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Optimal body mass normalization
of power output for accurate
prediction of estimated cycling
performance over complex time-
trial courses

Marton Horvath and Erik P. Andersson*

Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University,
Östersund, Sweden

Introduction: Power profiling is widely used in cycling performance analysis, but
both absolute and mass-normalized power outputs have limitations as
performance indicators, as they neglect external factors such as terrain, wind,
aerodynamic drag, and pacing strategy. To address these limitations, this study
introduced a numerical method to quantify how external forces acting on the
cyclist influence the conversion of power output into race velocity. Thus, the
study aimed to enable accurate prediction of cycling performance based on
estimated mean power output over complex time-trial courses.
Methods: Time-trial performances of five elite-level road cyclist profiles—a
sprinter, climber, all-rounder, general classification (GC) contender, and a time
trialist—were estimated using the power-duration relationship and previously
published normative data. These performance estimates were applied to both
simplified hypothetical courses and complex real-world time-trial courses.
Optimal mass exponents for the power-to-mass ratio were determined based
on the estimated average speeds over the respective course sections, cyclist
morphology, and external factors such as gradient and wind velocity.
Results: Across two recent Grand Tour individual time-trial courses, stage 21 of
the 2024 Tour de France and stage 7 of the 2024 Giro d’Italia, the duration-
weighted optimally mass-normalized power output metrics were W/kg0.6068

and W/kg0.4891, respectively. These metrics accurately predicted the estimated
performances of the five defined cyclist profiles (R2

= 0.99 for both).
Discussion: The results indicate that the duration-weighted optimal mass
exponents for the power-to-mass ratio are course-specific. By deriving
optimal mass exponents across various modeled courses and wind conditions,
the study was able to precisely quantify the influence of road gradient,
headwind speed, and bicycle mass on the conversion of power output relative
to body mass into speed. Further research is needed to validate the presented
method for determining optimal mass exponents in real-world
performance settings.
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1 Introduction

Strong time-trial performances are crucial for success in the

general classification (GC) of cycling Grand Tours (1). Thus,

identifying the optimal balance between body mass and power

output is particularly challenging, as GC-contenders must

perform well in both climbing stages, where a high body-mass-

normalized power output is essential, and flat time trials, which

require high absolute power output. Therefore, accurately

predicting time-trial performance is highly relevant in

professional cycling, with direct implications for training

optimization and tactical decision-making.

Power profiling in cycling involves the assessment of power

outputs using power meters over various durations during

training and competition (2). This practice is fundamentally tied

to the power-duration relationship, which allows for predicting

performance across different exercise durations (3). The two

most commonly used power metrics for establishing cyclists’

power output profiles and assessing their performance potential

are absolute power output (i.e., W) and power output normalized

to body mass in kilograms (i.e., W/kg) (4–10). However, these

metrics alone do not accurately predict a cyclist’s true

performance capacity (11). For example, between two cyclists

with the same body-mass-normalized power output (i.e., power-

to-mass ratio) over a given exercise duration, the heavier cyclist

will reach a higher speed on flat terrain. Conversely, if two

cyclists have identical absolute power output, the lighter cyclist

will have an advantage on the uphill sections of the competition

course [see Swain (12) for further details]. To address this

limitation, prior studies have developed allometrically scaled

power metrics based on empirical performance tests (11–15).

However, none of these former studies have presented a precise

method for predicting performance on courses with variable

terrain or wind exposure.

The present study aimed to develop a method for quantifying

how external forces determine the power output-body mass ratio,

which accurately reflects cycling performance. Additionally, the

study was designed to examine how these ratios were influenced

by internal factors such as drag area, power output, and

equipment mass, as well as external parameters such as gradient

and wind.

2 Materials and methods

2.1 General overview

This study presents a novel numerical approach for deriving

the optimal body mass exponent in the power-to-mass ratio for

performance prediction, determined by the primary resistive

forces acting on a cyclist. The approach utilized the power-

duration relationship to estimate time-trial performance across

five typical elite-level road cyclist profiles, constructed using

previously published normative data, over both simplified

hypothetical and complex real-world time-trial courses.

A schematic overview of the method is presented in Figure 1,

and the following subsections describe each step in detail.

2.2 Defining typical elite-level cyclist
profiles

As the first step in deriving the power-to-mass ratio resulting in

optimized performance prediction, five elite-level cyclist profiles

were created according to cyclist typology. These were

constructed using previously published data from 144 male

World Tour and Pro Continental cyclists, collected during

training and competition, over several years (10). These cyclist

profiles were designed to represent “typical” riders in the

professional peloton based on both morphology and power

profile characteristics. The cyclist profiles represented the

following rider categories: sprinter, climber, all-rounder, general-

classification (GC)-contender, and time trialist. These profiles

were intended to reflect the key performance characteristics

commonly observed among elite-level road cyclists (Table 1).

2.3 Time-trial performance estimation of
typical cyclist profiles

The subsequent step in the process of deriving the power-to-

mass ratio reflecting cycling performance was to estimate the

performance of the five defined cyclist profiles over the analysed

race courses. This step was essential for estimating the power

required to counteract aerodynamic drag and for calculating the

time the cyclist would spend on the total course as well as on

each course section. Firstly, simplified performance estimations

were carried out over hypothetical flat and uphill courses

representing constant inclines over a 10 km distance. For the flat

conditions (a ¼ 0�), both windstill and headwind scenarios were

modeled. As uphill conditions, moderate (a ¼ 2�) and steep

(a ¼ 7�) inclines were examined. Subsequently, complex time-

trial courses of two recent Grand Tours were analysed. In

addition, comprehensive analyses were performed, aiming to

reveal the underlying relationships between the optimal mass

exponent of the power-to-mass ratio and such factors as incline,

wind velocity, power output and equipment mass.

To obtain the power-duration relationship parameters of the

five created typical cyclist profiles, the following critical power

model was fitted to the respective power data for each cyclist

profile:

PðtÞ ¼ CP þ
Pan

1þ t=t
, (1)

where P is power output, CP is critical power, Pan is power capacity

above CP, t is duration, t represents the time constant

corresponding to the depletion of half of Pan (i.e., CP þ Pan=2),

and the product of Pan and t equals the work capacity above CP

(i.e., W 0).
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Neglecting marginal losses such as frictional loss in the drive

train and wheel bearings, cycling power output when traveling in

a straight line at a constant speed can be expressed as:

P ¼ Pgrav þ Proll þ Pair, (2)

where Pgrav , Proll and Pair denote power against gravity, rolling

resistance and aerodynamic drag, respectively and P is the

propulsive power output generated by the cyclist (16). Assuming

constant system mass, road conditions, no inertia and a constant

drag area, expressing each component in Equation 2 results in:

P ¼ msys gðsinðaÞ þ CrrcosðaÞÞ þ 0:5CdArðv þ vwind cosðfÞÞ
2� �

v, (3)

where msys is the system mass, amounting to the sum of body

mass (m) and equipment mass (mequip), g is the gravitational

acceleration (i.e., 9.81 m=s2), a denotes the incline of the road,

Crr is the rolling resistance coefficient, Cd is the drag coefficient,

A is the projected frontal area of the cyclist-bicycle system, r is

the air density, the v þ vwind � cosðfÞ expression is the headwind

velocity relative to the cyclist (i.e., relative velocity), where vwind

is the velocity of wind, f denotes the angle of wind with the

direction of travel and v is the cyclist’s speed of travel (for a

more refined formulation refer to Equation A1 in the Appendix).

To determine the drag area, the drag coefficient and the

projected frontal area of the cyclist-bicycle system were

allometrically scaled (CdA ¼ 0:0725 �m0:312), assuming a

standard bicycle geometry, as described by Heil (17).

The mathematical model for estimating the speed (v) of the

typical cyclist profiles over the hypothetical time-trial courses was

derived by substituting Equation 1, into the left-hand side of

Equation 3, resulting in:

CP þ
Pan

1þ
s

vt

¼ msys g sinðaÞ þ Crr cosðaÞð Þ þ 0:5CdAr v þ vwind cosðfÞð Þ2
� �

v,

(4)

where s denotes course distance, while CP and Pan values

corresponding to each typical cyclist profile are presented in

Table 1. Thus, time-trial performance was defined as the speed

corresponding to the estimated average power output over the

given time-trial course, assuming an even pacing strategy. This

equation was solved numerically for speed using the secant

method implemented in Python v3.12.5 (Python Software

Foundation, Wilmington, DE, USA). Iterations continued until

the difference between successive approximations of v met the

predetermined convergence criterion jvkþ1 � vkj , 10�8 m/s.

Equipment mass (mequip) was set to 6.8 kg, while Crr and r were

set to 0.005 and 1.225 kg/m3, respectively, for time-trial

performance estimations on Grand Tour stage courses.

2.4 Obtaining time-trial course attributes

To demonstrate the proposed method for deriving optimally

normalized power output for complex courses, the course profiles of

recent Grand Tour individual time trial stages (ITTs) were analyzed,

namely stage 7 of the 2024 Giro d’Italia (Foligno—Perugia, 10th

May) and stage 21 of the 2024 Tour de France (Monaco—Nice, 21st

July). Both stages featured significant climbs, they measured 40.9

and 37.8 km in length, with total elevation gains of 341 and 663m,

and total elevation losses of 107 and 660m, respectively.

To simplify time-trial performance estimations on these real-

world courses, we assumed two-dimensional time-trial courses in

a vertical plane, consistent with the methods used in previous

studies (18–21). Course profiles were parsed using a custom-

made algorithm implemented in Python v3.12.5. This process

FIGURE 1

Schematic overview of the developed process for deriving optimally normalized power output metrics, enabling accurate performance prediction on
complex individual time trial (ITT) courses.

TABLE 1 Morphological characteristics and critical power model
parameters—critical power (CP) and curvature constant (W 0)—for the
defined typical cyclist profiles. Morphological data were obtained from
Valenzuela et al. (10), while CP and W 0 values were derived from the
reported power data using Equation 1. Mean values of these parameters
were used in time-trial performance estimations for each model.

Type Body
mass (kg)

Height
(m)

CdA

(m2)
CP

(W)
W’

(kJ)

Climber

(n ¼ 50)
63.2 (4.4) 1.77 (0.06)

0.264

(0.006)

354.1

(24.6)

23.0

(1.3)

Sprinter

(n ¼ 11)
80.2 (6.5) 1.87 (0.06)

0.285

(0.007)

381.3

(23.7)

38.6

(4.5)

Time trialist

(n ¼ 11)
72.6 (5.4) 1.84 (0.08)

0.276

(0.006)

395.3

(31.8)

22.0

(2.7)

GC-contender

(n ¼ 7)
63.8 (4.5) 1.76 (0.07)

0.265

(0.006)

388.6

(24.0)

18.1

(2.3)

All-rounder

(n ¼ 65)
69.5 (5.5) 1.81 (0.06)

0.272

(0.007)

361.1

(31.7)

30.1

(0.2)

n, sample size used for defining the respective typical cyclist profile; CdA, drag area; CP,

critical power; W0 , work capacity above critical power; data are represented as mean (SD).
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involved the identification of surface points, i.e., course

coordinates, extracted from two-dimensional course profile

schematics obtained online (22). The extracted coordinates were

interpolated using cubic spline interpolation and filtered using a

Savitzky-Golay filter, to generate the virtual course profile models

used in the further analyses (23, 24). Each course profile was

then divided into distinct sections concerning terrain profile (i.e.,

flat, uphill, and downhill sections). This process resulted in 11

and 9 sections for the Giro d’Italia and the Tour de France

stages, respectively (Figure 2). Section boundaries were defined at

points where substantial changes in the course inclination

occurred, and attributes for each section, such as distance and

elevation gain, were extracted. The duration (t) required to

complete each section of the course was determined using the

estimated mean speed of each typical cyclist profile over the

specific section, based on Equation 4, and assuming an estimated

constant mean power output across the entire course. The total

finishing time was calculated as the sum of section durations.

2.5 Defining the optimal mass exponent of
the power-to-mass ratio

When aiming to mass normalize power output for optimized

performance prediction (i.e., to define the optimal mass exponent

in the power-to-mass ratio), a key challenge is to establish a

power metric that reflects performance independently of body

mass. The underlying assumption is that, under consistent

external conditions and for cycling at a given speed, the value of

an optimally normalized power metric should indicate equivalent

performance across cyclists of different body masses. In other

words, a higher optimally mass-normalized power output should

indicate superior road-cycling performance.

To achieve this, the mass-exponent x in the power-to-mass

ratio P=mx , was determined iteratively, aiming to eliminate the

effect of body size (m), such as that P=mx remains constant

across riders of different body masses. This was accomplished by

minimizing the absolute slope jaj of the regression line:

P=mx ¼ amþ b, (5)

where b is the y-intercept of the regression line. The mass exponent

in Equation 5 fulfilling this criterion was designated as the optimal

mass exponent (xopt):

xopt ¼ arg minx[[0,1]jaj, (6)

and the slope of the regression line in Equation 6 was expressed as:

a ¼

Pn
i¼1ðmi �mÞðPnorm,i � PnormÞ

Pn
i¼1ðmi �mÞ2

, (7)

where m and Pnorm denotes the mean body mass and mean

optimally normalized power output, respectively, and

mi [ Z> [45, 100] (i.e., body mass takes up all integers between

45 and 100 kg). The optimization algorithm iterated Equation 7

over each x j [ [0, 1] using increments of 10�5. The algorithm

tracked the slope of the regression line and its corresponding

FIGURE 2

Schematic representation of the analysed Grand Tour individual time trial (ITT) courses, with course sections identified based on terrain profile. si
marks the ith section of the course.
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body mass exponent across all iterations. If the current ja jj that

corresponded to x j was smaller than the current minimal slope

corresponding to the stored exponent, this stored exponent was

overwritten to x j. After completing all iterations for x, the

algorithm returned the value of x j ¼ xopt, which corresponded to

the minimal absolute slope of the regression line (Figure 3).

2.6 Defining the duration-weighted optimal
mass exponent for complex courses

For complex courses that include varying terrain types or

fluctuating wind conditions, we introduced the concept of the

duration-weighted optimal mass exponent (xopt). In practice, any

time-trial course can be segmented into a discrete number of

arbitrary sections (n), and the estimated performance of the

typical cyclist profiles over these sections can be characterized by

mean section durations {ti}i¼1,2,...,n. By determining the optimal

mass exponent {xopti }i¼1,2,...,n for each section, the overall course-

specific exponent was calculated as the duration-weighted

arithmetic mean of these section-specific exponents as:

xopt ¼

Pn
i¼1 xopti � ti
Pn

i¼1 ti
, (8)

where the denominator represents the estimated mean total

finishing time of the group of typical cyclists.

3 Results

For the 10 km hypothetical course consisting of completely flat

terrain, time-trial performance estimation yielded estimated average

speeds of 12:92+ 0:12 m/s under windless condition (i.e.,

vwind ¼ 0m=s) and 9:87+ 0:13 m/s when a headwind of

vwind ¼ þ 5m=s was included in the model. The corresponding

optimal body mass exponents derived using these mean estimated

average speeds were 0.3834 and 0.3674, respectively, indicating a

decrease in the optimal mass exponent when headwind was added

(Table 2). In the modeled uphill scenarios, estimated mean speeds

over the 10 km hypothetical courses were 9:11+ 0:27 m/s for a

moderate incline (a ¼ 2�) and 3:96+ 0:26 m/s for a steep incline

(a ¼ 7�) (Table 2). The corresponding optimal body mass

exponents were 0.7197 and 0.8929, respectively, demonstrating an

increase with increasing gradient.

Further analyses revealed that the curvature of the optimal mass

exponent curve decreases as the incline increases, demonstrating that

xopt increases with steeper uphill gradients. In contrast, a higher

headwind velocity relative to the cyclist (v þ vwind � cosf) results in a

lower xopt (Figure 4A). A general pattern was also observed whereby

higher-performing cyclists, that reach greater velocities due to a

higher power output, exhibit lower xopt values at a given incline. This

suggests that the performance-predictive ability of mass-normalized

power output (i.e., W/kg) is inversely related to performance level. As

shown in Figure 4B, if curves for different constant power outputs are

assumed to represent different performance levels, then drag area

normalized power output becomes relatively more important at

higher performance levels due to increased effective headwind.

However, this effect remains relatively small.

Based on Equation 8, the calculated xopt values for the analysed

Giro d’Italia and Tour de France ITT courses were 0.4891 (95% CI:

0.4767–0.5015) and 0.6068 (95% CI: 0.5799–0.6337), respectively.

These values correspond to optimal exponents expected for cycling

on constant inclines of 0.44� and 1.16�, respectively, based on the

mean estimated average speeds of typical cyclist profiles over the

respective courses under no-wind conditions (Tables 3, 4). Using the

defined duration-weighted optimal mass exponents, linear regression

analyses effectively captured variations in estimated total finishing

times, demonstrating a robust ability to predict performance

outcomes over the investigated time-trial courses (Figure 5).

4 Discussion

A method was developed to optimally normalize power output,

resulting in a power metric whose magnitude reflects cycling

performance. By using this approach, course-specific optimal mass

exponents were derived for the power-to-mass ratio, effectively

accounting for the variation in estimated time-trial performances

among typical professional cyclist profiles across two recent Grand

Tour courses. The results further suggest that optimal mass

exponents of the power-to-mass ratio are not only course-specific

but also vary across individual course sections, depending on the

interaction of multiple internal and external factors.

In contrast to many previous studies, which have relied on

empirical data from actual performance tests (12, 14, 15, 25), this

study estimated course-specific time-trial performances using the

power-duration relationship and the power balance equation. This

methodological shift offered a key advantage as the investigated

performance descriptors, such as velocity and estimated total

finishing time, were not affected by differences in pacing strategy

FIGURE 3

Illustration of the derived absolute power output (P) as a function of
body mass (m) (orange solid curve), and its transformation into the
derived power-to-mass ratio (P=mxopt ) (blue dashed curve). Values
are shown across a body mass range of 45–100 kg, assuming
constant speed (v ¼ 10m/s) and incline (a ¼ 3�). The derived
metric (Pnorm ¼ 4:7� 10�7

mþ 25:72) demonstrates approximate
body mass independence across the studied range.
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between cyclists (26, 27). Moreover, the focus of this study

distinguishes it from earlier studies. While classical scaling

approaches aim to describe the dependency of a variable on body

size (e.g., expressing the dependency of power output on body

mass in the form of P ¼ k �mx ) (28), the method of the current

study sought to eliminate the confounding effect of body size on

power output to enable fair comparisons across athletes. In doing

so, body size independent power metrics optimized for predicting

performance over complex time-trial courses were calculated.

Given that an xopt value closer to one is generally

disadvantageous for heavier cyclists, the derived xopt values suggest

that the stage 21 course of the 2024 Tour de France was less

favorable for time trialists compared to lighter GC-contenders or

climbers, despite its minimal net elevation change of approximately

�3.4m). This discrepancy can be attributed to the proportion of

time spent on uphill vs. downhill sections. If the uphill gradients

had been less steep, leading to higher mean section speeds and

shorter mean section times, xopt would theoretically have been

lower. In contrast, the analyzed Giro d’Italia course exhibited a

comparatively lower xopt, suggesting a more favorable scenario for

time trialists, despite having significantly more ascent than descent.

This interpretation was supported by race outcomes: on stage 7 of

the 2024 Giro d’Italia, three time trialists placed in the top 10, with

Filippo Ganna (Team Ineos Grenadiers) finishing second.

Conversely, on stage 21 of the 2024 Tour de France, the highest-

placed time trialist finished 13th. The influence of mequip was also

investigated, showing that a greater proportional contribution of

mequip to msys results in lower xopt values, thus determining the

maximum of the xopt curves. This finding indicates that heavier

bicycles pose a relatively greater disadvantage for lighter cyclists

than for heavier ones, which supports previous findings on the

relative energy cost of uphill cycling (12, 29).

It is important to recognize that actual performance is influenced

by the interaction between the course-specific xopt values and the

individual rider’s power profile. Consequently, climbers may

occasionally be outperformed on short, steep ascents by all-

rounders or even sprinters. Similarly, strong time trialists may serve

effectively as domestiques for general classification (GC) contenders

on long, moderately steep climbs in stage races. A practical

application of the presented method would be to generate power

output profiles that are normalized by the course-specific optimal

mass exponent, thereby improving the interpretability of power

profiles and enabling more accurate rider comparisons tailored to a

specific race course or section(s) of the course.

In this study, constant power output time-trial performances

were used to determine xopt; however, even in time trials,

TABLE 2 Estimated average speed, finishing time and average power output of typical cyclist profiles over 10 km hypothetical courses with constant
incline under varying wind conditions. Optimal mass exponents of the power-to-mass ratio (xopt), based on mean estimated average speed across
typical cyclist profiles, were determined as follows: 0.3834 for a flat course (a ¼ 0�) with no wind, 0.3674 for a flat course (a ¼ 0�) with a +5m/s
headwind (f ¼ 0�), 0.7197 for a moderate incline (a ¼ 2�) with no wind, and 0.8929 for a steep incline (a ¼ 7�) with no wind.

Conditions Type v

(m/s)
test

(s)
P

(W)
P=m

(W/kg)
P=CdA

(W=m2)
P=mxopt

(W=kgxopt )
a ¼ 0� vwind ¼ 0 m/s GC-contender 13.11 762.5 411.9 6.46 1553 83.72

Sprinter 12.91 775.2 429.5 5.36 1508 79.97

Climber 12.79 782.0 382.6 6.05 1448 78.05

All-rounder 12.81 780.8 398.3 5.73 1462 78.35

Time trialist 13.01 768.5 423.2 5.83 1533 81.86

Mean 12.92 773.8 409.1 5.89 1500 80.39

95% CI 0.17 10.2 17.4 0.51 56 2.98

a ¼ 0� vwind ¼ þ5 m/s GC-contender 10.07 992.9 406.6 6.37 1533 88.32

Sprinter 9.82 1018.2 418.3 5.22 1468 83.54

Climber 9.74 1027.0 376.0 5.95 1422 81.96

All-rounder 9.74 1026.5 389.7 5.61 1430 82.02

Time trialist 9.97 1002.9 416.8 5.74 1509 86.34

Mean 9.87 1013.5 401.5 5.78 1472 84.44

95% CI 0.19 18.8 18.3 0.53 60 3.49

a ¼ 2� vwind ¼ 0 m/s GC-contender 9.55 1046.7 405.7 6.36 1529 20.38

Sprinter 8.47 1143.7 414.3 5.17 1454 17.66

Climber 9.15 1093.0 374.7 5.93 1417 18.95

All-rounder 8.96 1116.4 387.4 5.57 1422 18.30

Time trialist 9.17 1090.9 415.1 5.72 1503 19.00

Mean 9.11 1098.1 399.4 5.75 1465 18.86

95% CI 0.37 44.4 22.1 0.55 62 1.25

a ¼ 7� vwind ¼ 0 m/s GC-contender 4.36 2293.5 396.5 6.21 1495 9.70

Sprinter 3.58 2796.9 395.0 4.93 1387 7.88

Climber 4.05 2470.1 363.3 5.75 1374 8.96

All-rounder 3.82 2614.3 372.5 5.36 1367 8.44

Time trialist 3.98 2511.9 404.0 5.56 1463 8.80

Mean 3.96 2537.4 386.2 5.56 1417 8.76

95% CI 0.36 230.4 21.6 0.60 72 0.83

a, incline; vwind , velocity of the wind; v, estimated velocity of the cyclist profile; test , estimated finishing time; xopt , optimal mass exponent of the power-to-mass ratio.
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predicting performance is complex due to the variability in power

output distribution along the course (18, 20). Regarding bunch

races, the performance predictive ability of the presented method

is expected to be lower without additional considerations. Factors

such as drafting, energy intake, and in-race dynamics (30–32), all

underscore that successful performance in cycling depends not

solely on the physiological capacity but also on an optimized

pacing strategy, aerodynamic positioning on the bike, nutrition

planning, and a good understanding of the race dynamics.

4.1 Methodological considerations

By definition, the magnitude of a power metric that accurately

reflects performance independently of body mass should remain

constant across different body masses at a given speed of travel

(see Section 2.5 for details concerning methodology). However,

it is crucial to note that the complete mass independence of

propulsive power output is technically unattainable due to the

inherent non-linearity of the power balance function. As a

TABLE 3 Terrain profile, estimated average speeds, and finishing times of typical cyclist profiles across the identified sections of stage 21 of the 2024
Tour de France. Optimal mass exponents of the power-to-mass ratio (xopt) were calculated for each section, and the course-specific, duration-
weighted mass exponent (xopt) was 0.6068.

Parameters Sections and total course

1 2 3 4 5 6 7 8 9 Total course

Distance (m) 2231 8369 884 1180 2494 1476 2657 8893 5579 33763

Elevation gain (m) 0.0 470.7 �7.5 52.7 �158.2 139.3 �11.3 �482.0 0.0 3.8

Incline (deg) 0.00 3.22 �0.49 2.56 �3.63 5.39 �0.24 �3.10 0.00 –

Estimated average speed (m/s)

GC-contender 12.92 7.62 13.82 8.54 19.35 5.39 13.36 18.46 12.92 11.30

Sprinter 12.50 6.59 13.56 7.54 19.96 4.48 13.02 18.95 12.50 10.41

Climber 12.53 7.18 13.45 8.09 19.09 5.02 12.98 18.19 12.53 10.83

All-rounder 12.48 6.90 13.46 7.83 19.40 4.77 12.96 18.46 12.48 10.62

Time trialist 12.78 7.15 13.76 8.09 19.73 4.96 13.26 18.78 12.78 10.93

Mean 12.64 7.09 13.61 8.02 19.50 4.92 13.12 18.57 12.64 10.82

95% CI 0.22 0.42 0.19 0.41 0.38 0.37 0.20 0.33 0.22 0.35

Estimated finishing time (s)

GC-contender 172.72 1097.94 63.96 138.19 128.92 273.74 198.89 481.66 431.92 2988.0

Sprinter 178.49 1269.57 65.18 156.58 124.95 329.31 204.08 469.19 446.34 3243.7

Climber 178.04 1165.06 65.70 145.83 130.68 293.82 204.65 488.91 445.23 3117.9

All-rounder 178.77 1212.15 65.68 150.75 128.58 309.64 205.03 481.83 447.06 3179.5

Time trialist 174.59 1169.87 64.24 145.80 126.41 297.61 200.38 473.46 436.58 3088.9

Mean 176.52 1182.92 64.95 147.43 127.90 300.83 202.61 479.01 441.43 3123.6

95% CI 3.01 70.39 0.90 7.56 2.49 22.77 3.09 8.61 7.53 107.1

xopt 0.3854 0.8168 0.3764 0.7748 0.3453 0.8779 0.3814 0.3483 0.3854 0.6068

95% CI 0.0191 0.0272 0.0145 0.0308 0.0199 0.0150 0.0161 0.0182 0.0191 0.0269

xopt , optimal mass exponent of the power-to-mass ratio.

FIGURE 4

Relationships between the optimal mass exponent of the power-to-mass ratio (xopt) and relative velocity at different inclines (A), and between xopt,
power output, and incline (B), for a cyclist with body mass m ¼ 70 kg.
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result, the minimal absolute slope of the regression line is always

nonzero. Although this violates the theoretical assumption of

perfect mass independence, it does not significantly

compromise the method’s accuracy, since the slope of the

regression line remains close to zero, resulting in a minimal

variation in P=mxopt (see Figure 3). To quantify this variation,

the typical error for consecutive calculations of P=mxopt was

assessed according to the method described by Hopkins (33).

Across the constant arbitrary velocities, within the studied body

mass range, the typical error was in the order of 10�3,

corresponding to a coefficient of variation of approximately

0.3% for P=mxopt across all investigated courses. It should also

TABLE 4 Terrain profile, estimated average speeds, and finishing times of typical cyclist profiles across the identified sections of stage 7 of the 2024 Giro
d’Italia. Optimal mass exponents of the power-to-mass ratio (xopt) were calculated for each section, and the course-specific, duration-weighted mass
exponent (xopt) was 0.4891.

Parameters Sections and total course

1 2 3 4 5 6 7 8 9 10 11 Total course

Distance (m) 5343 1835 5182 5440 4957 5601 1416 676 3412 1545 5472 40880

Elevation gain (m) �19.8 14.8 �28.7 23.7 �23.7 4.0 24.7 �34.6 10.9 145.3 117.6 234.2

Incline (deg) �0.21 0.46 �0.32 0.25 �0.27 0.04 1.00 �2.93 0.18 5.37 1.23 –

Estimated average speed (m/s)

GC-contender 13.30 12.07 13.50 12.45 13.41 12.84 11.09 18.17 12.58 5.40 10.69 12.32

Sprinter 12.94 11.50 13.18 11.95 13.07 12.40 10.37 18.62 12.10 4.48 9.90 11.86

Climber 12.92 11.66 13.13 12.05 13.03 12.45 10.67 17.89 12.18 5.03 10.26 11.93

All-rounder 12.89 11.56 13.11 11.97 13.01 12.39 10.51 18.14 12.11 4.77 10.07 11.87

Time trialist 13.19 11.85 13.41 12.27 13.31 12.69 10.80 18.47 12.41 4.97 10.37 12.16

Mean 13.05 11.73 13.27 12.14 13.17 12.55 10.69 18.26 12.28 4.93 10.26 11.61

95% CI 0.21 0.26 0.20 0.24 0.20 0.22 0.31 0.32 0.23 0.38 0.33 0.26

Estimated finishing time (s)

GC-contender 401.83 152.06 383.87 436.92 369.70 436.32 127.67 37.20 271.25 286.07 511.96 3414.8

Sprinter 412.87 159.59 393.18 455.35 379.21 451.68 136.63 36.31 282.04 344.54 552.69 3604.1

Climber 413.61 157.36 394.81 451.35 380.38 449.97 132.77 37.78 280.05 307.15 533.58 3538.8

All-rounder 414.57 158.78 395.34 454.43 381.06 452.08 134.79 37.26 281.75 323.82 543.20 3577.0

Time trialist 405.03 154.77 386.37 443.30 372.35 441.32 131.12 36.60 274.92 311.05 527.90 3484.7

Mean 409.58 156.51 390.71 448.27 376.54 446.27 132.60 37.03 278.00 314.53 533.86 3523.9

95% CI 6.40 3.43 5.82 8.80 5.73 7.86 3.83 0.64 5.26 23.97 17.17 84.0

xopt 0.3818 0.4904 0.3798 0.4449 0.3807 0.3957 0.5920 0.3498 0.4288 0.8781 0.6287 0.4891

95% CI 0.0380 0.0198 0.0129 0.0173 0.0130 0.0156 0.0240 0.0145 0.0171 0.0121 0.0268 0.0124

xopt , optimal mass exponent of the power-to-mass ratio.

FIGURE 5

Derived power-to-mass ratios (P=mxopt ) and total finishing times for the defined typical cyclist profiles over stage 21 of the 2024 Tour de France (A) and
stage 7 of the 2024 Giro d’Italia (B).
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be noted that performance estimation based on power output

profiles is inherently limited by fluctuations in athletes’ record

power outputs, which can vary both throughout a competitive

season and within a single race (5, 6, 34).

4.2 Limitations

In this study, we applied a simplified approach for scaling the

CdA, similar to the work of Sundström et al. (35), for instance. It is

important to emphasize, however, that CdA is influenced by several

factors, including wind direction, bicycle geometry and

configuration, equipment characteristics (e.g., helmet and shoe

aerodynamics), and the cyclist’s posture and positioning on the

bike. Therefore, for practical implementation of the presented

methods and performance metrics, accurate measurements (36,

37), or refined calculations of CdA, as well as modeling changes

in CdA as a function of wind direction and drafting are necessary

[for a detailed explanation see Martin et al. (16) and Blocken

et al. (30)]. It is believed that this potential discrepancy between

the scaled and actual CdA values was the main reason why the

estimated average speeds over the modeled ITTs appeared to be

considerably slower than the speed of today’s elite-level cyclists

over such efforts. For example, the later winner of the race, Tadej

Pogačar (UAE Team Emirates) won the analysed ITT of the

2024 Tour de France (i.e., stage 21) with an average speed of

44.5 km/h, demonstrating an almost 4 km/h positive difference

compared to the fastest estimated average speed of 40.7 km/h for

this course, which would have resulted in a 25th place.

Additionally, the normative power profiles used to create the

typical cyclist profiles in the current study may no longer reflect

the performance capacity of the sport’s top performers, given the

rapid advancements in cycling. Since these profiles were derived

from averaged historical data, they likely underestimate the

capabilities of podium-level athletes.

Another limitation lies in the assumption of a constant power

output distribution during the modeled time trials. In this case,

power output was not optimally distributed according to terrain

profile (18, 20, 27). Instead, a constant mean power output

corresponding to the estimated total finishing times was applied

across all points of the course for each typical cyclist profile.

Additionally, the model did not consider inertia in the direction

of travel which may introduce further inaccuracies when

analysing courses with numerous turns, or frequent accelerations.

As a result of these simplifications, the intermittent expenditure

and reconstitution of W 0 were also omitted from the model,

likely contributing to the relatively low estimated average speeds

across the time-trial courses (38).

Further in-field research is needed to validate whether the

magnitude of optimally normalized power output more

accurately reflects road cycling performance than previously used

metrics (e.g., W=kg0:32 and W=kg). Additionally, as the present

study focused exclusively on determining xopt for male cycling

races, it is important to derive and evaluate optimal mass

exponents during ITTs for female cyclist profiles to assess

potential sex-specific differences.

4.3 Practical applications

Despite the various limitations that influenced the results of

this study, it remains highly relevant to assess whether the race

course profile suits the attributes and abilities of specific cyclists,

particularly in the preparation for an upcoming race. Identifying

duration-weighted optimal mass exponents of the power-to-mass

ratio for complex race courses or key course segments provides

valuable insights into the specific demands of a given course in

terms of power output relative to body mass. This approach can

enhance the interpretation of power output profiles in relation to

performance capacity, support the development of targeted

training strategies, course profile categorization, and refine cyclist

assignment models.

5 Conclusions

The present study provides a numerical method for

determining the optimal mass exponent of the power-to-mass

ratio for optimized cycling performance prediction. The findings

demonstrate that optimally normalized power metrics are course-

specific. The optimal mass exponent of the power-to-mass ratio

increases with steeper inclines but decreases with higher power

output, greater equipment mass relative to body mass, and

higher headwind velocity relative to the cyclist. These findings

underscore the complex interaction between internal and external

factors that influence the conversion of power output into

cycling speed.
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Appendix

To accurately account for marginal losses of the produced

power, Equation 3 can be refined for linear motion and constant

velocity v as follows:

P ¼ msys g sinðaÞ þ CrrcosðaÞð Þ
�

þ0:5rðCdAþ FwÞ v þ vwind cosðfÞð Þ2þð91þ 8:7vÞ10�3
� v

Ec
,

(A1)

where Fw represents the incremental drag area of the spokes,

Ec is the chain efficiency factor (approximately 0.97) and

ð91þ 8:7vÞ � 10�3 � v represents the frictional power loss through

the wheel bearings (16).

Horvath and Andersson 10.3389/fspor.2025.1599319

Frontiers in Sports and Active Living 12 frontiersin.org

https://doi.org/10.3389/fspor.2025.1599319
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/

	Optimal body mass normalization of power output for accurate prediction of estimated cycling performance over complex time-trial courses
	Introduction
	Materials and methods
	General overview
	Defining typical elite-level cyclist profiles
	Time-trial performance estimation of typical cyclist profiles
	Obtaining time-trial course attributes
	Defining the optimal mass exponent of the power-to-mass ratio
	Defining the duration-weighted optimal mass exponent for complex courses

	Results
	Discussion
	Methodological considerations
	Limitations
	Practical applications

	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References
	Appendix


