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Introduction: Low-load resistance training with concurrent blood flow

restriction (BFR) provides strength and hypertrophy benefits to healthy

individuals and some clinical populations. This is the first study assessing safety

and physiological responses of autoregulated (AUTO) and non-autoregulated

(NAUTO) BFR protocols in people with hemophilia (PWH). Therefore, this

study aimed to evaluate the acute safety, cardiovascular, neuromuscular and

perceptual responses during AUTO and NAUTO BFR training in PWH.

Methods: Eleven severe PWH under prophylaxis performed two sessions of

elbow flexion and extension using elastic bands at 50% of the limb occlusion

pressure (LOP) with different BFR settings (AUTO vs. NAUTO). Safety,

cardiovascular parameters, rating of perceived exertion, elbow pain and

pressure algometry were assessed at different timepoints. High-density surface

electromyography activity and its spatial distribution were determined for

biceps and triceps brachii.

Results: Both BFR conditions were safe in PWH. AUTO provided a hypotensive

and hypoalgesic acute response, albeit without between-group differences.

Triceps brachii showed differences in spatial distribution, and greater activity

with AUTO in the last 3 cycles of the first 3 sets. Although no major

differences were found between both conditions in perceptual responses,

AUTO condition increased VAS scores during both exercises. No adverse

events were observed.
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Conclusions: BFR at 50%LOP during arm exercise with either AUTO or NAUTO

appears to be equally safe in PWH, but AUTO showed trends for improved

cardiovascular and neuromuscular responses. AUTO produced a hypotensive

and hypoalgesic acute post-exercise response, albeit without between-group

differences, a greater activation in triceps brachii, and higher values of pain. No

serious adverse events were observed.

KEYWORDS

electromyography, resistance training, ischemic preconditioning, hemarthrosis,

hemophilia A

1 Introduction

Hemophilia is an X-linked congenital bleeding disorder caused

by a deficiency of the clotting factors VIII or IX (1). A bleeding

tendency is characteristic in severe cases, most commonly in

synovial joints like the elbows (1). A single bleed or recurrent

bleeds may cause hemophilic arthropathy, causing joint

destruction with irreversible changes in the cartilage and bone

tissue, leading patients to experience pain and limitation in daily

activities (2).

Exercise programmes are usually designed and implemented to

help manage the recovery after a bleed or to prevent bleeding

episodes (3). To improve muscle strength, regular heavy-load

resistance training with external loads of 60%–90% of one-

repetition maximum (1RM) is recommended (4). However, some

studies have demonstrated similar gains in strength (5) and

hypertrophy (6) between high-load training and low-load

training (20%–30% 1RM) with blood flow restriction (BFR). BFR

training (BFRT) consists in applying an external pressure to the

most proximal region of the limb, causing a full restriction of

venous outflow while maintaining arterial inflow of blood distal

to the cuff (7). This is thought to induce a hypoxic environment

leading to increased levels of metabolic stress, a rise in type II

muscle fibre recruitment, and the accumulation of metabolites

(8). BFRT may be appropriate in patients who may not be able

to tolerate heavy-loads (9) such as people with hemophilia

(PWH), where a nuanced equilibrium between improving

strength and risk of joint injury exists (3). This complex

equilibrium impacts prescription of exercise regimens. In

addition, BFRT enables shorter training sessions, which, together

with the low intensity used, could help manage kinesiophobia

and catastrophism that is usually present in PWH (10).

To reduce the potential for excessive stress on the

cardiovascular system (e.g., blood pressure increase), the use of

personalized limb occlusion pressures (LOP) is recommended

(7). Nevertheless, LOP is statically determined at rest and does

not account for muscle contractions. Previous studies have

shown an increase in intramuscular pressure with reduced blood

flow during contractions (11, 12). This happens with non-

autoregulated (NAUTO) BFR devices in which the pressure

applied to the limb is not adapted to the phase of muscular

contraction, leading to variable levels of vascular occlusion (13,

14). Conversely, autoregulated (AUTO) devices avoid variability

in applied pressure to the limb by monitoring for pressure

changes and adjusting pressure dynamically, partially deflating

when surpassing the target percentage of LOP and reinflating

when pressure goes below the desired level, rapidly compensating

the higher than desired occlusion levels that occur during muscle

contractions (14). Theoretically, AUTO should be better tolerated

than NAUTO, resulting in improved clinical outcomes. However,

only a few number of studies (15, 16) thus far have examined the

acute differences between AUTO and NAUTO, all conducted in

healthy people and reporting no major differences in

cardiovascular outcomes (e.g., brachial blood pressures). In one

study (15), AUTO appeared to reduce the risk for adverse events,

muscle soreness after 24 h and was perceived to be significantly

less uncomfortable; however, the other study found no

differences in perceptual experiences or differences in mitigating

adverse responses as both conditions did not induce any adverse

events (16). In addition, no previous studies have investigated the

neuromuscular differences between NAUTO and AUTO in

clinical population, which could provide useful information for

clinical decision-making. This underscores the necessity for

further studies to be conducted wherein BFR pressure application

settings are applied among populations with musculoskeletal

conditions that stand to derive the greatest benefit from them.

Thus far, only two studies have implemented BFR resistance

training in PWH (17, 18). One demonstrated safety, albeit within

a small number of repetitions (17), while the other implemented

a full standard BFR session (18). However, both only used a

traditional NAUTO device and only during one exercise in the

lower body (17, 18). Hence, the purpose of this study was to

examine the acute safety, cardiovascular, neuromuscular and

perceptual responses during AUTO and NAUTO BFRT in the

upper body in PWH.

2 Methods

2.1 Participants

Candidates were adult PWH A or B (moderate or severe), 18–

60 years old and undergoing prophylaxis. Participants were

excluded if they (1) had surgical procedures performed 6 months

prior to the exercise program; (2) participated in any other form

of exercise, not previously done, during the study; (3) had any

changes in medication during the study; (4) had a major

bleeding episode that posed a risk or prevented exercise 6 weeks
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prior to or during the study; (5) had another hemostatic defect; (6)

had history of stroke, brain surgery, major depression, or any self-

perceived cognitive alterations that could affect the performance of

study tasks. Participants were duly informed and gave written

informed consent. The study conformed to the Declaration of

Helsinki, was approved by the local Ethics Committee, and

adheres to STROBE guidelines.

2.2 Procedures

Demographics and clinical data were collected from recent

medical records and interviews. Participants were asked to not

consume any nourishment, alcohol, or stimulants in the 2 h

prior to the sessions. They were asked to not engage in any form

of physical activity more intense than basic activities in the 24 h

before the sessions nor use any analgesics, and they were also

recommended to sleep a minimum of 7–8 h the night before.

Participants attended two sessions separated by approximately

one week (mean 9.6 days; SD 4.1). Each session, an intervention

was assigned in a counterbalanced manner, including elbow

extensions and flexions, speed and external resistance matched,

but with a different BFR protocol: (1) occlusion at 50% LOP

with non-autoregulated pressure setting (NAUTO); (2) occlusion

at 50% LOP with autoregulated pressure setting (AUTO). On the

first day, the following baseline assessments were collected: elbow

pain intensity was assessed using the 100 mm visual analogue

scale (VAS) while kinesiophobia was assessed using the Tampa

Scale for Kinesiophobia (TSK-11). Leisure-time physical activity

and resistance training experience were also assessed.

Then, with the participants seated, measures of cardiovascular

stress [systolic blood pressure (SBP), diastolic blood pressure

(DBP) and heart rate (HR)] were evaluated in the dominant arm

using an automatic tensiometer (M3 Comfort, OMRON

Healthcare, Japan). Three measurements were taken (separated

by 2 min) and averaged at each timepoint: preexercise (pre),

immediate postexercise (post), and 10 min after exercise (post

10 min). Also, the mean arterial pressure (MAP), taking into

account DBP, HR and pulse pressure (PP; which is the difference

between SBP and DBP), was calculated with the formula:

MAP =DBP + [0.01 × EXP(4.14–40.74/HR) × (PP)]. Afterwards,

pressure pain thresholds (PPT) were evaluated using a digital

pressure algometer (NOD, OT Bioelettronica, Italy), 3 cm distal

to the dominant arm lateral epicondyle, in the extensor

digitorum muscle tendon. Three PPT measurements were taken

(separated by 30 s) and averaged at each timepoint.

Subsequently, as a baseline safety precaution measure, an

ultrasound scan (LOGIQ C5 Premium, GE Healthcare, USA) of

the exercising arm (the dominant one) was performed to exclude

subclinical active bleeding in the biceps and triceps brachii. Next,

active elbow extension/flexion range of motion (ROM) was

measured using a goniometer, with the participants standing.

Three measurements were taken for each movement and their

mean registered.

Exercise intensity was identified using elastic bands

(TheraBand CLX, Performance Health, USA) progressively from

lowest to highest resistance (yellow color to red, green, blue,

black, silver or gold). Participants performed 2–3 sets of 2 reps

with 60 s rests until they rated a 2 on Borg’s CR10 Scale

(corresponds to 30% 1RM) (19). A 5 min rest was then taken

during which, with the participants standing, the high-density

surface electromyography (HDsEMG) protocol began with skin

marking in the biceps brachii and triceps brachii muscles (20).

After the skin was shaved and abraded to remove dead skin cells

and cleaned with cotton wool dipped in alcohol, the electrode

grids were positioned, with the electrode columns oriented along

the muscle fibers. The reference electrodes were placed at the

wrist. Specifically, HDsEMG was recorded in monopolar

derivation with semi-disposable adhesive matrices

(GR10MM0804, OT Bioelettronica, Italy) of 32 (8 × 4) equally

spaced electrodes (with an inter-electrode distance of 10 mm).

HDsEMG signals were sampled at 2,000 Hz and converted to

digital data by a 16-bit analogue to digital converter

(Sessantaquattro, 64-channel HDsEMG, OT Bioelettronica, Italy).

Before the training and after a submaximal practice trial,

participants performed two maximum voluntary isometric

contractions (MVIC) for each muscle (with 30 s rest) to normalize

HDsEMG (to the highest MVIC or the highest in session

amplitude, if higher), and to measure maximum isometric elbow

flexion and extension strength by performing the MVICs against a

fixed hand-held dynamometer (NOD, OT Bioelettronica, Italy).

Participants sat with erect posture and no back support at 90° of

elbow flexion. In this position, participants performed a 2 s

progressive ramp contraction and then maintained a maximum

contraction effort for the next 3 s. Participants were verbally

encouraged to reach their maximal effort.

After a 5 min rest, the LOP of the exercising upper limb was

determined with the participants standing while the pneumatic

cuff (SmartCuffs PRO 3, Smart Tools Plus, USA) was placed on

the most proximal portion of their arm (cuff width, 6.35 cm).

The inflation procedure was automated and based on an in-

device algorithm validated against the current Doppler

ultrasound gold standard (21). Once LOP was determined, the

cuff was deflated, and the participants rested quietly for 5 min

before training. For safety, a pulse oximeter (CMS50D, Contec

Medical Systems Co., China) was used on the thumb throughout

the session.

The exercise protocol followed the standard BFRT structure of

four sets (30, 15, 15, 15 reps; 30 s rests) with continuous BFR

(5 min break between exercises for reperfusion). The elastic

bands were pre-stretched (adding about 25% of the initial length)

and a metronome was used to ensure a cadence of 1.5 s per

movement phase. After performing each set, HR and oxygen

saturation (SaO2) were assessed with the pulse oximeter and

participants were asked to rate their rating of perceived exertion

(RPE) on the Borg CR10 scale, their pain intensity in the

exercising arm with the VAS, and degree of perceived tolerability

using a five-point scale (i.e., very well tolerated = 5, tolerated = 4,

neutral = 3, not well tolerated = 2 and not tolerated = 1).

Moreover, after finishing the two exercises, SBP, DBP, HR, VAS

and PPTs were reassessed immediately and at 10 min after.

Subsequently, participants completed a global change scale about
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the potential change in their fear of practicing BFRT (very much

improved, much improved, minimally improved, no change,

minimally worse, much worse, very much worse). Finally, 24, 48

and 72 h after each session, participants were interviewed about

delayed onset muscle soreness (DOMS), joint pain, and stiffness

using an 11-point scale after palpating the arm and moving from

full flexion to full extension. They were also asked about any

suspicion of muscle or joint bleeds, or any possible adverse

effects, and instructed to report any they might feel during the

week after.

2.3 HDsEMG data analysis

The HDsEMG signals were processed offline using custom-

made algorithms implemented in MATLAB software (The

MathWorks Inc., Natick, Massachusetts, USA, version R2018b).

All raw signals were amplified to obtain the EMG data in

microvolts. Next, a differentiation of the 32-monopolar

HDsEMG channels was carried out along the fibers direction

(columns of the grid) to obtain arrays of 7 columns × 4 rows of

bipolar signals, i.e., 28 RMS signals on each electrode array.

A Butterworth fourth-order zero-lag band-pass filter (20–400 Hz)

was then applied to each signal to eliminate low and high-

frequency noise. Subsequently, a visual inspection was carried out

to discard signals with excess noise. A moving root-mean-

squared (RMS) smoothing filter was applied to the HDsEMG

signals, implemented with a 1,000 ms window (500 ms backward

and 500 ms forward) for each signal sample.

Once the signals were filtered, an automatic segmentation of

the contractions was carried out from the maximum and

minimum peaks of each signal. This methodology allows us to

delimit the period of muscle activity, but not to distinguish the

concentric and eccentric phases of muscle contractions. However,

it has been used before in many previously published studies (17,

18, 22). While it is true that contraction mode can affect EMG

amplitude, and many studies synchronize EMG with other types

of additional external signals to be able to do this (video

recording, motion capture, and accelerometer data) (23, 24), we

chose to analyze the exercise sets with no differentiation between

the concentric and eccentric components, as patients normally

complete both components together during their

rehabilitation programmes.

In each of the contractions, the mean RMS activation

percentage (amplitude) was obtained by normalizing the result to

the highest RMS activation value reached by the participant

during the session (including MVIC). After obtaining these

normalized variables in each signal of the map (7 × 4 matrix

signals), the average nRMS values were obtained, as well as the

coordinates of the HDsEMG nRMS map centroid (x- and y-axis

coordinates for the medial-lateral and cranial-caudal direction,

respectively) and the modified entropy. The average nRMS

HDsEMG from all channels on the matrix was used as a

parameter of muscle activation, while the displacement of the

centroid and variations in the modified entropy were used to

assess HDsEMG activity spatial distribution. A higher modified

entropy (from a maximum possible value of 4.81 in the case of

our matrices of 28 RMS signals) represents less heterogeneity in

the spatial distribution of nRMS values within the electrode

matrix, ergo higher homogeneity, whilst a decrease in entropy

indicates a decrease of homogeneity. Coefficient of variation

(CoV) was defined as the standard deviation (SD) of the 28 RMS

values divided by the average of the 28 RMS values. When SD is

small relative to the mean, this results in a smaller CoV.

Therefore, when channel signals are more uniform, there will be

a smaller CoV to also indicate increased homogeneity (reduced

heterogeneity). To allow statistical analysis, the repetitions of

each set were averaged in successive cycles. In the case of set 1

(30 reps), each cycle consists of the average of 6 reps. In sets 2–4

(15 reps), each cycle is the result of averaging 3 reps. In all cases,

5 cycles were obtained.

2.4 Statistical analysis

An a priori power analysis was conducted (G∗Power;

Düsseldorf, Germany) to calculate the required sample size. With

the present study design, assuming a medium effect size

(f = 0.30), a 5% alpha risk (α = 0.05) and 20% beta risk (β = 0.2;

power = 0.80), and a correlation between repeated measures of

0.6, a total of 11 participants were sufficient.

The statistical analysis was performed with SPSS v26 (IBM

Corp, USA). The normality of the data was verified with the

Shapiro–Wilk test. Descriptive results are shown as mean (SD),

median [25th−75th percentiles] or n (percentages) as appropriate.

The differences between conditions (AUTO, NAUTO) and

times (pre, post, post 10 min) for SBP, DBP, HR, MAP, VAS and

PPT were evaluated using linear mixed models. The conditions

and times were entered into the model as repeated measures

with fixed effects.

RPE, VAS, tolerability and HR were evaluated using linear

mixed models to analyze differences between conditions and sets

(1–4). The conditions and sets were configured as repeated

measures with fixed effects.

The differences between conditions, sets and cycles (1–5) for

nRMS, CoV, modified entropy and centroid were evaluated using

linear mixed models. The conditions, sets and cycles were

considered as repeated measures with fixed effects. In all mixed

models, subject was entered as random effect and the restricted

maximum likelihood estimation method was used with the

Satterwait approximation. When the main effects indicated

significant differences, the Bonferroni correction was applied to

avoid Type I error caused by multiple comparisons. Data were

statistically significant when p < 0.05.

3 Results

3.1 Participants

Eleven adults with hemophilia A participated in the study.

Demographic and clinical data are shown in Table 1. About half
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(54.55%) of the participants had a history of resistance training and

were involved in physical activity for at least 1 day·week–1. No

serious adverse effects were reported during the sessions, with

none of the reported events impeding the completion of

the exercises.

3.2 Cardiovascular and hypoalgesic
responses

The acute cardiovascular and hypoalgesic responses to

NAUTO and AUTO BFRT are shown in Table 2. The AUTO

condition was the only one that produced a hypotensive and

hypoalgesic acute response, albeit there were no between-

group differences.

3.3 High-density surface EMG

Neuromuscular activity (mean %nRMS for biceps and triceps

brachii muscles) during both BFR conditions is shown in

Figure 1. While biceps brachii had no difference between both

conditions, triceps brachii showed a greater activation with the

AUTO condition in the last 3 cycles of the first 3 sets.

The mean locations for the nRMS map centroid in the biceps

and triceps brachii obtained in each BFR condition are

represented in Figure 2. The biceps brachii showed no

statistically significant differences between both pressure settings

in spatial distribution. Regarding the displacement of the map

centroid in the triceps brachii, differences between both

conditions (p < 0.05) were found in both axes, with NAUTO

exhibiting a cranial migration in y-axis and a lateral migration in

x-axis. In addition, the modified entropy did not change.

3.4 Perceptual responses, heart rate and
oxygen saturation

The acute perceptual responses, HR and SaO2 after each

exercise set of BFRT are shown in Table 3. Overall, there were

no major differences between both types of BFR pressure

application setting. However, compared to NAUTO, the AUTO

condition increased VAS scores during each set of exercise with

elbow flexion and during sets 2–4 with elbow extension. Both

BFR types were equally tolerable and safe, without great increases

in RPE or high pain levels.

3.5 Adverse events

To better contextualize the safety profile of BFRT in severe

PWH, adverse events as they relate to BFRT and the

characteristics of PWH were considered as: (a) minor and/or

expected due to BFR application (tightness in arm, itchy hand/

forearm, finger congestion); (b) minor and/or expected due to

resistance exercise and PWH fitness (DOMS, stiffness); (c) minor

and/or expected due to the characteristics of PWH and their

arthropathy status (elbow or shoulder crepitation); (d) clinically

relevant concerns due to the characteristics of PWH and their

TABLE 1 Demographic and clinical data.

(n = 11) Mean (SD) or median [25th–75th
percentile]

Age (years) 39.4 (11.9)

Height (cm) 175.5 (8.8)

Body mass (kg) 80.0 (9.4)

FVIII dose (IU/Kg) 27.7 (10.5)

FVIII dose (IU/week) 4,000.0 (4,000.0–6,000.0)

Hours since last SHL FVIII

dose (n = 5)

5.43 (8.30)

Hours since last EHL FVIII

dose (n = 6)

13.50 (29.43)

HJHS dominant elbow 2.0 (0.0–7.0)

HJHS non dominant elbow 3.0 (2.0–10.0)

HJHS total 25.2 (15.2)

Elbow flexion ROM (°) 128.5 (7.6)

Elbow extension ROM (°) −18.2 (15.6)

Isometric elbow flexion

strength (N)

169.5 (38.8)

Isometric elbow extension

strength (N)

143.5 (21.3)

VAS score (mm) 8.2 (16.6)

NAUTO LOP (mmHg) 198.2 (30.9)

NAUTO 50% LOP (mmHg) 99.1 (4.7)

AUTO LOP (mmHg) 182.7 (20.5)

AUTO 50% LOP (mmHg) 91.4 (10.3)

TSK-11 (Total: 11–44) 26.2 (3.1)

Leisure-time physical activity

Frequency n (%)

Never 1 (9.1)

1 time/week 0 (0)

2–3 times/week 7 (63.6)

Almost daily 3 (27.3)

Resistance training experience

Yes 6 (54.5)

No 5 (45.5)

Frequency

1 time/week 1 (9.1)

2 times/week 3 (27.3)

3 times/week 2 (18.2)

Years of experience

<5 years 3 (50.0)

>5 years 3 (50.0)

Fear of practicing BFR training (baseline)

0 9 (81.8)

3 1 (9.1)

7 1 (9.1)

Fear of practicing BFR training (change)

Very much improved 1 (9.1)

Much improved 1 (9.1)

No change 9 (81.8)

FVIII, coagulation factor VIII; SHL, standard half-life factor; EHL, extended half-life factor;

HJHS, haemophilia joint health score; ROM, range of motion; VAS, visual analogue scale;

LOP, limb occlusion pressure; TSK-11, 11-item Tampa Scale for Kinesiophobia; NAUTO,

non-autoregulated; AUTO, autoregulated; SD, standard deviation; cm, centimeters; kg,

kilograms; IU, international units;°, degrees, N, newtons; mmHg, millimeters of mercury;

BFR, blood flow restriction.
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arthropathy status (superficial hematoma from BFR cuff; elbow or

shoulder pain; elbow or shoulder stiffness; elbow or shoulder joint

bleeds; muscle bleeds). Most reports (Table 4) consisted of feeling

tightness in the arm (4 NAUTO vs. 3 AUTO), with two reports

from the same participant in NAUTO, two more from another

in AUTO, and one in each condition from the same participant.

Additionally, one participant reported tightness and elbow

crepitation (due to arthropathy) in the NAUTO condition, while

another one reported finger congestion in the AUTO condition.

One participant reported feeling a light shoulder pain during

elbow flexion exercise in AUTO. Another participant reported

feeling itchiness in the hand and forearm in both conditions.

Also, one participant presented a slight superficial hematoma

caused by the BFR cuff (NAUTO), and another one

unexpectedly suffered an insignificant superficial skin abrasion

caused by the sharp edge of the EMG matrix in the elbow crease

(NAUTO). Additionally, participants reported their levels of

DOMS, joint pain, and stiffness after 24, 48 and 72 h. The most

reported were DOMS at 24 and 48 h, especially in AUTO. Only

one participant reported a slight exacerbation of his elbow

extension joint pain (to a 4 on the VAS, from a baseline level

of 2). Another participant reported feeling elbow stiffness

(without pain) 24 h post AUTO.

4 Discussion

This is the first study to examine the acute safety,

cardiovascular, neuromuscular and perceptual responses during

AUTO and NAUTO BFRT in PWH. The main and novel

findings were: (1) the AUTO condition was the only one

providing a hypotensive and hypoalgesic acute response, albeit

no between-group differences were found; (2) the AUTO

condition induced greater triceps brachii activation in the last 3

cycles of the first 3 sets; (3) compared to NAUTO, the AUTO

condition showed higher VAS scores during each set of elbow

flexion exercise and during the last 3 sets of elbow extension; (4)

both BFR types were equally tolerable and safe, without great

increases in RPE or high pain levels; (5) no serious adverse

events were reported during the experimental sessions and

during the first week.

Our results support the idea that exercise can provide an acute

post-exercise hypotensive response. However, this result was only

evident after the AUTO condition, albeit no differences were

found between conditions. A recent meta-analysis demonstrated

a decrease in DBP when applying intermittent BFR with low-

load upper limb training in healthy people (25). Regrettably, no

previous studies evaluate pre and post exercise cardiovascular

outcomes with different BFR types. Furthermore, Jacobs et al.

(15) found an increase of cardiovascular outcomes (SBP, DBP,

HR, MAP) during a fixed protocol with both BFR conditions in

healthy individuals, albeit differences between AUTO and

NAUTO were not significant. These higher cardiovascular results

while training could be explained by an increase in sympathetic

nervous system activity maintained and augmented via feedback

from baroreceptors located in the aorta and carotid artery, as

well as by stimulation of mechanically and metabolically sensitive

receptors in skeletal muscle (26). Then, the acute hypotensive

response produced after exercise could be explained by a

reactivation of parasympathetic nervous system (26) and by

reactive hyperemia (vasodilator substances increase) following

cuff removal (27).

Our nRMS results show no differences between both BFR

conditions in biceps brachii, but a greater activation of triceps

brachii with the AUTO condition in the last 3 cycles of the first

3 sets. Partly in line, Bordessa et al. (28) found no significant

differences between both BFR conditions in peak or average

quadriceps EMG activity, albeit among healthy people and using

different devices. Concerning the muscle activity increase, two

studies (17, 28) demonstrated differences in neuromuscular

activation depending on the external load, not on the cuff

occlusion. However, both biceps and triceps brachii muscle

activation increased progressively across the four sets conducted

in our study, in accordance with previous findings evaluating a

BFRT session with low-load elastic resistance (29). Unfortunately,

no previous studies were conducted on PWH comparing both

TABLE 2 Acute cardiovascular and hypoalgesic responses before and after the blood flow restriction resistance training session.

Pre Post Post 10 min Pre vs. Post (p; d) Pre vs. Post 10 min (p; d)

Systolic blood pressure (mmHg) NAUTO 128.5 (10.8) 127.6 (9.3) 126.1 (9.0) – –

AUTO 128.9 (10.5) 121.1 (8.2) 120.0 (9.0) .011; 0.83 .020; 0.91

Diastolic blood pressure (mmHg) NAUTO 80.3 (8.7) 76.4 (8.8) 78.9 (7.8) – –

AUTO 80.3 (9.0) 74.4 (7.8) 76.6 (8.2) .002; 0.70 –

Heart rate (bpm) NAUTO 74.9 (15.9) 73.6 (13.5) 72.3 (13.7) – –

AUTO 81.7 (15.8)* 76.8 (15.5) 75.0 (15.2) .041; 0.31 .016; 0.44

Mean arterial pressure (mmHg) NAUTO 97.6 (10.4) 94.6 (8.9) 95.6 (8.9) – –

AUTO 98.5 (9.3) 91.2 (7.9) 92.0 (8.6) <.001; 0.84 .013; 0.72

PPT NAUTO 347.5 (86.3) 383.2 (68.6) 343.7 (71.7) – –

AUTO 402.3 (168.7) 336.9 (83.9) 322.4 (75.4) – .022; 0.61

VAS NAUTO 2.73 (9.05) 3.64 (9.24) 3.64 (9.24) – –

AUTO 8.18 (16.62) 11.36 (20.01) 2.73 (9.05) – –

Bold text denotes significant differences while “-” means no significant differences. Comparisons between NAUTO and AUTO marked only when significant (*p = 0.009; d = 0.43). p, p-value; d,

Cohen’s d effect size; NAUTO, non-autoregulated; AUTO, autoregulated; PPT, pressure pain thresholds; Pre, pre-exercise; Post, immediate postexercise; Post 10 min, 10 min after exercise, vs.,

versus; mmHg, millimeters of mercury; bpm, beats per minute.
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BFR types. We also observed shifts in the nRMS map of the triceps

brachii, specifically the cranial and lateral migrations in the

NAUTO condition. These shifts suggest acute adaptive responses

in redistribution of activity similar to effects seen in endurance

tasks in other muscle groups, such as the trapezius (30) and back

muscles (31). It is thought that this redistribution of activity

likely prevents localized muscle fatigue (32). However, there were

no differences in entropy, indicating that the overall homogeneity

in the spatial distribution of nRMS values within the electrode

matrix was similar between conditions.

Concerning the acute perceptual responses, there were no

major differences between both types of BFR pressure

application. However, in general, we found higher RPE values

during elbow extension than during elbow flexion and higher

RPE during the last set, concurring with our nRMS results.

A previous study performed in healthy individuals, found higher

values during leg extension training with AUTO than with

NAUTO (28). Furthermore, Jacobs et al. (15) found higher RPE

values over time in the NAUTO device among healthy

individuals in a leg extension BFR fixed protocol. Conversely,

another recent study showed no differences in perceptual

responses between NAUTO and AUTO in multi-joint lower

body failure exercise using the Delfi device (16). Therefore, the

perceptual responses elicited with AUTO/NAUTO may be device

specific, region specific (e.g., upper versus lower limb), or

protocol specific (e.g., fixed versus failure) and likely requires

FIGURE 1

Normalized values of electromyographic amplitude (nRMS) for each condition. (a) Biceps brachii (b) Triceps brachii. *Indicates a difference between

the two blood flow restriction conditions (AUTO and NAUTO). The start and end of the arrow indicate the compared intervals. Those at the top of the

figure represent the AUTO condition, while those at the bottom represent the NAUTO condition. AUTO, autoregulated; NAUTO, non-autoregulated;

nRMS, normalized root-mean-square.
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some consideration during the implementation process. Partly in

line with our VAS results, Bordessa et al. (28) found higher

values of pain in the AUTO condition among healthy individuals

in a leg extension training protocol. However, concerns were

made regarding the comparisons given the cuff design differences

between conditions (33). However, our VAS values with both

FIGURE 2

Mean values of normalized values of electromyographic amplitude (nRMS) maps centroid in each condition and placement of the high-density surface

electromyography electrodes. (a) Biceps brachii (b) Triceps brachii. *Indicates differences on the x-axis (medial-lateral direction), while the # indicates

differences on the y-axis (cranial-caudal direction) in each of the 5 cycles of each one of the 4 exercise sets. AUTO, autoregulated; NAUTO, non-

autoregulated; mm, millimeters.
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conditions were low, with most participants reporting no pain,

which could be explained by a greater tolerance to pain in PWH,

potentially due to their habituation to recurrent painful episodes

associated with the condition, or by substantial variability in

individual pain perception. Nevertheless, both BFR conditions

were equally well tolerated. In fact, only 8 adverse events

occurred during the NAUTO session, while 6 adverse events

appeared during the AUTO session, none of them impeding the

completion of the exercises. Some of the reported events

happened in the same participants and could be explained due to

the restriction of blood flow distal to the cuff location. Slightly in

line with these results, Jacobs et al. (15) also found a higher

number of adverse events (presyncopal symptoms, numbness in

leg and exercise intolerance) during NAUTO training sessions,

with presyncopal symptoms as the most common event.

However, in our study, the adverse events did not impede

participants to complete the session, while in the Jacobs et al.

(15) study 10 participants stopped exercising due to presyncopal

symptoms during sessions. After all, no bleeding events were

reported during our study nor in the first week post sessions,

which is the most important finding in terms of safety for PWH.

All in all, our findings infer that both types of BFR can be used,

potentially informing clinical decision-making in hemophilia

care, physiotherapy or exercise prescription contexts. However,

TABLE 3 Acute perceptual and cardiovascular responses after each set of blood flow restriction resistance training.

SET 1 SET 2 SET 3 SET 4

RPE FLEX NAUTO 2.6 (1.4) 2.3 (1.1) 2.5 (1.0)* 3.2 (1.4)

AUTO 2.7 (1.1) 2.7 (1.1) 3.0 (1.5) 3.3 (1.6)

EXT NAUTO 2.6 (1.3)* 2.7 (1.1)** 3.5 (1.1) 3.9 (1.4)

AUTO 2.9 (0.7)* 3.4 (1.0) 3.5 (1.3) 4.1 (1.9)

VAS FLEX NAUTO 1.8 (6.0)*** 1.8 (6.0)*** 2.7 (9.0)*** 2.7 (9.0)***

AUTO 11.4 (16.7) 11.4 (16.7) 12.3 (18.1) 16.8 (20.8)

EXT NAUTO 2.7 (9.0) 2.7 (9.0)*** 2.7 (9.0)*** 3.0 (9.5)***

AUTO 10.9 (18.7) 13.2 (23.1) 12.3 (22.1) 12.3 (22.1)

TOLERABILITY FLEX NAUTO 4.2 (0.6) 4.4 (0.5) 3.9 (0.8) 3.7 (0.8)

AUTO 3.9 (0.9) 3.9 (0.9) 3.7 (0.9) 3.5 (0.8)

EXT NAUTO 4.3 (0.6) 4.1 (0.5) 3.8 (1.0) 3.6 (1.1)

AUTO 4.1 (0.7) 3.8 (0.9) 3.8 (0.9) 3.8 (0.9)

HR FLEX NAUTO 75.5 (25.8) 63.7 (25.6) 62.9 (26.6) 77.4 (17.2)

AUTO 70.7 (30.4) 74.8 (30.0) 79.0 (24.8) 83.3 (16.2)

EXT NAUTO 71.5 (26.4) 60.6 (24.7) 66.6 (28.4) 59.9 (26.3)

AUTO 80.6 (55.0) 76.5 (28.8) 61.5 (30.6) 73.5 (24.1)

SaO2 FLEX NAUTO 96.9 (1.3) 96.0 (2.3) 96.3 (2.1) 96.7 (1.3)

AUTO 97.2 (1.2) 96.8 (2.5) 96.3 (3.1) 96.6 (2.7)

EXT NAUTO 96.1 (2.3)*** 96.8 (1.8) 96.3 (3.8) 97.8 (1.3)

AUTO 92.2 (5.8) 94.5 (7.6) 94.2 (7.5) 94.7 (7.4)

*Significant differences compared with SET 4 (p < 0.05).

**Significant differences compared with SET 3 and with SET 4 (p < 0.05).

***Significant differences between NAUTO and AUTO (p < 0.05). RPE, rating of perceived exertion; FLEX, elbow flexion; EXT, elbow extension; NAUTO, non-autoregulated; AUTO,

autoregulated; VAS, visual analogue scale; HR, heart rate; SaO2, oxygen saturation of arterial blood.

TABLE 4 Adverse events within 11 participants who completed all sessions.

NAUTO AUTO

Number of independent adverse events reported during the sessions.

Tightness in arm 4 3

Elbow crepitation 1 0

Itchy hand/forearm 1 1

Shoulder pain 0 1

Finger congestion 0 1

BFR cuff superficial hematoma 1 0

Elbow crease skin abrasion (EMG matrix) 1 0

Adverse effects reported 24, 48 and 72 h after the sessions (Mean ± SD).

24 h 48 h 72 h 24 h 48 h 72 h

DOMS Biceps 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.7 (1.3) 0.5 (1.0) 0.1 (0.3)

DOMS Triceps 0.3 (0.9) 0.1 (0.3) 0.0 (0.0) 0.8 (1.5) 0.5 (1.0) 0.2 (0.4)

Joint pain 0.4 (1.2) 0.2 (0.6) 0.2 (0.6) 0.4 (1.2) 0.3 (0.9) 0.2 (0.6)

Stiffness 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.5 (1.8) 0.0 (0.0) 0.0 (0.0)

NAUTO, non-autoregulated; AUTO, autoregulated; BFR, blood flow restriction; EMG, electromyography; SD, standard deviation; DOMS, delayed onset muscle soreness; h, hours.
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specialists should consider using AUTO to increase triceps

activation and when cardiovascular responses are relevant to

patients. Additionally, the EMG activity spatial distribution

variability seen with NAUTO seems to reflect a necessity to

compensate a superior accumulation of metabolic stress and

peripheral fatigue possibly due to impaired contractile function

because of the higher pressures applied to the limb.

Our study is not without limitations. The number of participants

was small, although HDsEMG has high reliability, and measurements

were conducted among patients with a rare disease. In addition,

differentiating concentric and eccentric phases could provide deeper

insights into task-specific neuromuscular control. However, in our

rehabilitation context, we prioritized the magnitude of the EMG

activity. Given the modest sample size and the use of a medium

effect size in our power analysis, there remains a risk of Type II

error. Consequently, null findings should be interpreted with

caution, as the study may not have been sufficiently powered to

detect smaller, yet potentially meaningful, effects. Albeit BFRT is safe

among PWH during a small number of sessions, specialists should

carefully consider tailored prophylaxis for individual participation.

The current findings reflect the acute responses of two sessions of

BFRT. Future studies should evaluate the long-term adaptations to

BFRT in PWH, as cardiovascular, neuromuscular, and perceptual

effects may differ after repeated sessions due to adaptation,

sensitization, or cumulative effects (e.g., joint stress in hemophilia).

5 Conclusions

AUTO and NAUTO conditions at 50% LOP appear to be

equally tolerable and safe in severe PWH, under prophylaxis

treatment, during an upper limb standard BFRT protocol,

without great increases in RPE or pain. However AUTO showed

trends for improved cardiovascular and neuromuscular responses.

AUTO condition induced a hypotensive and hypoalgesic acute

response, albeit no between-group differences were found. The

AUTO condition resulted in increased muscular activation in the

triceps brachii during the final cycles of the first sets, as well as

higher VAS scores. The current findings reflect the acute

responses to BFRT and long-term responses in PWH may differ

due to adaptation, sensitization, or cumulative effects.
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