synchronized to

the motion capture and sEMG by detecting the initial movement

of the cranks (which was recorded in both systems). This was

possible as the sEMG units have three-axis accelerometers

installed. As such, biomechanical measurements had to start from

a stationary position and were recorded for approximately 5 s

before the actual (∼25 s) trial started. Synchronization was applied

using the first optical reference of movement in the motion

capture (marker on the cranks) and sEMG unit acceleration

(forearm). All the trials, especially the MVICs, were visually

inspected by two independent examiners to ensure usefulness. The

sEMG data were rectified, smoothed using a 200-ms moving

average, and normalized to the highest amplitude recorded in any

of the MVIC trials for each muscle. Kinematics were processed

according to previous work by using a fourth-order low-pass

Butterworth filter with a cut-off frequency of 0.2. Given the fairly

low sample size, we did not perform inferential statistics and

focused on a visual representation/interpretation of elite

handcyclists’ biomechanics. The datasets, codes, and analyses for

this study can be found on GitHub.

3 Results

The handcyclists demonstrated a lactate threshold of

140 ± 33 W, a maximal oxygen uptake of 46.6 ± 6.9 ml/min/kg,

and a fractional utilization of 69 ± 18%. Time to exhaustion at

maximum ramp test power was ∼1 min for all athletes.

3.1 Work distribution across trials and
sectors

Except for the ramp test in P02, P02 and P03 demonstrated amore

pronounced pull phase with values ranging from −5% to −15%

(Figure 1). In contrast, P01 tended to produce more work during the

push phase (∼10%) in the afternoon trials, whereas the opposite was

observed in the average distribution during the graded exercise and

ramp test. Differences between sprints (0° and 180°) were fairly low,

except for P01, who demonstrated a 4% reduction of push-phase

distribution when starting in the 180° (initial push) position.

Work distributions across the six sectors demonstrated

substantially more variability between the handcyclists (Figure 2).

Figure 2 illustrates the average torque and sector distributions for

all the participants at their individual lactate threshold (4 mmol/L).

The average push-to-pull ratios of P01 (62/38), P02 (39/61), and

P03 (38/62) indicated similarities in the female handcyclists. Even

though the average pull sector distribution was approximately 20%

in P02/03, the sector distributions differed by up to 7%. P02 had a

more even distribution in the pull-down and pull-up sectors (25%

each), whereas P03 had a higher pull-down (32%) and lower pull-

up (19%) contribution. Similarly, P03 had higher push-up (21%)

and lower push-down (8%) contributions compared to P02 (15%

and 13%, respectively). Conversely, P01 had even higher push-up

and push-down contributions of 26% and 21%, respectively.

However, all the handcyclists demonstrated fairly low press-down

(10%–12%) and lift-up (9%–15%) contributions.

3.2 Kinematics and muscular activity across
intensities

Joint kinematics demonstrated similar results across

handcyclists for elbow and shoulder flexion, which were hardly

affected by exercise intensity (Figure 3A). In contrast, intensity

seemed to affect shoulder internal rotation, shoulder abduction,

trunk flexion, and wrist movement the most. Interestingly,

shoulder internal rotation and abduction largely increased in P01

and decreased for P02/03 with increasing intensity. Based on

trunk angle, P02 had a more upright position.

Inter-individual variability was found to be even higher with

respect to muscular activity profiles (Figure 3B). Despite an

earlier onset of the BB and TD in P02 and an earlier onset of

the DA and TB in P03, these athletes tended to show

comparable activation profiles. In contract, P01 demonstrated

completely different profiles—especially at low and medium

intensity. With increasing intensity, P02 had an earlier onset of

the TD, FC, BB, and PM, whereas P03 had a later onset of the

PM and a shorter period of co-contraction between the BB and TB.

3.3 Work distribution and muscular activity
during the time to exhaustion trial

Work distributions demonstrated a more pronounced push

phase (P01), a more pronounced pull phase (P02), and a

constant distribution (P03) during the course of the ∼1 min time

to exhaustion test (Figure 4A). Whereas P01 shifted from +4% to

+8% more push, P02 shifted from −4% to −10% more pull. In

contrast, P03 kept the distribution at −7% to −8% more pull.

Muscular activity demonstrated rather heterogeneous

activation behavior between the participants (Figure 4B). P01
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FIGURE 1

Work distribution profiles of all participants and conditions in terms of the push and pull phases. The push phase was defined as crank angles of 150°–

330°. A value of +10% represents a dominant push phase of 60%, whereas a value of −15% represents a dominant pull phase of 65%. c4, power output

according to a blood lactate concentration of 4 mmol/L; c50, power output equivalent to 50% of c4; gxet, graded exercise test (average); ramp, ramp

test (average); sprint-1, first sprint starting at a crank angle of ∼0° (initial pull); sprint-2, second sprint starting at a crank angle of ∼180° (initial push);

tlim, time to exhaustion test (average).

FIGURE 2

Mean torque profiles (black line) and section distributions (colored bars) at the onset of blood lactate accumulation (4 mmol/L). The bars illustrate the

relative distributions of the six sections in the whole rotational work distribution. Their relative contribution is also displayed as numeric decimals.

A value of 0.20, for example, indicates that this section distributes a total of 20% of the total rotational work, which is higher than an even

distribution of 1/6 = 16.66%. Sections were determined according to previous studies (14, 17).
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demonstrated a substantial increase in TD activity (up to >75%

MVIC), whereas P02 had a huge increase in RA activity (almost

50% MVIC). Interestingly, P03 demonstrated a reverse U-shape

activation that peaked at approximately 50% of the time to

exhaustion for the DA, BB, TB, PM, TD, and RA. While power

output was maintained during the trial of P03, the cadence

substantially dropped at this point.

4 Discussion

To the best of our knowledge, this is the first study to report the

kinetics, kinematics, and muscular activity during handcycling

propulsion under various exercise modalities in several elite

handcyclists. We found that the work distribution varied between

athletes, intensities, and fatigue states. The differences were even

more pronounced when illustrating the sector distributions.

Exercise intensity affected the joint angles outside the sagittal

plane the most, but these alterations were not consistent between

the athletes. The same was true for muscular activity profiles that

demonstrated an earlier onset of some muscles at higher

intensities. During a short-term (high-intensity) fatiguing time-

to-exhaustion trial, all n = 3 handcyclists coped differently and

demonstrated increased muscular activity on an individual level.

This indicates that peripheral muscular fatigue is highly

individual, even in elite handcyclists.

4.1 Work distribution

In accordance with previous research in able-bodied

participants (14), the female handcyclists produced

substantially more work during the pull phase. Even though

this may be related to lower arm extensor strength in women,

this specific group of participants does not allow for a

generalized explanation. The fact that one of the athletes was

classified as an amputee handcyclist may be responsible for the

higher reliance on the pull phase. It has been found that

athletes with normal lower limb function who are able to

perform a closed-chain (the feet are actively pressing against

the footrests) had a +11% higher pull performance, when

compared to those without lower limb function (33). However,

FIGURE 3

Joint kinematics (A) and muscular activation patterns (B) at low, medium, and high intensity. Low intensity was defined as 50% of the power output

corresponding to a 4 mmol/L lactate concentration. Medium intensity was identified as the onset of the blood lactate concentration (4 mmol/L). High

intensity was identified as the maximum power output attained in the ramp test protocol. BB, M. biceps brachii (Caput breve); DA, M. deltoideus (Pars

clavicularis); DP, M. deltoideus (Pars spinalis); EF, elbow flexion; FC, M. flexor carpi radialis (forearm flexors); PF, palmar flexion; PM, M. pectoralis major

(Pars sternalis); RA, M. rectus abdominis; RD, radial duction; SA, shoulder abduction; SF, shoulder flexion; SR, shoulder internal rotation; TB, M. triceps

brachii (Caput laterale); TD, M. trapezius (Pars descendens); TF, trunk flexion.
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this does not apply to the other female athlete, who had a similar

high reliance on pull phase contribution.

The higher work distribution in the push phase seems to fit

with previous findings in competitive male handcyclists (19). We

did not observe a higher reliance on the pull phase in the

athletes with a higher crank force-aft position, as experimentally

highlighted in able-bodied athletes (13). In contrast to previous

findings in able-bodied males (17, 20), the elite handcyclists did

not demonstrate an increased pull phase with higher exercise

intensity and duration. This could indicate that years of

experience lead to highly individual coping mechanisms that are

not present in able-bodied novices. Given the fairly easy

measurement of crank kinetics, these findings can be applied to

real-life recordings during races.

4.2 Joint kinematics

In accordance with previous studies that demonstrated

differences in kinematics between recreational and competitive

handcyclists (9), the results of this study seem to (slightly) differ

from those in able-bodied participants (17). An increase in

shoulder abduction and internal rotation and a decrease in elbow

and shoulder flexion with increasing power output were only

observed in one of the participants (17). Hence, the results of the

previous work do not seem to apply to (all) elite handcyclists.

The position of the highest and lowest elbow flexion was shifted

compared to studies in able-bodied participants (17, 20, 23) and

more aligned with findings in an elite handcyclist (26, 27). This

is most likely due to the even more recumbent position of the

handcyclist on current racing handbikes. Given the fact that

elbow and shoulder flexion and shoulder abduction are affected

by crank length (19), the data of this study were probably

affected by the individualized handbike setups, which hinders a

standardized comparison between the athletes. The measurement

of joint kinematics in handcycling relies mostly on an extensive

setup in laboratories and is thus less accessible when compared

to crank kinetics and sEMG.

4.3 Muscular activity

Muscular activation profiles demonstrated the highest inter-

and intra-subject variability among all the measurements. On

the one hand, this may be due to the fact that sEMG is highly

sensitive to sweat contamination and thus prone to artificial

signals. On the other hand, it may be due to highly

individualized participant characteristics. It is difficult to

compare these findings to the single elite handcyclist case (26,

27) and to able-bodied novices (20, 23, 25). Given that

activation profiles shift with different crank positions (27), this

aspect definitely hinders a comparison. However, especially for

the BB and PM, our results seem to align with previous

studies (25, 27), except for the first published able-bodied

single case (24).

In contrast to previous work in able-bodied participants (20,

23, 25), a substantially increased and altered activation profile of

the DP with exercise intensity and duration was not observed in

the elite handcyclists. This is an interesting finding as it indicates

that this rather small muscle, which initiates the pull phase, may

FIGURE 4

Work distributions (A) and muscular activity (B) during the course of the time to exhaustion trial. The intensity was individualized as the highest power

output attained in the ramp test protocol. BB, M. biceps brachii (Caput breve); DA, M. deltoideus (Pars clavicularis); DP, M. deltoideus (Pars spinalis); FC,

M. flexor carpi radialis (forearm flexors); PM, M. pectoralis major (Pars sternalis); Q 1, first quartile; Q2, second quartile; Q3, third quartile; Q4, last

quartile; RA, M. rectus abdominis; TB, M. triceps brachii (Caput laterale); TD, M. trapezius (Pars descendens); tlim, time to exhaustion.
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not be a deficit in highly trained handcyclists when compared to

recreational able-bodied triathletes. We know that all the

included participants in the present study performed regular

resistance exercise in their training. We speculate that the yearly

exposure to handcycling and accompanying resistance training

diminishes the deficits of smaller muscle groups compared to

large muscle groups. Hence, combining measures of crank

kinetics (including crank position) with sEMG allows us (a) to

understand the interplay between muscles during different

phases of propulsion and (b) to assess how activity profiles are

affected by exercise intensity, duration, and fatigue. We argue

that this may explain most of the individuality in propulsion

characteristics, which may be improved with certain

training protocols.

4.4 Limitations and future directions

Given the low sample size of n = 3 athletes and the

consequently explorative nature of this report, these results

cannot be generalized to all elite handcyclists. However, these

findings indicate that even on a highly experienced level,

biomechanical measures and coping strategies can substantially

vary across practitioners. Another limitation arises from the one-

dimensional crank kinetics. Having the opportunity to record

3D-kinetics on the handcyclists own handbike would allow for

further insights such as symmetries and fractional effective force

(15, 16). In this study, we evaluated a time-to-exhaustion of

approximately 1 min. Even though this seems to be useful for

examining fatigue, this is clearly below the demands of team

relay events that typically cover several high-intensity bouts of

approximately 3 min. Hence, expanding the spectrum of trials is

necessary to gain even more specific insights. Another expansion

worth exploring is musculoskeletal modeling that can be fitted

with data similar to that in this study (21). In addition,

combining biomechanical and physiological measurements allows

for more insights in the mechanics and energetics of handcycling

propulsion (1, 2, 12).

As with all Paralympic sports, individuality and heterogeneity

across athletes (even within the same category) make

standardized comparisons challenging, especially in a field that

requires a mechanical setup. However, we did not control for

crank position in terms of arm length or handbike model.

Another aspect worth investigating is the comparison of left

and right sides in terms of kinematics and muscle activity, as

already performed in a single case (26, 27). Coupled with

unilateral strength testing, this would allow to evaluate if and

why certain asymmetries exist. Initially, we hoped to measure

athletes twice to assess modifications over time. Thus, we

encourage future studies to examine how these biomechanical

aspects change due to training. Recently, modeling kinematics

during handcycling using inertial measurement units and a

temporal convolution network was found to result in

reasonable results that may be more easily applied in real-world

settings (34). At least in terms of crank kinetics, the

implemented powermeter allows for field-testing, even during

major events, and, as such, may guide coaches and athletes to

improve performance.

In conclusion, this case series indicates that the

biomechanical aspects of handcycling propulsion are highly

individual among elite handcyclists. Differences between

athletes were observed in kinetics, kinematics, and, most

notably, muscular activity. It seems that different mechanisms

of muscular recruitment and/or fatigue underlie the patterns

observed in exhaustive exercise. These findings could be helpful

to improve individualized conditioning and training among

handcyclists. In particular, measures of crank kinetics can be

recorded outside the laboratory and provide real-life data on

the road that are of particular interest for improving individual

technique, strategy, and pacing. However, given the small

sample size and heterogeneity in terms of handbike

configuration, classification, and sex, we cannot draw

generalized conclusions.
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