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Purpose: Cardiorespiratory fitness (CRF) independently predicts cardiovascular
disease risk and mortality. In addition, body composition levels characterized
by excess adiposity (fat mass) and low levels of fat-free mass (FFM) are
strongly associated with poor health status. The relationship between CRF and
body composition, especially indices adjusted for height [fat mass index (FMI),
fat-free mass index (FFMI)] has not been well established in otherwise
healthy adults.
Methods: A sample (n= 82) of adults completed measures for body composition
using dual-energy x-ray absorptiometry and estimated V˙O2max by way of an
Åstrand-Rhyming submaximal cycle ergometer test. Total daily energy
expenditure (TDEE) and moderate-to-vigorous physical activity (MVPA) were
measured using a SenseWear Armband activity monitor. The associations
between body composition (FMI, FFMI), and CRF were examined using
multiple linear regression models adjusting for sex (model 1) and TDEE (model 2).
Results: Participants were young (age: 24 ± 9 year), 64% female, with a BMI of
25.4 ± 4.9 kg·m−2. The mean absolute and relative estimated V̇O2max were
3.02 ± 1.0 L·min−1 and 42.1 ± 12.2 ml·kg−1·min−1, respectively. FMI was negatively
associated CRF (L·min−1) in model 2 (B=−0.106, 95%CI −0.16, −0.05, p < 0.001)
but not model 1 (B=−0.011, 95%CI −0.03, 0.01, p=0.271). FFMI was positively
associated with CRF (L·min−1) (model 1: B=0.087, 95%CI 0.03, 0.14), p=0.004)
but not after adjusting for TDEE (model 2: B=0.026, 95%CI −0.07, 0.12,
p=0.585).
Conclusion: FM adjusted for height (FMI), but fat-free mass (FFMI), is negatively
associated with cardiorespiratory fitness in adults.
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Introduction

A mounting body of evidence has shown that excess levels of adiposity are associated

with insufficient levels of physical activity (PA) and increased sedentary behavior (1, 2).

The coupling of insufficient PA levels and evaluated obesity rates resulted in the

reduction of cardiorespiratory fitness (CRF), the ability to perform large muscle,

dynamic, moderate-to-vigorous intensity exercise for prolonged periods. CRF is a strong

predictor of all-cause mortality in healthy adults (3, 4), and older adults, independent

of total adipose tissue levels (5). A meta-analysis found a dose-response relationship by

which for every 1-metabolic equivalent of task (MET) higher level of CRF was
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associated with an 11%–17% reduction in all-cause mortality (6).

The relationship between CRF and obesity is often neglected in

routine health assessment, despite the strong relationship

between the two (7, 8). Furthermore, low CRF may be an early

indicator of insulin resistance in individuals at risk for type 2

diabetes (9).

Studies indicate there is a negative relationship between body

mass index (BMI) and CRF, whereby excess body weight is

associated with lower CRF (10–12). However, the utility of BMI as

an accurate measure of adiposity is constant under scrutiny. The

use of gold-standard methods for body composition analysis, such

as dual-energy x-ray absorptiometry (DEXA), provides more

accurate and precise methods of body composition, especially fat-

free mass (FFM). However, prior studies often only focus on total

FFM and fat mass (FM) and exclude indices of body composition

and height, called FFM index (FFMI) and FM index (FMI).

Adjusting FM and FFM for height is important as height takes

into account body size as prior evidence suggests taller individuals

have greater lung volume (13, 14); therefore, height may

contribute to an individual’s fitness levels (15). Additionally, prior

studies examining the relationship between body composition and

CRF often neglect to adjust for physical activity levels using

wearable devices (16). Therefore, this study aims to determine the

relationship between submaximal CRF and body composition

indices (FFMI and FMI) in adults. Previously, Goran et al.

reported that FFM was the strongest determinant of aerobic

capacity (V̇O2max). Additionally, after adjusting for FFM, and FM

does not impair maximal aerobic capacity (17). Therefore, based

on these findings by Goran et al., we hypothesizes that FFMI, will

be positively associated with CRF but not FMI.

Materials and methods

Overall study design

The participants were healthy males and females recruited via

flyers, e-mail, and word-of-mouth as volunteers. Participants were

included if they were adults between the ages of 18 and 69, not

pregnant, lactating or attempting to become pregnant or have

any condition that precludes them from wearing a band on their

left arm (e.g., left breast mastectomy). All participants completed

and signed both a physical activity readiness questionnaire (PAR-

Q) and written informed consent before partaking in research

activities. Those who answered “yes” to any line on the PAR-Q

were required to obtain written consent from their physician to

participate. Anyone unwilling to sign the informed consent was

excused from the study. The Institutional Review Board (IRB)

approved all study procedures for human participants. Informed

consent was obtained from all participants included in the study.

Anthropometrics

Participants had their height and body weight (BW) were

measured using a SECA 763 digital scale and stadiometer (SECA

North America, Chino, CA, USA) in minimal athletic attire.

Prior to the height and weight measurements, participants

removed their shoes and any excess clothing or jewelry. Height

was measured to the nearest 0.1 cm and body weight was

measured to the nearest 0.1 kg. We calculated body surface area

(BSA) using the DuBois equation (18). Whole-body dual x-ray

absorptiometry (DEXA) scans were performed using a Hologic

Discovery QDR Series (Hologic, Inc., Bedford, MA, USA)

densitometer to measure body composition. The densitometer

was calibrated daily using a whole-body phantom. The Hologic

software provides measures of whole-body and regional fat mass

(FM), lean mass, percent body fat (BF), and bone mass. We used

the two-compartment model of body composition to include FM

and FFM. FFM was calculated by subtracting the total BW from

FM. FMI and FFMI are defined as the mass of fat and lean

tissue relative to height in meters squared, respectively. Resting

heart rate (RHR), systolic (SBP), and diastolic blood pressure

(DBP) were measured after a 5-minute resting period using an

automated blood pressure machine (WelchAllyn, Skaneateles

Falls, NY, USA).

Cardiorespiratory fitness and
physical activity

After completing measures for body composition, participants

completed a submaximal cycle ergometer test to estimate aerobic

capacity (V̇O2max). Participants were fitted with a Polar heart rate

monitor (Polar Electro Inc., Lake Success, NY, USA) around the

thoracic region just below the sternum. A Monark 828 cycle

ergometer (Monark Exercise AB, Vansbro, Sweden) was used for

the Astrand-Rhyming cycle ergometer test to measure predicted

V̇O2max (19). Participants were instructed to pedal at 50

revolutions per minute (RPM). During the 6-minute protocol,

bike resistance increased every 3 min so the participants’ heart

rate was between 125 and 170 beats per minute (BPM). If the

participant’s heart rate was not within that range after 6 min,

bike resistance increased again, and the test was extended by

3 min. The test continued, with resistance increasing every 3 min,

until the participant’s heart rate was within range for two

consecutive minutes. Once the participant reached the target

heart rate range, the resistance declined, and the test ended. The

participant then pedaled for another 1–3 min to cool down.

Results from the test were collected via the MicroFit

HealthWizard 5 software (MicroFit Inc., Fresno, CA, USA).

Physical activity and total daily energy expenditure (TDEE)

were assessed with the SenseWear Armband (SWA, BodyMedia

Inc., Pittsburgh, PA). The armband uses minute-by-minute

measurements of tri-axial accelerometry, galvanic skin response,

skin temperature, heat flux, and near-body temperature to

estimate energy expenditure using proprietary regression models

(Version 7.0 professional) (16). The SWA provides accurate

estimates of TDEE and physical activity of free-living adults (20,

21). All participants were instructed to wear the SWA

continuously for 7 days, only removing the SWA when bathing/

showering or swimming. Adherence to wearing the SWA was
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defined as duration on the body of ≥20 h/day (85% daily

adherence). Less than 10% (n = 8) of participants fell below the

20-hour cutoff for SWA data; their SWA data was not included

in the final analysis. The average wear time for the participants

who were adherent to the SWA wear time (n = 74) was

1,383.4 ± 54.5 min·d−1 (∼23 h·d−1).

Statistical analysis

Data are reported as mean ± standard deviation (SD) unless

otherwise stated. An independent samples t-test was run to

compare demographics between sexes. Pearson correlation

coefficients were calculated to examine the relationships between

anthropometrics (e.g., FMI) and CRF separated by sex. A linear

regression analysis was conducted using aerobic capacity,

reported in absolute (L·min−1) and relative (ml·kg−1·min−1)

terms, as the dependent variable, and body composition (BW,

BSA, BF, FM, FFM, FMI, FFMI) as the independent variables

(22). We recognize that the traditional expression of CRF is in

relative terms (ml·kg−1·min−1), which adjusts for body weight;

however, analyzing relative CRF and body composition (kg) may

overinflate the explained variance between body composition and

CRF (16). Therefore, we will focus our analysis on comparing

body composition variables to absolute CRF (L·min−1) but report

the comparisons with relative CRF (ml·kg−1·min−1) in the

supplemental material. Two models were developed. Model 1

included sex and anthropometric measures (i.e., BMI, FFMI),

and model 2 included the variables in model 1 with the addition

of total daily energy expenditure (TDEE, kcal·d−1), as TDEE

correlates with CRF (r = 0.733, p < 0.001).

We did not perform an a priori power calculation as part of the

study. However, a post-hoc power analysis was conducted using

G*Power 3.1 to determine the observed power with an effect size

of 0.15 (medium), an alpha level of 0.05, and either two

predictors (n = 80; Model 1: sex and anthropometrics) or three

predictors (n = 74; Model 2: Model 1 + TDEE). There was an

86.9% power in Model 1 and 78.3% power in Model 2 to detect

a true effect, respectively. Collinearity tolerance and variance

inflation factor (VIF) statistics were calculated for each model.

Multicollinearity exists when the variance inflation factor (VIF) is

greater than 5–10 and the tolerance is lower than 0.2,

respectively (23). All statistical analyses were completed in SPSS

(Version 23, IBM SPSS), and all figures were generated using

GraphPad Prism (Version 10.3.1, GraphPad Software, LLC,

Boston, MA, USA).

Results

The final sample included eighty adults, and all the participants

were non-smoking. The CRF data for two participants were

missing; therefore, they were excluded from the final analysis.

Additionally, less than 10% (n = 8) of participants fell below the

20-hour cutoff for SWA data, and their SWA data were excluded

from the final analysis (Model 2). The average wear time for the

TABLE 1 Demographics and anthropometrics in the full sample and by sex.

Variable All (n = 82) Males (n = 29) Females (n= 53) P value males
vs. females

Mean ± SD Range Mean ± SD Range Mean ± SD Range

Age, years 24 ± 9 17.0–60.0 26 ± 10 18–59 23 ± 9 17–60 0.28

Height, cm 168.63 ± 11.5 114.6–199.6 178.6 ± 8.7 166.1–199.6 163.3 ± 8.9 114.6–178.3 <0.001

Weight, kg 72.75 ± 16.8 46.6–135.5 83.1 ± 1.8 63.1–105.0 67.2 ± 16.5 46.6–135.5 <0.001

BMI, kg·m−2 25.3 ± 5.0 18.0–46.5 26.1 ± 3.5 21.4–35.9 24.8 ± 5.5 18.0–46.5 0.20

RHR, bpm 73.89 ± 13.0 47.0–112.0 67.6 ± 10.4 50.0–90.0 77.3 ± 3.2 47.0–112.0 0.002

SBP, mmHg 116.58 ± 12.5 92.0–156.0 122.9 ± 11.2 106.0–156.0 113.2 ± 11.8 92.0–151.0 0.002

DBP, mmHg 75.25 ± 8.5 60.0–98.0 74.2 ± 7.5 60.0–87.0 75.8 ± 8.9 60.0–98.0 0.43

Absolute CRF, L·min−1 3.02 ± 1.0 1.3–5.7 3.8 ± 0.93 1.97–5.73 2.6 ± 0.69 1.3–4.3 <0.001

Relative CRF, ml·kg−1·min−1 42.1 ± 12.2 19.1–83.20 46.5 ± 10.0 23.3–67.8 39.8 ± 12.7 19.1–83.2 0.01

BF, % 28.8 ± 8.6 9.8–49.6 21.5 ± 5.2 15.4–35.7 32.7 ± 7.4 9.8–49.6 <0.001

FM, kg 21.3 ± 9.2 10.8–63.3 18.1 ± 6.2 11.2–35.5 23.1 ± 10.2 10.8–63.3 0.02

FFM, kg 52.1 ± 12.9 32.2–82.5 65.4 ± 8.7 46.0–82.5 44.7 ± 8.0 32.2–74.2 <0.001

FMI, kg·m−2 7.6 ± 3.4 3.6–21.7 5.7 ± 2.0 3.6–10.8 8.5 ± 3.6 4.6–21.7 <0.001

FFMI, kg·m−2 17.1 ± 3.0 12.4–31.4 20.5 ± 2.3 16.7–25.5 16.8 ± 3.2 12.4–31.4 <0.001

FFM:FM 2.7 ± 1.1 1.0–5.5 3.8 ± 0.97 1.8–5.5 2.1 ± 0.61 1.0–3.8 <0.001

BSA (m2) 1.8 ± 0.23 1.2–2.4 2.0 ± 0.16 1.7–2.3 1.7 ± 0.20 1.2–2.4 0.55

TDEE, kcal·d−1
a

2,698.6 ± 638.3 1,637.0–4,489.0 3,315.3 ± 489.3 2,519.0–4,499.0 2,328.6 ± 377.6 1,637.03,216.0 <0.001

AEE, kcal·d−1
a

706.3 ± 413.4 38.0–2,499.0 989.4 ± 455.3 249.0–2,499.0 536.4 ± 273.0 38.0–1,386.0 <0.001

ST, min·d−1
a

1,257.8 ± 74.2 716.0–1,406.0 1,245.6 ± 66.5 945.0–1,345.0 1,265.1 ± 78.3 716.0–406.0 0.18

MVPA, min·d−1
a

125.8 ± 58.3 6.0–270.0 149.7 ± 55.9 41.0–255.0 111.5 ± 55.5 6.0–270.0 0.01

TST, mina 384.2 ± 45.3 180.0–522.0 392.3 ± 48.0 274.0–522.0 379.2 ± 43.4 180.0–459.0 0.23

Bold indicates significance values, p < 0.05.

Mean ± SD, [Range]; BMI, body mass index; BSA, body surface area; RHR, resting heart rate; SBP, systolic blood pressure; diastolic blood pressure; CRF, cardiorespiratory fitness; BF, body fat;

FFM:FM, fat-free mass-to-fat mass ratio; FFM, fat-free mass; FFMI, fat-free mass index; FM, fat mass; FMI, fat mass index; TDEE, total daily energy expenditure; AEE, active energy

expenditure; ST, sedentary time; TST, total sleep time; MVPA, moderate-to-vigorous physical activity.
aSense wear Armband (SWA) includes those who were adherent (≥20 h/day, 85% daily adherence): n = 74.
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participants who adhered to the SWA wear time (n = 74) was

1,383.4 ± 54.5 min·d−1 (∼23 h·d−1). Table 1 describes the

demographics of all participants, separated by sex. On average,

the sample was young, mostly female, and considered overweight

(BMI > 25.0 kg/m2). Comparing males and females, there was no

difference for age (p = 0.28), DBP (p = 0.43), BSA (p = 0.55), ST

(p = 0.18), and TST (p = 0.23). BMI was not significantly

different (p = 0.20) between males and females; however, as

expected, males had lower BF (p < 0.001), FM (p = 0.02), and

FMI (p < 0.001), and higher FFM (p < 0.001) and FFMI

(p < 0.001) compared to females. Males were more active, with a

significantly greater TDEE (p < 0.001), AEE (p < 0.001), and

MVPA (p = 0.01) compared to females. These findings are

corroborated by higher CRF [both absolute (p < 0.001) and

relative (p = 0.01)] and lower RHR (p = 0.002) in males

compared to females.

Pearson correlations indicate significant associations between

anthropometrics and aerobic fitness by sex. We found significant

positive correlations between BW and BSA in males but not

females (Table 2). Notably, we found a negative association

between FMI and CRF in males (r =−0.411, p = 0.01) but not

females (r =−0.014, p = 0.21). In contrast, there was a positive

correlation between FFMI and CRF in females (r = 0.357,

p = 0.005) but not males (r = 0.293, p = 0.06) despite a positive

correlation between FFM and CRF for both sexes.

In the unadjusted models, absolute CRF was significantly

associated with BW (r2 = 0.199, p < 0.001), BSA (r2 = 0.336,

p < 0.001), and BF (r2 = 0.432, p < 0.001), but not BMI

(r2 = 0.012, p = 0.329). The unadjusted linear regression models

between FM, FFM, and absolute CRF are shown in Figure 1.

Notably, absolute CRF was positively associated with FFM

(r2 = 0.571, p < 0.001) and negatively associated with FM

(r2 = 0.064, p = 0.023) (Figure 1A). In this unadjusted model,

57.1% of the variance in absolute CRF is explained by FFM,

while FM accounts for only 6.4% of the variance in absolute

CRF. Considering height as a contributing factor to CRF, in the

unadjusted regression models, FMI continued to be negatively

associated with absolute CRF, with FMI accounting for nearly

double the variance in CRF (14.9%) compared to FM

(Figure 1B). Additionally, FFMI was positively associated with

absolute CRF, although accounting for height reduced the

variance to 28.7%. Unadjusted models between anthropometrics

and relative CRF (ml·kg−1·min−1) are shown in the supplemental

material (Supplementary Figure S1).

No collinearity was indicated between the dependent and

independent variables, except for FFM in model 2

(tolerance = 0.156, VIF = 6.4). Table 3 details adjusted linear

models examining the associations between absolute CRF and

body composition. For both BW and BSA, in model 1, there was

a significant association with absolute CRF; however, neither BW

nor BSA was associated with CRF after adjusting for TDEE

(model 2). The opposite was true for the relationship between

BMI and CRF when adjusting for TDEE, resulting in a significant

negative correlation (p = 0.018). FM was not associated with

absolute CRF (model 1), but there was a significant negative

association between FM and absolute CRF in model 2. The

relationship between FM and CRF was similar when taking into

account height, as FMI was only negatively associated with CRF

in model 2, but not model 1 (p = 0.101). In both models, FFM

was positively associated with absolute CRF; however,

multicollinearity exists with model 2, and the results should be

interpreted with caution. Interestingly, FFMI was not significantly

associated with absolute CRF when adjusting for TDEE, despite a

positive association between FFMI and CRF in model 1.

Discussion

The evidence linking CRF and body composition, specifically

height-adjusted indices of FM and FFM, is scarce despite the

association between body fat and aerobic fitness. In this sample,

we assessed body composition and submaximal aerobic fitness in

otherwise healthy, non-smoking adults. Contrary to our

hypothesis, FMI was negatively associated with absolute CRF

when adjusting for TDEE. Our findings suggest that higher FM

may have a negative influence on CRF, regardless of energy

expenditure. Additionally, while FFM was associated with

absolute CRF in both models, FFMI was not significantly

associated with absolute CRF after adjusting for additional

TABLE 2 Pearson correlations between body composition and absolute
cardiorespiratory fitness by sex.

Absolute CRF (L·min−1)

Variable Pearson correlation coefficient P value

BW (kg)

Males 0.418 0.01

Females 0.162 0.12

BMI (kg/m2)

Males −0.040 0.42

Females 0.091 0.26

BSA (m2)

Males 0.611 <0.001

Females 0.177 0.10

BF (%)

Males −0.557 0.001

Females −0.415 0.001

FM (kg)

Males −0.256 0.09

Females −0.080 0.29

FFM (kg)

Males 0.733 <0.001

Females 0.431 <0.001

FMI (kg/m2)

Males −0.411 0.01

Females −0.114 0.21

FFMI (kg/m2)

Males 0.293 0.06

Females 0.357 0.005

Bold indicates significance values, p < 0.05.

BW, body weight; BSA, body surface area; BF, body fat; BMI, body mass index; CRF,

cardiorespiratory fitness; FFM, fat-free mass; FFMI, fat-free mass index; FM, fat mass;

FMI, fat mass index; Males: n = 28; Females: n = 53.

Popp and Jesch 10.3389/fspor.2025.1583432

Frontiers in Sports and Active Living 04 frontiersin.org

https://doi.org/10.3389/fspor.2025.1583432
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


covariates (sex, TDEE). Considering FFMI is a size-adjusted

measure of FFM, our findings suggest that height influences both

FFM and CRF.

Considering that FFM is a key determinant of energy

expenditure and an important predictor of physical activity level,

it’s no surprise that prior studies have shown FFM to be a

determinant of aerobic fitness (13, 14, 16, 17, 19, 24). Goran

et al. reported nearly a quarter century ago that FM does not

affect CRF, specifically V̇O2max (17). Specifically, they measured

women before and after weight loss and found V̇O2max relative

to FFM (ml·kg FFM−1·min−1) was not different after losing

weight; however, V̇O2max relative to body weight (i.e., relative

V̇O2max) was significantly lower after weight loss. V̇O2max relative

to FFM provides a specific “physiological status” of the

cardiorespiratory system, to which CRF does not seem to be

influenced by excess body fat. Additionally, Batterham et al.

found a linear relationship between lean mass and V̇O2peak, but

not between total body mass and V̇O2peak, in 1,304 adult men

(24). Finally, a study by Yanek et al. (n = 191) examined cross-

sectionally CRF and body composition using DEXA in a sample

of predominantly African American adults and found that both

fat mass and lean mass were determinants of CRF (16).

However, lean mass was the strongest positive predictor of

absolute CRF, explaining 27% of the variance in men and 21% of

the variance in women. The results from our study align with

prior studies that demonstrate a linear relationship between FFM

and aerobic fitness, independent of sex.

Despite FFM being a key determinant of CRF, prior studies

also show FM is a predictor of V̇O2max (16, 25–27). The mixed

results of FFM and FM contributing to aerobic fitness are likely

due to methodological issues. For example, prior studies show

differences in the estimate of body composition by bioelectrical

impedance compared to DEXA (28, 29). Additionally, assessment

FIGURE 1

Associations between body composition and absolute cardiorespiratory fitness. Unadjusted models showed FFM was positively associated with
absolute CRF, but not FM (A). Neither FMI nor FFMI was associated with absolute CRF (B). CRF, cardiorespiratory fitness; FFM, fat-free mass; FFMI,
fat-free mass index; FM, fat mass; FMI, fat mass index. *Two participants did not have aerobic fitness levels or body composition measures. n= 80.

TABLE 3 Association between body composition and cardiorespiratory
fitness.

Absolute CRF (L·min−1)

Variable B (95%CI) β P value

BW (kg)

Model 1 0.013 (0.001, 0.024) 0.210 0.035

Model 2 −0.008 (−0.025, 0.008) −0.122 0.324

BMI (kg/m2)

Model 1 0.008 (−0.029, 0.044) 0.038 0.679

Model 2 −0.050 (−0.090, −0.009) −0.212 0.018

BSA (m2)

Model 1 1.382 (0.487, 2.28) 0.327 0.003

Model 2 0.177 (−1.185, 1.539) 0.039 0.796

BF (%)

Model 1 −0.052 (−0.076, −0.028) −0.447 <0.001

Model 2 −0.059 (−0.083, −0.035) −0.475 <0.001

FM (kg)

Model 1 −0.011 (−0.031, 0.009) −0.102 0.271

Model 2 −0.036 (−0.056, −0.016) −0.290 <0.001

FFM (kg)

Model 1 0.053 (0.035, 0.071) 0.690 <0.001

Model 2a 0.047 (0.016, 0.077) 0.592 0.003

FMI (kg/m2)

Model 1 −0.047 (−0.103, 0.009) −0.161 0.101

Model 2 −0.106 (−0.161, −0.052) −0.324 <0.001

FFMI (kg/m2)

Model 1 0.087 (0.029, 0.145) 0.296 0.004

Model 2 0.026 (−0.068, 0.120) 0.074 0.585

Bold indicates significance values, p < 0.05.

BW, body weight; BSA, body surface area; BF, body fat; BMI, body mass index; CRF,

cardiorespiratory fitness; FFM, fat-free mass; FFMI, fat-free mass index; FM, fat mass;

FMI, fat mass index; Linear regression model 1 (n = 80): Sex; Linear regression model 2

(n = 74): Model 1 + TDEE; Sense wear Armband (SWA) includes those who were adherent

(≥20 h/day, 85% daily adherence): n = 74.
aCollinearity for FFM in model 2 (tolerance = 0.156, VIF = 6.4).
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of CRF using either treadmill testing compared to cycle ergometer

testing impacts the degree of V̇O2max. For example, using a cycle

ergometer testing negates the impact of body weight on aerobic

testing in adults with overweight and obesity, whereas in

treadmill testing, adults with overweight or obesity may achieve

greater V̇O2max (30).

Our findings are insightful, given that prior studies exclude

body size measures by incorporating body composition indices,

such as FMI and FFMI. A rather interesting finding was the

negative correlation between FMI and CRF. Similar findings have

been reported elsewhere when examining FMI and CRF. A cross-

sectional study of over 300 adults (>35 year) found a negative

relationship between CRF and FMI; however, the relationship

was only in men and not women (25). One might argue that

losing excess body fat is more advantageous for metabolic health

compared to increasing lean mass. A study of healthy adult

monozygotic and dizygotic twins found stronger associations

between metabolic health, such as insulin sensitivity and liver fat,

and FMI rather than CRF or FFMI (31). This suggests excess

adiposity may have a greater impact on metabolic health

compared to non-fat tissue, irrespective of genetic or

environmental determinants.

Our findings also point to the importance of scaling FM and

FFM by height. It has been well-documented in primates and

humans that bone and muscle mass vary across individuals of

different body size (e.g., stature) (32, 33). For example,

Heymsfield et al. assessed whole-body and regional body

composition in the large NHANES cohort. The authors

demonstrated that taller individuals tend to have higher

proportions of bone and skeletal muscle within their total body

mass, with the most significant contributions coming from the

lower extremities (32). As a result, this may result in greater

aerobic fitness. However, a higher proportion of bone and

skeletal muscle mass in the lower extremities may not necessarily

translate to greater CRF. Predictors of CRF beyond body

composition include muscle capillary density, muscle fiber type,

and oxidative enzymes (i.e., cytochrome c oxidase) (34).

Our study has several strengths. We measured body

composition using DEXA, which is considered the gold

standard measure of body composition. We used a wearable

device to objectively determine TDEE and physical activity,

rather than relying on self-report or questionnaires. Despite

these findings, we recognize there are limitations. In model 2,

our post-hoc power calculation was slightly underpowered

(78%), which runs the risk of a Type II error. We detected

multicollinearity in model 2, which includes FFM and CRF,

due to the strong correlation between FFM and TDEE.

Multicollinearity can inflate the standard errors of estimated

coefficients, making it more challenging to accurately

determine the individual effect of each predictor (23). Our

sample was young, rather healthy, and mostly White, limiting

the generalizability of our findings to other populations. There

are limitations to the use of the two-compartment model of

body composition (FM and FFM) as the two-compartment

model assumes known proportions of FFM, as water, protein,

and mineral are constant (35). However, total body water can

vary within-person as a result of physical activity and daily

fluid intake, which may result in a less accurate measure of

FFM (36). We did perform a submaximal exercise test rather

than a maximal treadmill test, which may have deviated from

the true V̇O2max (37). Due to the study design’s cross-sectional

nature, we cannot determine the cause-and-effect relationship

between FMI, FFMI, and CRF in our sample.

In conclusion, our primary findings indicate that body

adiposity adjusted for height (FMI), but not fat-free tissues

(e.g., FFMI), is negatively associated with cardiorespiratory

fitness in young, non-smoking adults. Moreover, the negative

relationship between FMI and CRF after adjusting for energy

expenditure suggests a potential independent influence of an

individual’s adipose tissue levels on CRF. In future trials, we

encourage researchers to examine the relationship between

body composition indices and CRF using more precision

methods, such as with the four-compartment model of body

composition (bone mineral content, body volume, total body

water, body mass). Additionally, future trials should examine

the functional characteristic of adipose tissue in relationship

with CRF, and the potential negative feedback mechanisms

that higher adiposity may have at a molecular and cellular

level on CRF and physical activity. From a clinical standpoint,

improvements in CRF should be a key focus on improving

metabolic health as sustained increase in physical fitness

reduces cardiometabolic risk, and should be included in

lifestyle interventions, especially with individuals seeking

weight loss (38). Clinicians, dietitians, and exercise

physiologists should encourage individuals to maintain a

healthy body weight and regularly perform moderate-to-

vigorous physical activity to maintain an optimal CRF.
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