
EDITED BY

Christian Maurer-Grubinger,

University Hospital Frankfurt, Germany

REVIEWED BY

Datao Xu,

Ningbo University, China

Ana Conceição,

Polytechnic Institute of Santarém, Portugal

*CORRESPONDENCE

Wissem Dhahbi

wissem.dhahbi@gmail.com

†These authors have contributed equally to

this work and share first authorship

RECEIVED 20 March 2025

ACCEPTED 19 May 2025

PUBLISHED 03 June 2025

CITATION

Tajik R, Dhahbi W, Fadaei H and Mimar R

(2025) Muscle synergy analysis during

badminton forehand overhead smash:

integrating electromyography and

musculoskeletal modeling.

Front. Sports Act. Living 7:1596670.

doi: 10.3389/fspor.2025.1596670

COPYRIGHT

© 2025 Tajik, Dhahbi, Fadaei and Mimar. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with

these terms.

Muscle synergy analysis during
badminton forehand overhead
smash: integrating
electromyography and
musculoskeletal modeling

Raheleh Tajik
1†
, Wissem Dhahbi

2,3*†

, Hamed Fadaei
1
and

Raghad Mimar
1

1Department of Biomechanics and Sports Injuries, Faculty of Physical Education and Sports Sciences,

Kharazmi University, Tehran, Iran, 2Research Unit “Sport Sciences, Health and Movement”, Higher

Institute of Sports and Physical Education of Kef, University of Jendouba, Kef, Tunisia, 3Training

Department, Police College, Police Academy, Doha, Qatar

Introduction: This study aimed to quantify shoulder muscle synergies during

badminton forehand overhead smash (BFOS) via non-negative matrix

factorization (NMF), validate musculoskeletal (MSK) models for high-speed

movements by comparing electromyography (EMG)-derived synergies with

simulation results, and explore the potential of NMF-based MSK models in

advancing sports science.

Methods: Twenty elite badminton players (age: 24 ± 4 years; experience: 15 ± 4

years) performed maximal-effort BFOS while EMG signals from fifteen shoulder

muscles were recorded. Three-dimensional motion analysis with a ten-camera

Vicon system captured kinematic data at 100 Hz. A validated OpenSim upper

extremity model was implemented to simulate muscle activations via static

optimization. NMF extracted synergy vectors and activation coefficients from

both experimental EMG and MSK modeling data.

Results: Three muscle synergies accounted for >90% variance in both analyses

with no significant differences in global VAF (p= 0.12). The first synergy

(trapezius-dominant) showed 95% EMG and 97% MSK variance; the second

synergy (pectoralis/anterior deltoid) exhibited 97% EMG and 94% MSK

variance; the third synergy (posterior muscles) demonstrated 95% EMG and

98% MSK variance. Strong agreement between approaches was observed for

both weight vectors (W1:0.81 ± 0.04, W2:0.87 ± 0.01, W3:0.88 ± 0.03) and

activation coefficients (C1:0.95 ± 0.02, C2:0.98 ± 0.01, C3:0.98 ± 0.01), with

differences primarily in lower trapezius activation (similarity: 0.77 ± 0.05), likely

due to challenges in recording deep muscle activity through surface

electromyography. These findings validate the combined experimental-

computational approach for analyzing complex, high-velocity movements.

Conclusion: The strong correspondence between experimental and

computational synergies validates MSK modeling for analyzing neuromuscular

control during high-velocity overhead movements. The identified synergies

provide a framework for understanding muscle coordination during BFOS,

with potential applications in targeted training program optimization and injury

prevention strategies in overhead sports.
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1 Introduction

The badminton forehand overhead smash (BFOS) represents

one of the most explosive strokes in racquet sports, with elite

players generating shuttlecock velocities exceeding 118 m/s (1).

This remarkable velocity requires exceptional neuromuscular

coordination through a kinetic chain from lower extremity to

racquet-shuttlecock impact (2). The repetitive and explosive

nature of the BFOS places significant stress on the shoulder

complex, contributing to 1%–5% of sports-related shoulder

injuries attributed to badminton (2, 3).

The shoulder joint complex, with its multiple articulations and

extensive musculature, transfers energy from trunk to upper

extremity during overhead movements while maintaining dynamic

control despite limited inherent stability (4, 5). Previous

investigations have documented substantial biomechanical demands

during the BFOS, with elite players generating shoulder internal

rotation moments of 0.85 ± 0.12 Nm/kg and peak shoulder internal

rotation velocities reaching 7148°/s (6). These velocities are

comparable to baseball pitching (7200°/s) (7) and exceed tennis

serving (2900°/s) (7) and volleyball spiking (2594°/s) (5, 7),

highlighting the sophisticated coordination strategies required (8).

The central nervous system (CNS) faces considerable

computational challenges in controlling the redundant

musculoskeletal system during complex movements (9). The muscle

synergy hypothesis provides a theoretical framework suggesting that

the CNS simplifies this control problem by activating functional

groups of muscles (synergies) rather than individual muscles

independently (10). This modular organization potentially reduces

the dimensionality of motor control and facilitates efficient

movement execution (11). Non-negative matrix factorization (NMF)

has emerged as a robust computational technique for extracting

underlying muscle synergies from electromyographic (EMG) data

(12). This algorithm decomposes multi-muscle activation patterns

into a small set of time-invariant muscle weightings (synergy

vectors) and their corresponding time-varying activation coefficients

(12, 13). However, recording EMG data from all relevant muscles

during high-speed actions presents significant technical challenges (7,

14), particularly for deep or inaccessible muscles that contribute

substantially to shoulder function during overhead movements.

Within the context of overhead sports movements, previous

investigations have identified consistent synergy structures across

various upper extremity tasks, including reaching (7, 15), grasping

(8), and throwing (8, 15). Pale et al. (16) demonstrated that

approximately three to four synergies could account for over 90% of

the variance in muscle activation patterns during hand grasps, with

synergy structures showing strong within-subject consistency but

notable inter-subject variability. Nevertheless, the application of

muscle synergy analysis to high-velocity overhead sports movements

remains underexplored, particularly in badminton (17).

Recent advances in musculoskeletal (MSK) modeling have

enabled comprehensive analysis of complex movements through

integration of anatomical, physiological, and biomechanical

principles (18). These computational approaches complement

experimental measurements by providing estimates of variables

that cannot be directly measured in vivo, such as individual

muscle forces, joint contact forces, and moment arms (19). The

OpenSim modeling framework has gained widespread adoption

for biomechanical investigation, offering validated models of the

upper extremity with physiologically accurate muscle parameters

(20). MSK models can generate muscle activation predictions

through optimization algorithms that distribute joint moments

across available muscles (21). Static optimization, for example,

minimizes the sum of squared muscle activations subject to

moment equilibrium constraints, providing computationally

efficient estimates of muscle coordination patterns (22). However,

the biological validity of these computational predictions requires

thorough experimental validation, particularly for complex multi-

joint movements involving rapid accelerations (23). Recent studies

have demonstrated that MSK modeling can effectively capture

muscle synergies during dynamic movements (18). These models

have successfully replicated walking and running patterns by

optimizing a small number of motor control parameters (18).

However, the unique demands of the BFOS, particularly on the

shoulder complex, require more targeted investigations. Several

investigators have compared experimentally measured EMG

signals with model-predicted activations during various tasks,

reporting moderate to strong correlations in controlled movements

(24). Nevertheless, the accuracy of MSK model predictions during

high-velocity overhead sports movements remains incompletely

characterized (25), particularly regarding muscle synergy structures.

Despite extensive research on overhead throwing biomechanics,

several knowledge gaps persist. First, while individual muscle

activations have been characterized during badminton smashes (25,

26), the underlying synergistic control structures remain poorly

understood. Second, although MSK models have been validated for

various upper extremity movements (14), their applicability to high-

velocity overhead sports movements requires further investigation.

Third, the relationship between experimentally measured and

computationally predicted muscle synergies during complex sports

movements has not been thoroughly examined (17).

The objectives of this study are threefold. First, we aim to quantify

shoulder muscle synergies during the forehead overhead smash via

NMF. Second, we seek to validate MSK models for high-speed

movements by comparing EMG-derived synergies with simulation

results. Third, we aim to explore the potential of NMF-based MSK

models in advancing sports science. We hypothesized that (1) three

to four muscle synergies would account for >90% of the variance in

muscle activation patterns during BFOS execution, (2)

computational MSK modeling would produce synergy structures

with strong similarity to those derived from experimental EMG

recordings, and (3) key differences between experimental and

computational approaches would primarily involve deep muscles

that present challenges for surface EMG recording.

2 Methods

2.1 Study design

This cross-sectional, observational biomechanical study

employed a repeated-measures design to analyze muscle
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synergies during the execution of the Badminton Forehand

Overhead Smash (BFOS).

2.2 Participants

Twenty elite badminton players (all right-handed) with extensive

competitive experience (15 ± 4 years) participated. All participants

competed at national or international levels for a minimum of 4

years. All participants used their personal competition-grade

equipment during testing. While racket specifications (weight:

85-95 g, length: 675-680 mm) and string tension (24-28 lbs) varied

within tournament-legal ranges, these parameters were recorded

and verified to be within ±5% variance for primary metrics.

Individual technical styles were assessed by a qualified coach to

ensure fundamental execution mechanics aligned with standard

forehand overhead smash technique. The cohort displayed the

following anthropometric characteristics: age (24 ± 4 years), height

(175 ± 8.3 cm), and body mass (71 ± 15.2 kg). a priori power

analysis using G*Power (version 3.1.9.7) based on previous muscle

synergy investigations in comparable athletic populations (3, 21)

determined that 20 participants would provide statistical power of

0.85 with an effect size of 0.65 (medium-to-large) at α=0.05 for

detecting significant differences in muscle activation patterns. This

sample size ensured adequate statistical power while maintaining

homogeneity in the participant cohort.

Inclusion criteria encompassed: professional badminton

players with ≥10 years of competitive experience, absence of

shoulder or upper limb pathology within six months, active

competitive participation within 12 months, and ability to

execute proper maximal-effort BFOS. Exclusion criteria included

musculoskeletal injuries during testing, surgical interventions

affecting the upper limb within 24 months, biomechanical

limitations, and concurrent participation in similar studies.

This investigation received approval from the Research

Ethics Committee of Kharazmi University (Approval Code:

IR.KHU.REC.1402.020) and adhered to the principles outlined in the

Declaration of Helsinki (2013 revision). All participants provided

written informed consent after receiving detailed explanations of

the study procedures, potential risks, and benefits. Participants

were informed of their right to withdraw at any time without

consequence. Data confidentiality was maintained throughout the

investigation with all personal identifiers removed before analysis.

The protocol was preregistered in the Open Science Framework

(OSF) database (osf.io/twx5h) prior to participant enrollment.

2.3 Instrumentation and data acquisition

2.3.1 Motion capture system
Kinematic data were captured using ten Vicon high-speed

cameras (100 Hz) following validated methodologies for overhead

sports movements (6, 8). This system has demonstrated excellent

test-retest reliability (ICC > 0.95) and concurrent validity

(r > 0.92) (6). Thirty-four retroreflective markers positioned

at standardized anatomical landmarks enabled precise

reconstruction throughout BFOS execution. System calibration

was performed before each testing session using a standardized

5-point wand method achieving residual errors <0.5 mm.

2.3.2 Surface electromyography (EMG)
EMG signals from fifteen muscles were recorded using a Myon

320 wireless system (1000 Hz sampling frequency,

CMRR > 100 dB). The muscle groups monitored included

anterior, middle, and posterior deltoid; infraspinatus; upper,

middle, and lower pectoralis major; latissimus dorsi; lateral and

medial triceps; biceps brachii; upper, middle, and lower trapezius;

and serratus anterior. Surface preparation followed standardized

SENIAM protocols (15, 26), and bipolar Ag/AgCl electrodes

(10 mm diameter, 20 mm inter-electrode distance) were

positioned parallel to muscle fiber orientation (9, 15, 26) (Figure 1).

All EMG signals underwent comprehensive preprocessing

following established protocols for high-velocity movements (27).

Raw signals were first inspected for artifacts and quality using

signal-to-noise ratio assessment (threshold >20 dB). Bandpass

filtering employed a zero-lag 4th-order Butterworth filter to

minimize phase distortion while preserving physiologically

relevant frequency content. The 50 Hz notch filter width was set

at 1 Hz bandwidth (Q-factor=50) to selectively remove power

line interference while preserving adjacent signal components.

Full-wave rectification preserved signal energy, followed by

smoothing with a critically damped 20 Hz low-pass filter

(equivalent to 25 ms moving average window) to create linear

envelopes that effectively captured muscle activation dynamics

without excessive signal attenuation.

2.4 Experimental protocol

2.4.1 Preparation and familiarization
Participants attended a familiarization session prior to data

collection to become acquainted with procedures. On testing day,

participants completed a 15-minute neuromuscular preparation

protocol consistent with established racquet sports practices (28).

2.4.2 Movement task execution
Each participant performed five maximal-effort BFOS trials

with 60-second recovery intervals. A standardized shuttlecock

suspension system positioned the shuttle at 2.8 m height. Task

execution was monitored for technique consistency by an

experienced coach (Figure 2), and any trials with technical errors

or excessive marker occlusion were excluded and repeated.

A minimum of three valid trials per participant were required for

inclusion in analysis.

2.5 Musculoskeletal modeling

2.5.1 Model development and implementation

The computational framework employed the Wu upper

extremity musculoskeletal model (29) implemented in OpenSim

(version 4.5), incorporating three degrees of freedom at the
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scapulothoracic, acromioclavicular, and glenohumeral joints. The

model integrates 32 Hill-type musculotendon actuators with

physiologically-based parameters including optimal fiber length,

tendon slack length, pennation angle, maximum isometric force,

and force-length-velocity relationships (30). Subject-specific

scaling was applied based on marker positions during static trials.

2.5.2 Simulation pipeline

The simulation workflow consisted of four sequential steps:

a. Inverse Kinematics: Joint angles were calculated by minimizing

the weighted sum of squared differences between experimental

and model markers, with convergence criteria of <0.5 cm

RMS error.

b. Inverse Dynamics: Joint moments were computed using the

Newton-Euler equations of motion based on joint kinematics

and segment inertial properties.

c. Static Optimization: Muscle activation patterns were predicted

using a cost function minimizing the sum of squared muscle

activations (Equation 1) while satisfying joint moment

equilibrium constraints:

Equation 1:

min
Xn

i¼1

(ai)
2

Subject to:

Xn

i¼1

(ri,j � Fi) ¼ Mj for all joints j

Where ai represents the activation level of muscle i, ri,j is the

moment arm of muscle i about joint j, Fi is the force produced

by muscle i, and Mj is the moment at joint j determined from

inverse dynamics.

Static optimization was selected for its computational efficiency

and established reliability in predicting muscle coordination

patterns during complex movements (29). While we acknowledge

FIGURE 1

Experimental setup showing Vicon motion capture system with retroreflective markers and surface EMG electrodes monitoring 15 shoulder/arm

muscles (anterior/middle/posterior deltoid, infraspinatus, pectoralis major, latissimus dorsi, triceps, biceps, trapezius, serratus anterior) during

badminton overhead smash execution. [Reprinted from (25) with permission].
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the inherent limitations of this approach in capturing time-

dependent muscle dynamics during explosive movements, our

implementation incorporated Hill-type muscle models with

force-length-velocity properties to partially account for these

effects. The cost function minimizing the sum of squared muscle

activations has demonstrated strong correlation with

experimentally measured activation patterns in previous upper-

limb studies (21).

d. Forward Dynamics Verification: Computed muscle activation

patterns were validated by comparing resulting joint

kinematics with experimental data. This simulation pipeline

has demonstrated accuracy in predicting experimentally

measured muscle activation patterns (r = 0.78-0.92) and joint

kinetics (RMSE < 12%) (4, 21). To assess model

generalizability to unmeasured muscles, we implemented a

leave-one-out validation approach that yielded prediction

accuracy of r = 0.73 ± 0.08, suggesting reasonable applicability

to deep muscles operating under similar biomechanical

constraints (4) (Figure 3).

2.6 Muscle synergy analysis

2.6.1 EMG signal processing

Raw EMG signals underwent preprocessing including bandpass

filtering (20-450 Hz), notch filtering (50 Hz), full-wave

rectification, and smoothing with a 20 Hz low-pass filter.

Processed EMG envelopes were normalized to maximum

voluntary isometric contractions (MVIC) and time-normalized to

a standardized movement cycle (0%–100%) using cubic spline

interpolation (31).

2.6.2 Synergy extraction

Muscle synergy analysis was performed using non-negative matrix

factorization (NMF) applied to activation matrices from both

experimental EMG recordings and musculoskeletal simulations. The

NMF algorithm (32) decomposed the muscle activation matrix

M into a synergy weight matrix W and synergy coefficient matrix C,

minimizing reconstruction error (Equation 2). The optimization

employed multiplicative update rules with 100 iterations and

convergence tolerance of 10−6, repeated 50 times with randomized

initial conditions.

Equation 2:

min
w,c

k M �WC k 2
F

Where ‖·‖F represents the Frobenius norm, calculated as the square

root of the sum of squared matrix elements. A smaller Frobenius

norm indicates superior approximation accuracy and more

precise modeling of underlying muscle synergies (33).

2.6.3 Determination of optimal synergy number
The optimal number of synergies was determined using

multiple criteria: global Variance Accounted For (VAF, threshold

of 90%), local VAF for individual muscles (threshold of 0.75),

dimensional analysis (slope reduction <5%), and cross-validation

using split-half reliability analysis (Figure 4).

These threshold criteria are widely established in neuromuscular

research for extracting functionally relevant synergies (10, 11). The

global VAF threshold of 90% has demonstrated particular validity

for analyzing high-velocity movements including overhead

throwing (34) and jumping (35), effectively distinguishing between

FIGURE 2

Sequential phases of the badminton forehand overhead smash (BFOS), preparation, acceleration, impact, and follow-through. Movement analysis was

based on racquet velocity thresholds. [Reprinted from (25) under CC BY 4.0 license].
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structurally significant synergies and noise components. The local

VAF threshold of 75% ensures that each individual muscle’s

activation pattern is adequately represented in the extracted

synergies, preventing underrepresentation of muscles with smaller

but functionally significant contributions (16).

To establish the optimal synergy number with greater statistical

rigor, we implemented two complementary cross-validation

approaches. First, a leave-one-out cross-validation procedure was

conducted where synergies were extracted from n-1 trials and used

to reconstruct the excluded trial, repeated for each trial and subject.

This analysis confirmed that three synergies consistently provided

reconstruction accuracy exceeding our predetermined VAF

thresholds. Second, split-half reliability analysis divided trials into

two independent subsets, with separate synergy extraction

performed on each subset followed by quantitative comparison of

the resulting synergy structures. Intraclass correlation coefficients

(ICC) and cosine similarity indices were calculated to assess

between-subset consistency (see Results section 3.7, Table 6).

2.7 Data analysis and outcome measures

2.7.1 Kinematic and kinetic analysis
Three-dimensional joint kinematics and kinetics were analyzed

at key phases of the BFOS: preparation, acceleration, impact, and

follow-through. Primary outcome measures included joint

angular displacements, velocities, moments, and powers for

shoulder and elbow movements, plus racquet head velocity

at impact.

2.7.2 Muscle synergy quantification

Outcome measures included number of synergies required to

achieve VAF thresholds, synergy weight vectors (W), synergy

activation coefficients (C), and reconstruction accuracy.

2.7.3 Comparative analysis and similarity metrics

Comparison between EMG-derived and simulation-derived

muscle synergies employed multiple metrics: Scalar Product

Similarity Index (Equation 4) (36), Cosine Similarity, and

Pearson’s Correlation Coefficient.

Equation 4:

Scalar Product ¼
WEMG
���!

� WModel
����!

WEMG
���!

� WModel
����!

0 � Scalar Product � 1

Where values approaching 1 indicate greater similarity between

experimental and computational synergy vectors.

FIGURE 3

Opensim upper extremity musculoskeletal model shown from anterior, lateral, and posterior views, featuring 32 hill-type musculotendon actuators

and 15 degrees of freedom across the shoulder, elbow, and wrist joints with subject-specific scaling. The views illustrate the complete muscle

representation from different anatomical perspectives.
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2.7.4 Reliability analysis
Movement Reliability was assessed by analyzing key kinematic

parameters (shoulder angles, elbow angles, and scapular kinematics)

across the five repetitions for each participant. Inter-trial

consistency was quantified using coefficient of variation (CV) and

ICC[3,1] to determine movement stability and reproducibility.

Acceptable reliability was defined as CV < 10% and ICC > 0.80 (37).

2.8 Statistical analysis

Statistical analyses were performed using MATLAB 7.8

(MathWorks, Natick, MA) with a significance threshold established

at α = 0.05. Normality of data distribution was confirmed using

Shapiro–Wilk tests. All quantitative results are presented as

means ± standard deviations with 95% confidence intervals where

appropriate. Pearson’s correlation coefficient (r) served as the

primary metric for assessing similarity between muscle synergy

vectors, consistent with established methodologies in previous

investigations (3, 21). Correlation strength was interpreted as: weak

(r < 0.3), moderate (0.3≤ r < 0.5), strong (0.5≤ r < 0.7), and very

strong (r≥ 0.7). Differences in synergy structures between EMG-

derived and simulation-derived results were analyzed using

multivariate analysis of variance (MANOVA) with Bonferroni post-

hoc tests. Effect sizes were calculated using partial eta squared (η2p)

and interpreted as: small (0.01), medium (0.06), and large (0.14).

Effect sizes were interpreted following established guidelines by

Cohen (38) and revised by Lakens (39) for biomechanical research.

3 Results

3.1 Global VAF analysis

The relationship between synergy number and global VAF for

EMG and MSK modeling data is depicted in Figure 5. No

significant differences in global VAF were observed between

methods (p = 0.12, MANOVA). Following established criteria

(global VAF >90%, local VAF >75%, dimensional analysis

FIGURE 4

Methodological framework comparing muscle synergies derived from experimental EMG and musculoskeletal modeling during BFOS, including data

acquisition, signal processing, modeling, non-negative matrix factorization, and quantitative comparison of synergy components.

TABLE 1 Characteristics of the hill-type tendon-muscle model for the
MSK model.

Muscle Optimal
fiber length

(cm)

Peak
force
(N)

Tendon
slack

length (cm)

Pennation
angle (o)

TRPL1 0.1127 1043 0.027 0

TRPL2 0.0832 470.4 0.032 0

TRPL3 0.1264 414.4 0.035 0

TRPL4 0.1116 201.6 0.027 0

DELT1 9.8 1218.9 9.3 22

DELT2 10.8 1103.5 11 15

DELT3 13.7 201.6 3.8 18

SUPRA 6.8 499.2 4 7

INFRA 7.6 1075.8 3.1 19

SUBSCAP 8.7 1306.9 3.3 20

TMIN 7.4 269.5 7.1 24

TMAJ 16.2 144 2 16

PECM1 14.4 444.3 0.3 17

PECM2 13.8 658.3 8.9 26

PECM3 13.8 498.1 13.2 25

DELT1 = anterior deltoid; DELT2 =medial deltoid; DELT3 = posterior deltoid;

INFSP = infraspinatus; PECM1 = pectoralis major clavicular; PECM2 = pectoralis major

medial; PECM3= pectoralis major inferior; LAT2 = latissimus dorsi medial; TRIlat = triceps

lateral head; TRImed = triceps medial head; BIClong = biceps long head; TRP1 = upper

trapezius; TRP3 =middle trapezius; TRP4 = lower trapezius; SRA = serratus anterior.
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showing <5% increase with additional synergies), three muscle

synergies sufficiently reconstructed the BFOS movement with

high fidelity in both experimental and computational analyses.

To further validate our three-synergy solution, we conducted a

leave-one-out cross-validation analysis that showed minimal

reduction in reconstruction accuracy when synergies extracted from

n-1 trials were used to reconstruct the excluded trial (mean

ΔVAF =−3.2 ± 1.1%). This small decrease in VAF remains well

above our predetermined threshold, confirming the robustness of

the extracted synergy structure across different movement repetitions.

3.2 Local VAF analysis

Local VAF values confirmed precise reconstruction of each

muscle for both experimental and modeling outcomes (Table 2).

All muscles exhibited high local VAF values (>75%), ranging

from 0.90 ± 0.04 to 0.98 ± 0.01 for modeling results and from

0.90 ± 0.04 to 0.97 ± 0.02 for experimental EMG data, robustly

satisfying the threshold criterion of local VAF > 0.75 and

ensuring extraction reliability of identified synergies.

FIGURE 5

Relationship between synergy number and global variance accounted for (VAF) from EMG (blue) and musculoskeletal model (red) during BFOS. Three

synergies were optimal based on global VAF >90%, local VAF >75%, and <5% improvement with additional synergies (p= 0.12, MANOVA).

TABLE 2 Comparison of mean and standard deviation between local VAF
for EMG and modeling results.

Muscle Local VAF (EMG) Local VAF (Model)

DELT1 0.93 ± 0.02 0.90 ± 0.04

DELT2 0.92 ± 0.01 0.98 ± 0.01

DELT3 0.97 ± 0.01 0.97 ± 0.01

INFSP 0.96 ± 0.01 0.96 ± 0.02

PECM1 0.96 ± 0.02 0.94 ± 0.02

PECM2 0.97 ± 0.02 0.94 ± 0.03

PECM3 0.95 ± 0.01 0.95 ± 0.03

LAT2 0.90 ± 0.04 0.97 ± 0.01

TRILat 0.92 ± 0.01 0.95 ± 0.04

TRImed 0.95 ± 0.01 0.97 ± 0.02

BIClong 0.95 ± 0.01 0.96 ± 0.03

TRP1 0.95 ± 0.01 0.97 ± 0.02

TRP4 0.96 ± 0.02 0.96 ± 0.01

SRA 0.94 ± 0.01 0.98 ± 0.01

VAF = variance accounted for; EMG = electromyography; DELT1 = anterior deltoid;

DELT2 =medial deltoid; DELT3 = posterior deltoid; INFSP = infraspinatus;

PECM1 = pectoralis major clavicular; PECM2 = pectoralis major medial;

PECM3 = pectoralis major inferior; LAT2 = latissimus dorsi medial; TRIlat = triceps lateral

head; TRImed = triceps medial head; BIClong = biceps long head; TRP1 = upper trapezius;

TRP3 =middle trapezius; TRP4 = lower trapezius; SRA = serratus anterior.
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3.3 Muscle synergy comparison

Analysis revealed three distinct synergies with characteristic muscle

activation compositions and temporal patterns (Figure 6). The first

synergy predominantly engaged the trapezius muscle group, essential

for scapular rotation and stabilization. The second synergy featured

significant contributions from the pectoralis muscle complex and

anterior deltoid, facilitating internal rotation and shoulder flexion

during acceleration phases. The third synergy showed dominance of

the middle deltoid and posterior muscle groups, supporting shoulder

extension and external rotation primarily during follow-through

phases. This functional differentiation aligns with the biomechanical

requirements of sequential BFOS execution phases. While slight

discrepancies existed between EMG-derived and model-predicted

synergy activation coefficients, the weighted contributions maintained

physiological consistency for most muscles.

3.4 Similarity coefficient analysis

Agreement between experimental and modeling results was

evaluated using scalar product similarity indices (Table 3).

Similarity coefficients demonstrated substantial agreement,

ranging from 0.72 ± 0.04 (infraspinatus) to 0.98 ± 0.01 (trapezius),

indicating strong correspondence between experimental and

computational approaches. Synergy weight vectors exhibited high

similarity (W1: 0.81 ± 0.04, W2: 0.87 ± 0.01, W3: 0.88 ± 0.03),

while activation coefficients showed even stronger agreement (C1:

0.95 ± 0.02, C2: 0.98 ± 0.01, C3: 0.98 ± 0.01). The trapezius

muscle demonstrated nearly perfect agreement (similarity

coefficient: 0.98 ± 0.01, ICC: 0.95, SEM: 0.02). Pearson’s

correlation coefficients between EMG-derived and simulation-

derived muscle activation patterns further confirmed these

findings, with very strong correlations (r≥ 0.7) for most muscles.

3.5 Reliability of key kinematic variables

Analysis of key kinematic variables revealed excellent consistency

for shoulder abduction (CV = 3.2% ± 1.1%, ICC = 0.92), good

reliability for elbow flexion (CV = 4.5% ± 1.3%, ICC = 0.89),

and moderate to high reliability for scapular protraction

(CV = 5.1% ± 1.5%, ICC = 0.85). According to predetermined

reliability criteria (CV < 10% and ICC > 0.80), these results

demonstrate excellent to good movement consistency across trials,

supporting the reliability of the muscle synergy analysis.

3.6 Statistical analysis of EMG-model
comparison

Statistical analysis comparing EMG-derived and model-predicted

synergies (Table 5) revealed no significant differences in global VAF

between methods (F₍₂,₁₉₎ = 2.43, p = 0.12), though a large effect size

FIGURE 6

Comparison of (A) synergy weight vectors and (B) activation coefficients between EMG (blue) and musculoskeletal model (red) during BFOS. Three

distinct functional synergies were identified: Synergy 1 (trapezius-dominant for scapular stabilization during preparation and early acceleration),

Synergy 2 (pectoralis/anterior deltoid for shoulder flexion/internal rotation during late acceleration and impact), and Synergy 3 (posterior shoulder

muscles for extension/external rotation during follow-through). The x-axis in panel A represents muscle weights ranging from 0-1 for each muscle

(abbreviations defined in Table 2), while panel (C) shows temporal activation patterns across normalized movement cycle (0-100%). Shaded areas

represent standard error (n= 20 participants).
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(η2p = 0.21) suggested potential practical significance. Consistency in

synergy dimensionality across both methods (χ2₍₁₎ = 0.24, p = 0.62)

further supported the robustness of the three-synergy solution.

Weight vector similarities ranged from r = 0.81 to r = 0.88

(p < 0.001), while activation coefficient similarities exhibited even

stronger correlations (r = 0.95 to r = 0.98, p < 0.001). Muscle-specific

activation patterns showed significant differences between methods

(F₍₁₅,₁₉₎ = 3.78, p < 0.001, η2p = 0.76), indicating that despite overall

synergistic similarity, individual muscle contributions exhibited

method-specific variations.

3.7 Cross-Validation of synergy structure

Cross-validation analyses between independent trial subsets

(Table 6) demonstrated high consistency in both synergy weight

vectors and activation coefficients. Weight vectors showed cosine

similarity indices ranging from 0.87 ± 0.05 (W3) to 0.92 ± 0.03

(W2), with corresponding ICC values of 0.88 to 0.93. Activation

coefficients exhibited even higher consistency, with similarity

indices from 0.93 ± 0.03 (C3) to 0.97 ± 0.01 (C2) and ICC values

of 0.92 to 0.96. Low standard error of measurement (0.01-0.04)

across all synergy components confirmed the stability of

extracted synergies across multiple movement repetitions.

4 Discussion

This investigation provides comprehensive insights into muscle

coordination strategies during the badminton forehand overhead

TABLE 3 Comparison of the mean and standard deviation of similarity
coefficient for each muscle and vector of first to third synergies and for
activation coefficient of first to third synergies between experimental
and modeling results.

Muscles/features EMG vs model

DELT1 0.76 ± 0.04

DELT2 0.86 ± 0.01

DELT3 0.97 ± 0.02

PECM1 0.92 ± 0.01

PECM2 0.91 ± 0.03

PECM3 0.97 ± 0.02

TRP1 0.98 ± 0.01

TRP3 0.88 ± 0.04

TRP4 0.77 ± 0.05

LAT2 0.83 ± 0.02

SRA 0.84 ± 0.01

INFSP 0.72 ± 0.04

TRILat 0.80 ± 0.05

TRImed 0.93 ± 0.02

BIClong 0.94 ± 0.01

Synergy Weight W1 0.81 ± 0.04

Synergy Weight W2 0.87 ± 0.01

Synergy Weight W3 0.88 ± 0.03

Synergy Coefficient C1 0.95 ± 0.02

Synergy Coefficient C2 0.98 ± 0.01

Synergy Coefficient C3 0.98 ± 0.01

W1-W3 = synergy weight vectors; C1-C3 = activation coefficients; DELT1 = anterior deltoid;

DELT2 =medial deltoid; DELT3 = posterior deltoid; INFSP = infraspinatus;

PECM1 = pectoralis major Clavicular; PECM2 = pectoralis major medial;

PECM3 = pectoralis major inferior; LAT2 = latissimus dorsi medial; TRIlat = triceps lateral

head; TRImed = triceps medial head; BIClong = biceps long head; TRP1 = upper trapeziuS;

TRP3 =middle trapezius; TRP4 = lower trapezius; SRA = serratus anterior.

TABLE 4 Reliability analysis of key kinematic variables.

Kinematic variable Mean ± SD CV ICC

Shoulder abduction angle 45.2 ± 2.1° 3.2 ± 1.1% 0.92

Elbow flexion angle 85.6 ± 3.4° 4.5 ± 1.3% 0.89

Scapular protraction 12.3 ± 1.8° 5.1 ± 1.5% 0.85

SD, standard deviation; CV, coefficient of variation; ICC, intraclass correlation coefficient.

TABLE 5 Statistical results for comparison between EMG-derived and model-predicted synergies.

Comparison metric Statistic Value p-value Effect Size (η2
p) Interpretation

Global VAF MANOVA F(2,19) = 2.43 0.12 0.21 Large effect, non-significant

Synergy dimensionality Chi-square χ2 (1) = 0.24 0.62 – Non-significant difference

Weight vector similarity Pearson’s r – – – –

- Synergy 1 Pearson’s r r = 0.81 <0.001 – Very strong correlation

- Synergy 2 Pearson’s r r = 0.87 <0.001 – Very strong correlation

- Synergy 3 Pearson’s r r = 0.88 <0.001 – Very strong correlation

Activation coefficient similarity Pearson’s r – – – –

- Synergy 1 Pearson’s r r = 0.95 <0.001 – Very strong correlation

- Synergy 2 Pearson’s r r = 0.98 <0.001 – Very strong correlation

- Synergy 3 Pearson’s r r = 0.98 <0.001 – Very strong correlation

Muscle-specific activation patterns MANOVA F(15,19) = 3.78 <0.001 0.76 Large effect, significant

Signal-to-noise ratio Paired t-test t(19) = 2.81 <0.05 0.68 Large effect, significant

Effect sizes were interpreted as: small (η2p = 0.01), medium (η2p = 0.06), and large (η2p = 0.14). MANOVA =multivariate analysis of variance; VAF = variance accounted for.

Statistical significance was set at α = 0.05.

TABLE 6 Cross-validation results for synergy consistency across
trial subsets.

Comparison Cosine similarity index ICC SEM

Synergy Weight Vectors

W1 (Trial Set A vs. B) 0.89 ± 0.04 0.91 0.03

W2 (Trial Set A vs. B) 0.92 ± 0.03 0.93 0.02

W3 (Trial Set A vs. B) 0.87 ± 0.05 0.88 0.04

Synergy Activation Coefficients

C1 (Trial Set A vs. B) 0.94 ± 0.02 0.95 0.02

C2 (Trial Set A vs. B) 0.97 ± 0.01 0.96 0.01

C3 (Trial Set A vs. B) 0.93 ± 0.03 0.92 0.03

W1-W3 = synergy weight vectors; C1-C3 = activation coefficients; ICC = intraclass

correlation coefficient; SEM = standard error of measurement.

Note: Trial subsets were created by random split-half division of the five repetitions

per participant.
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smash through integration of experimental electromyography and

computational musculoskeletal modeling. Our findings revealed three

distinct muscle synergies that collectively account for over 90% of

the variance in muscle activation patterns during BFOS execution.

The strong agreement between EMG-derived and model-

predicted synergies (similarity coefficients ranging from 0.81 to 0.88

for weight vectors and 0.95 to 0.98 for activation coefficients)

suggests that MSK modeling effectively captures many aspects of

neuromuscular control during high-velocity overhead movements.

However, this agreement does not necessarily validate the

assumption that the central nervous system optimizes the same cost

function used in our static optimization approach. Rather, it suggests

that biomechanical constraints may substantially influence muscle

coordination patterns regardless of the specific neural control

strategy employed (40). This alignment between experimental and

computational approaches supports the theory that biomechanical

constraints—such as joint coordination and muscle-tendon

dynamics—may fundamentally drive synergy patterns (41). Similar

findings in studies of gait and upper-limb coordination further

reinforce this perspective (37, 42).

The three identified synergies demonstrated clear functional

roles corresponding to specific BFOS phases. The first synergy,

dominated by trapezius activation with contributions from upper

pectoralis major and anterior deltoid, primarily facilitated scapular

movement during the acceleration phase. Kinematic data revealed

shoulder abduction and horizontal flexion during this phase, with

the upper trapezius contributing to shoulder elevation, the lower

trapezius to depression, and the middle trapezius to scapular

protraction and retraction. This synergy establishes a stable

platform for efficient energy transfer, aligning with Kibler et al.

(43), who emphasized the critical role of scapular control in

overhead movements.

The second synergy, characterized by substantial contributions

from pectoralis and anterior deltoid muscles, governed internal

shoulder rotation and flexion during the impact phase. This

synergy also incorporated triceps activation for elbow extension,

reflecting the coordinated effort between shoulder and elbow

joints to accelerate and strike the shuttlecock. Previous research

by Ramasamy et al. (7) demonstrated that these muscles generate

peak moments of 0.85 ± 0.12 Nm/kg during smash execution,

underscoring their importance in power generation.

The third synergy, featuring middle and posterior deltoid,

infraspinatus, latissimus dorsi, and serratus anterior muscles,

primarily controlled the deceleration phase of the BFOS. This

phase involves a braking motion where antagonist muscles

engage with agonists to stabilize joints and prevent injury (44).

The paradoxical activation of abductor and external rotator

muscles during a movement involving flexion and internal

rotation highlights the complex coordination required for safely

decelerating high-velocity movements (45).

The statistical analysis revealed excellent consistency of synergy

structures across trial subsets, with cosine similarity indices ranging

from 0.87 ± 0.05 to 0.92 ± 0.03 for weight vectors and from

0.93 ± 0.03 to 0.97 ± 0.01 for activation coefficients. These robust

reliability metrics indicate that the identified three-synergy

structure represents consistent neuromuscular control strategies

rather than analytical artifacts. Furthermore, kinematic reliability

analysis demonstrated excellent consistency for key joint angles

(shoulder abduction: CV = 3.2%±1.1%, ICC = 0.92; elbow flexion:

CV = 4.5%±1.3%, ICC = 0.89), supporting the stability of the

extracted muscle synergies.

While our study identified consistent synergy structures across

participants, we acknowledge that individual technical styles and

equipment parameters (racket weight, string tension) could

influence specific muscle activation patterns. Previous research

indicates that racket properties can alter upper limb loading

patterns by 8-12% (7). Similarly, technique variations developing

from years of competitive play might produce individualized

muscle coordination strategies. Though our selection criteria

ensured fundamental technique consistency, subtle variations

likely contributed to inter-subject variability observed in model

predictions. These considerations highlight the complex interplay

between equipment, technique, and neuromuscular control that

future studies should explore more systematically.

Despite overall strong agreement, significant differences inmuscle-

specific activation patterns [F(15,19) = 3.78, p < 0.001, η
2
p = 0.76] were

observed, particularly for the lower trapezius muscle. These

discrepancies likely stem from challenges in accurately measuring and

modeling this deep muscle during dynamic, high-velocity

movements. Our statistical approach revealed a non-significant

difference with large effect size for global VAF comparison,

suggesting the study may have been underpowered to detect subtle

but potentially meaningful differences between experimental and

computational approaches. Future investigations should consider

larger sample sizes or repeated-measures designs to better address

this limitation. Additionally, our musculoskeletal model employed

simplified tendon properties that do not fully capture the elastic

energy storage and release during explosive movements like the

BFOS. This simplification likely contributed to observed muscle-

specific activation differences, particularly for muscles with

substantial tendon components such as the lower trapezius. Surface

EMG struggles to capture consistent signals during rapid scapular

rotations, while static optimization in MSK models may oversimplify

the muscle’s role in scapular stabilization (46). Additionally, inter-

subject variability contributes to reduced similarity between synergy

vectors, as individual differences in muscle strength, joint flexibility,

and activation patterns affect synergy alignment (47).

Our statistical analysis revealed an interesting pattern regarding

global VAF differences between EMG-derived and model-predicted

synergies. Despite not reaching statistical significance (p = 0.12), the

large effect size (η2p = 0.21) suggests potential practical significance

that may represent a Type II error due to limited statistical power.

This highlights the importance of considering both statistical

significance and effect sizes when evaluating methodological

approaches (39). Furthermore, significant differences in muscle-

specific activation patterns (p < 0.001, η2p = 0.76) likely reflect

multiple factors, including model simplifications. Particularly

relevant is the omission of tendon elasticity in our implementation,

which affects force transmission dynamics during rapid movements.

Tendons function as series elastic elements that can store and release

energy, with studies demonstrating that neglecting this property can

produce activation timing discrepancies of 30–50 ms during ballistic
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movements (30). This limitation particularly affects bi-articular

muscles and those with long tendons, potentially explaining some of

the muscle-specific differences observed in our analysis.

The model’s predictive capacity for unmeasured deep muscles,

particularly the rotator cuff group, warrants consideration. While

direct validation through intramuscular EMG was beyond our

scope, biomechanical constraints substantially limit the feasible

activation space of these muscles during dynamic movements. The

consistency between model predictions and surface EMG for

accessible muscles with similar functions provides indirect validity

evidence, though unique activation strategies for glenohumeral

stabilization may not be fully captured (48). From a theoretical

perspective, our findings support the muscle synergy hypothesis as

a framework for understanding neuromuscular control during

complex sporting movements. The consistent extraction of three

functionally relevant synergies suggests that the central nervous

system employs modular control strategies to simplify the

coordination of multiple muscles during the BFOS. This modularity

potentially represents an efficient solution to the degrees-of-freedom

problem articulated by Bernstein (49), allowing effective control of

the highly redundant musculoskeletal system through feedforward

mechanisms, where the neuromuscular system predefines muscle

activation patterns to achieve specific outcomes (50).

The validatedmusculoskeletal model provides a valuable tool for

investigating aspects of the BFOS that are difficult to measure

experimentally. The fact that muscle activations were estimated via

static optimization without explicitly considering muscle synergies

or intermuscular relationships—yet still produced synergy

structures closely resembling experimental patterns—further

strengthens the theory that biomechanical constraints

fundamentally shape coordination patterns (51). This finding has

significant implications for future research where experimental

EMG data may be unavailable or impractical to collect. It is

important to acknowledge that static optimization, which

minimizes instantaneous muscle activation squared, may not fully

capture the time-dependent aspects of neural control during

dynamic movements. Dynamic optimization approaches that

consider the entire movement trajectory might provide different

muscle activation predictions (52). Despite implementing Hill-type

muscle models with force-length-velocity properties, static

optimization cannot fully account for dynamic inertial effects and

history-dependent phenomena during explosive movements like

the BFOS (21, 22). This limitation likely contributes to

discrepancies observed in certain muscles, particularly those with

complex activation dynamics during rapid acceleration and

deceleration phases. Future studies should directly compare static

and dynamic optimization approaches during high-velocity

overhead movements to quantify these differences systematically

(53). Additionally, future investigations should systematically

examine how equipment parameters and technical style variations

influence muscle synergy structures, using stratified designs that

control for racket specifications, string tension, and technique

variants. Nevertheless, the strong concordance between our static

optimization results and experimental EMG suggests that this

computationally efficient approach can provide valuable insights

into muscle coordination during rapid overhead movements.

4.1 Practical recommendations

Based on our findings, several practical recommendations emerge

for coaches, athletic trainers, and rehabilitation specialists working

with badminton players. Training programs should emphasize

coordinated activation of functional muscle groups rather than

isolated strengthening exercises, focusing on the sequential

activation of identified synergies—starting with scapular stabilizers

(trapezius), progressing to power generators (pectoralis/anterior

deltoid), and concluding with deceleration controllers (posterior

muscles). Technical coaching should optimize the kinematic

sequence to maximize energy transfer through the kinetic chain,

with particular attention to scapular positioning. Rehabilitation

protocols following shoulder injuries should progressively

incorporate synergy-based training, beginning with controlled

activation of the first synergy before advancing to power-generating

movements. Targeted strength training for the trapezius, pectoralis,

and deltoid muscles can improve stroke efficiency and shoulder

stability (54). Finally, regular biomechanical screening using

simplified kinematic measures may help identify movement pattern

alterations that could predispose athletes to injury or compromise

performance. Individual variations in synergy structures should be

considered when developing personalized training programs. While

our results showed consistent three-synergy patterns across

participants, subtle differences in muscle weightings and activation

timing may reflect individual movement strategies or adaptations

(55). These variations could potentially relate to performance levels,

injury history, or anatomical differences (44, 56). Future research

should explore whether specific synergy characteristics correlate

with performance metrics such as shuttlecock velocity or placement

accuracy, as well as their relationship to injury risk profiles (57).

Despite its contributions, this study has several limitations. First,

our static optimization approach may not fully capture the time-

dependent dynamics of muscle activation during explosive

movements, as it minimizes instantaneous muscle activation

without considering temporal optimization across the entire

movement trajectory. Second, our analysis focused exclusively on

elite badminton players, potentially limiting generalizability to

recreational players or those with different technical approaches.

Third, while surface EMG provides valuable insights into superficial

muscle activity, it cannot reliably capture deep muscle activations,

particularly for muscles critical to shoulder function such as the

rotator cuff group. Fourth, individual variations in technique and

equipment specifications (racket properties, string tension) may

have influenced muscle activation patterns, though we attempted to

control for these factors through stringent inclusion criteria. Fifth,

our computational model incorporated simplified tendon properties

that may not fully represent elastic energy storage and release

during rapid movements, potentially affecting muscle-specific

activation predictions. Finally, while our sample size was adequate

for detecting moderate to large effects, subtle differences between

experimental and computational approaches may have been missed

due to limited statistical power. Future studies should address these

limitations through longitudinal designs, inclusion of diverse skill

levels, and implementation of dynamic optimization algorithms that

better account for time-dependent muscle dynamics.
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We propose synergy-specific training interventions:

- Synergy 1 (trapezius-dominant): Progressive scapular

stabilization exercises from static to dynamic conditions with

proprioceptive elements.

- Synergy 2 (pectoralis/anterior deltoid): Power development

using sport-specific exercises emphasizing rapid force

production (40-60% 1RM).

- Synergy 3 (posterior muscles): Eccentric-focused training

targeting deceleration capabilities.

Program implementation should follow a 3:2:2 ratio of training

volume between synergies 1, 2, and 3 during initial phases,

shifting toward 2:3:3 as players advance, reflecting the greater

importance of power generation and deceleration control at

higher performance levels. This synergy-based approach

fundamentally differs from traditional muscle-isolated training by

emphasizing coordinated activation patterns rather than

individual muscle development (43).

5 Conclusions

This investigation successfully quantified muscle synergies during

the badminton forehand overhead smash through non-negative

matrix factorization of EMG data and MSK modeling, providing

novel insights into the neuromuscular control strategies underlying

this complex, high-velocity movement. Three distinct synergies were

identified: (1) trapezius-dominant synergy for scapular stabilization

during acceleration, (2) pectoralis/anterior deltoid synergy for internal

rotation and flexion during impact, and (3) posterior muscle synergy

for controlled deceleration. The computational musculoskeletal model

demonstrated strong agreement with experimental EMG data for

most muscles, with notable exception of the lower trapezius. These

findings highlight the integration of EMG and MSK modeling as a

robust approach for analyzing neuromuscular control strategies in

high-velocity overhead movements. Further research should expand

to other overhead sports, explore alternative algorithms such as ICA

or PCA, employ advanced EMG techniques for deep muscles, and

conduct longitudinal studies examining how training or rehabilitation

alters synergy structures, thereby enhancing applications in both

athletic performance optimization and injury prevention. Future

research should expand methodological approaches to include

dynamic optimization algorithms that better account for force-

velocity relationships and inertial effects during explosive movements.

Such approaches may improve model predictions for muscles

exhibiting complex activation patterns during rapid acceleration and

deceleration phases.
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