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Introduction: The time courses of the joint elevation angles of the thigh, shank,

and foot in one stride during walking can be well approximated by a “plane” in

a triaxial space. This intersegmental coordination (IC) of the lower limb elevation

angles is associated with gait variability. This study aimed to examine how

anteroposterior and lateral gait variabilities are influenced by different

amplitudes (±0.33 vs. ± 0.67 m·s−1) and periods (30 vs. 60 s) of sinusoidal speed

changes. We also examined which limbs are responsible for the step variabilities.

Methods: The IC plane thickness and coefficient of variance of step width

(CVSW) were quantified as anteroposterior and lateral gait variability in 18

young adults. Time delay of step length (TDSL) and step frequency (TDSF)

against sinusoidal speed changes were determined. Two-way statistical

parametric mapping was applied for the time courses of each limb angle.

Results: The IC plane thickness was greater in the ±0.67 m·s−1 condition than

the ±0.33 m·s−1 condition. Neither periods nor amplitudes affected CVSW,

TDSL, and TDSF. In the middle gait cycle, shank and foot angles were delayed

against sinusoidal speed changes in the ±0.67 m·s−1 condition during

acceleration phase, whereas shank and thigh angles proceeded in that

condition during deceleration phase.

Conclusion: Amplitude of sinusoidal speed changes increased anteroposterior,

but not lateral, gait variability regardless of period. Distal and proximal limbs

are controlled differently when continuous step adjustments are required, and

this may be attributed to step variabilities.

KEYWORDS

gait stability, dynamic balance, planar covariation law, bipedal locomotion, kinematics,

SPM

1 Introduction

The trajectory of the elevation angles of the thigh, shank, and foot in a gait cycle can be

well approximated by a “plane” in a triaxial space (1), called the planar covariation law

(PCL) (1–10). This approach contributes to showing the lower limb’s spatiotemporal

interlimb coordination (IC) during human gait. Moreover, the shape of the IC plane

was altered by an abrupt perturbation of treadmill speed (3, 4). Thus, variability of the

planarity of the IC plane in a gait cycle may be a result of the responses of individual
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lower limbs to maintain gait stability against the speed

perturbation. Indeed, an increased degree of gait speed

perturbations did not modify the IC plane planarity during

compensatory behavior in the unperturbed leg (3), so that the IC

plane planarity has been considered one of the inherent and

robust kinematic universalities across several gait-related motor

tasks (1, 3, 8). Some previous studies reported that gait speed

modified the IC plane planarity (8–10), whereas others did not

(5–7). This inconsistency may be derived from tested speed

range. Studies without a speed dependency of the IC plane

planarity measured narrower speed range from very slow to

preferred walking speed (0.28–1.39 m·s−1) (5–7). Conversely,

studies that found a speed dependency of the IC plane thickness

did a relatively wider speed range (0.5–2.0 m·s−1) up to around

gait transition speed (8–10). In addition, these previous studies

tested the IC plane planarity at different steady-state gait speeds.

Thus, more detailed study is necessary with regard to the

impacts of measured speed range and speed changes on the IC

plane planarity.

In our daily lives, passive gait speed changes necessarily occur

based on changes in surface conditions (11) and visual illusion

(12). A sinusoidal speed-changing protocol using a treadmill is

particularly available to evaluate gait variability due to several

reasons. First, it can involve a wide range of gait speed (13–15).

Second, a consecutive spatiotemporal adjustment of the lower

limbs is required for walkers without an abrupt perturbation

(13–15). Third, the PCL concept can be established regardless of

gait speed (1–10). Accordingly, we have recently examined the

effects of sinusoidal periods of 30-, 60-, and 120 s with

a ± 0.56 m·s−1 (±2 km·h−1) amplitude on gait variability (13).

Although an abrupt speed change caused gait perturbation in

association with a loss of the IC plane planarity (3, 4), our recent

study did not observe such a great loss of the IC plane planarity

when walking under sinusoidal speed changing conditions with

different periods (13). This inconsistency may be derived from

the rate of changing speed. Therefore, the magnitude (amplitude)

of gait speed changes in a sinusoidal manner may play a key role

in impairing the IC plane planarity. There is another benefit to

employ sinusoidal speed changing protocol. We have found that

a combination of stride length (SL) and step frequency (SF) was

not necessarily optimized during walking (14, 15), even though

the product of the step length (SL) and step frequency (SF)

should correspond to the treadmill speed. These recent results

suggested that the rate of changing speed might affect the lower

limb adjustment during walking. The time delay (TD) of the SL

(TDSL) and SF (TDSF) could reflect inappropriate adjustment of

the lower limbs, resulting in possible step variabilities. Given

these backgrounds, sinusoidal speed changing protocol can reveal

how much SL or SF is delayed or proceeded when continuous

step adjustment is required. Although a limited number of

previous studies have examined the IC plane planarity under

speed-changing conditions (3, 4, 13–15), the IC plane thickness

varied with gait speed (8–10). Thus, these previous results

provide a hypothesis that the greater the magnitude of sinusoidal

gait speed change, the greater the variability of the IC

plane planarity.

A stable gait with controlled multiple joints must be

maintained by continuous adjustments of SL and SF, so that the

time delay (TD) of SL (TDSL) and SF (TDSF) could reflect

delayed adjustment of the lower limbs against sinusoidal speed

change (14, 15). This is because step variabilities refer to the

ability of the neuromuscular system to adapt to changing gait

conditions (16, 17). In a greater speed amplitude condition, TDSL

and TDSF in association with lateral gait variability evaluated by

step width (SW) variability (18–23) would be greater because the

neuromuscular system may not have sufficient time to achieve

appropriate adjustment of the lower limbs at a greater amplitude

of sinusoidal speed change. Accordingly, it was also hypothesized

that the greater the speed amplitude, the larger the TDSL, TDSF,

and SW variabilities. In addition, we further questioned which

limb(s) are attributed to a followability of SL-SF combinations

against sinusoidal speed change. This study aimed to examine

the effects of amplitude (magnitude) and period of sinusoidal

speed change on the variabilities of the IC plane planarity, SW

variability, and followability of SL and SF.

2 Materials and methods

2.1 Participants

The G*Power 3.1 (24) was used to estimate the required

number of participants with a statistical power of 0.8, a medium

effect size ( f value) of 0.25 proposed by Cohen (25), an alpha

level of 0.05, and correlations among repeated measures of 0.8; at

least 11 participants would be necessary. Under considerations of

possible withdrawal due to students’ busy schedule, this study

involved 18 healthy young adults. [7 men and 11 women;

20.7 ± 1.0 years old, mean ± standard deviation (SD)] without

injuries. Their body height and mass were 1.649 ± 0.067 m and

60.9 ± 7.9 kg, respectively. An ethical committee established in

Kyushu Sangyo University (No. 2019-0002 and 2024-0013)

approved all procedures. Following the Declaration of Helsinki,

all participants signed a written informed consent after being

provided information about the purposes, experimental

procedures, and possible risks of this study.

2.2 Procedure and data collection

We instructed the participants to put on compression shirts,

half spats, and the same shoes in different sizes (ADIZERO-RC,

Adidas Japan, Tokyo). The participants started walking on a

motor-driven treadmill (TKK3080, Takei Scientific Instruments,

Niigata, Japan) at 1.33 m·s−1 for males or 1.25 m·s−1 for females

for 30 s as the baseline speed (i.e., midpoint speed during

sinusoidal walking), followed by a preliminary habituation and

warming-up walk. These baseline speeds were determined based

on the metabolically economical walking speed, which was

equivalent to the preferred walking speed observed in our

previous studies (17, 26, 27). To determine the amplitude of

sinusoidal speed changing protocol, we considered the fastest gait

Motoyama et al. 10.3389/fspor.2025.1602012

Frontiers in Sports and Active Living 02 frontiersin.org

https://doi.org/10.3389/fspor.2025.1602012
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


speed not to transit from walking to running (gait transition speed)

(28). It almost appears around 2.0 m·s−1 (7.2 km·h−1) (28), so that

the maximal amplitude was set ±0.67 m·s−1. To compare different

amplitude of sinusoidal speed change, we also set ±0.33 m·s−1,

which is just half of ±0.67 m·s−1. Subsequently, the treadmill

speed was changed in a sinusoidal manner of 60- and 30 s

periods with speed amplitudes of ±0.33 m·s−1 (±1.2 km·h−1) and

±0.67 m·s−1 (±2.4 km·h−1) in a randomized order (Figure 1A).

Based on recent studies (13, 14), twelve reflective markers were

put on both lateral greater trochanters, shoulders (acromion),

ankles (lateral malleolus), knees (lateral femur epicondyle), heels

(backend of each shoe), and toes (toe of each shoe). Moreover,

four additional markers were put on each corner of the treadmill.

Motion data were captured using eight high-speed cameras

(Kestrel300, MAC3D System, Rohnert Park, CA, USA) with a

sampling rate of 100 Hz. The root mean square errors in

calculating the three-dimensional (3D) marker locations were

within 1.0 mm. The whole gait cycle, defined from the heel-

contact to the toe-off, was divided into distinct parts in the range

of 0%–100%. We computed the 3 × 3 matrix of the elevation

angles of the lower limbs from the marker locations (Figure 1B)

at each time frame. Furthermore, the best-fit 3D covariation loop

(IC plane) did not perfectly lie on the plane (2, 5–10, 13, 14),

and the IC plane seems to fluctuate during walking in a

sinusoidal speed-changing condition (13, 14). Considerably large

variations in the IC plane thickness could be observed if the shoe

sole slightly rubbed the treadmill belt before the real heel strike.

Thus, each sinusoidal cycle was continuously repeated thrice to

avoid such incomplete motions. Even though the first sinusoidal

period was fundamentally used for the subsequent analyses, the

second or third cycle was used only when the shoe sole slightly

hit the treadmill belt before the real heel strike in the earlier

cycles. Accordingly, the largest standard deviation or mean value

was not used to represent the IC plane thickness, which was

considered the smallest standard deviation of the fluctuating IC

plane in one gait cycle (Figure 1C).

In a practical computational calculation, the best-fit 3D

approximation of the angular covariation is not a dimensionless

plane. Therefore, based on the definition of Euler’s angle, after

detecting the best-fit IC plane of the 3D covariation was

detected, it was rotated around the z-axis (foot elevation angle)

as follows (13, 14):
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where α, β, and γ are the original best-fit covariations, and αz, βz,

and γz are the covariations after rotating around the z-axis. The

matrix described by Equation (1) was simultaneously rotated

around the y-axis (knee elevation angle) as follows:
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where αy, βy, and γy are the covariations after rotating around the

y-axis. Thus, the plane was rotated by a combination of the

matrices 1 and 2 as follows:
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Considering both rotation angles, θz and θy, ranging from 0° to

179°, 32,400 (180 × 180) combinations can be defined.

Subsequently, the IC plane thickness was calculated in a non-

arbitrary computational space.

The motion data were also used to calculate the TDSL and TDSF

against sinusoidal speed change. The following equation was used

to approximate SL and SF:

SL and=or SF ¼ Amp � sin (wt � TD) (4)

where Amp, ω, and t represent amplitude, angular frequency, and

time (ms), respectively. The SW was quantified as the lateral

distance between both heel makers in each step (13, 14) because

it was reported to be less dependent on the gait speed (18–23).

Thus, the SW was measured during the whole first period (30 or

60 s) to calculate the coefficient of variance (CVSW; %) as the

SW variability.

2.3 Statistical analysis

Data normality of measured gait parameters was assessed using

Shapiro–Wilk test by GraphPad Prism (Ver.10 for MacOS,

GraphPad Software, La Jolla, California, USA). After confirmed

data normality, two-way (30 and 60 s periods × ± 0.33−1 and

±0.67 m·s−1 amplitudes) repeated measures analysis of variance

(ANOVA) was used for comparisons of the dependent variables.

To examine which limb(s) are attributed to TDSL and/or TDSF,

we applied two-way statistical parametric mapping (SPM) for the

relative time series of each limb (29). The time series data were

divided into the acceleration and deceleration phases. Statistical

significance was set at p < 0.05. All data were presented as

mean ± SD.
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FIGURE 1

Protocols and eular’s rotation of planar covariation plane to determine the thickness of interlimb coordination. (A) study protocols. (B) The best-fitting

loop of the elevation angles of the thigh, shank, and foot is plotted in a squared x-y-z space as a "plane". (C) The best fitting "plane" is rotated around

the z and y axes (shaded in green). (D) The z angle, at which the smallest standard deviation was obtained, is considered as the thickness of the

spatiotemporal interlimb coordination.
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FIGURE 2

Comparisons of the interlimb coordination (IC) plane thickness and step width variability. (A) Participants walked on a treadmill with sinusoidal speed-

changing protocols for time periods of 30 s and 60 s periods (left) with amplitudes of ±1.2 km·h−1 (white bars) and ±2.4 km·h−1 (dark bars),

respectively. ±2.4 km·h−1 was significantly greater in the IC plane thickness. #p < 0.05. (B) The coefficient of variance values of the step width

variability (CVsw; %) were compared between conditions and periods. The CVsw was not significantly different between periods and conditions.

Values are presented as means ± standard deviation.
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3 Results

Two-way ANOVA showed a significant amplitude effect on the

IC plane thickness (F = 10.286, p = 0.005; Figure 2A). A main effect

of the sinusoidal period (F = 0.011, p = 0.919; Figure 2A) and

interaction effect (F = 0.234, p = 0.635; Figure 2A) were not

significant. The CVSW trended to be greater in the ±0.67 m·s−1

condition than in the ±0.33 m·s−1 condition (F = 4.402, p = 0.051;

Figure 2B), but this trend was not observed between the 30- and

60 s period (F = 0.083, p = 0.777; Figure 2B). The TDSL was not

significantly different between periods (F = 0.069, p = 0.796;

Figure 3A) and amplitudes (F = 0.402, p = 0.534; Figure 3A). The

TDSF was the same as the TDSL between periods (F = 0.012,

p = 0.913; Figure 3B) and amplitudes (F = 0.657, p = 0.429;

Figure 3B). Consequently, the total TD was not significantly

different between periods (F = 0.090, p = 0.768; Figure 3C) and

amplitudes (F = 0.222, p = 0.644; Figure 3C). At the middle gait

cycle, the foot and shank angles were significantly delayed in the

greater amplitude condition than in the smaller amplitude

condition during the acceleration phase (Figure 4A), but the

thigh and shank angles were significantly proceeded in the

greater amplitude condition than in the smaller amplitude

condition during the deceleration phase (Figure 4B).

4 Discussion

Most of the previous studies have examined the characteristics

of the IC plane at several steady-state speeds (1, 2, 5–10, 16, 17) and

demonstrated that gait speed influenced changes in the pattern of

the intersegmental coordination of the lower limbs (2, 8–10,

16, 17). Our recent study revealed that different periods of

sinusoidal speed change ranging from 30 s to 120 s did not

modify the IC plane thickness in young active adults (13),

indicating that anteroposterior gait variability is inherent in each

individual. Based on these study backgrounds, we investigated

how different amplitudes and periods of sinusoidal speed change

influence gait variabilities and/or step variabilities in healthy

young adults. In support of our first hypothesis, the greater the

magnitude of the sinusoidal gait speed change, the greater the

variability of the IC plane thickness (Figure 2A). The difference

of ±0.67 m·s−1 and ±0.33 m·s−1 condition is the different rate of

speed change. That is, the IC plane planarity was not necessarily

robust if the rate of changing speed increased. Our present

results were in line with some previous studies that the IC plane

planarity was dependent on the gait speed (8–10). This could be

due to a wider range of gait speed (0.67–2.0 m·s−1 for males and

0.59–1.92 m·s−1 for females) was used in our sinusoidal speed

changing protocol. In the passive speed changing-condition,

appropriate combinations of SL and SF were primarily important

to follow the treadmill speed, indicating that efforts to avoid falls

are expected to be integrated into step variabilities. Our present

study showed that different periods and amplitudes of sinusoidal

speed changing conditions did not influence TDSL and TDSF

(Figures 3A,B), resulting in a non-significant difference in the total

TD among the conditions (Figure 3C). In addition, the CVsw was

not significantly different among the conditions (Figure 2B),

indicating that our second hypothesis that the greater the speed

amplitude, the larger the TDSL, TDSF, and SW variabilities was

FIGURE 3

Comparison of time delay in step variabilities against sinusoidal

speed change. (A) Time delay (TD) of step length (SL) against

sinusoidal speed change. (B) TD of step frequency (SF). (C) Total

TD. No significant differences were found between periods and

amplitudes in these parameters. Values are presented as

means ± standard deviation.
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FIGURE 4

Relative time series of the lower limbs during acceleration and deceleration phases. (A) During acceleration phase, the shank and foot were

significantly delayed in the ±0.67 m·s−1 condition (blue solid and broken lines) than in the ±0.33 m·s−1 condition (red solid and broken lines).

Enlarged figures were inserted into the left middle panel (p < 0.05 at 22%-74%) and left bottom panel (p < 0.05 at 45%–75%). (B) During

deceleration phase, the thigh and shank were significantly delayed in the ±0.67 m·s−1 condition (blue solid and broken lines) than in the

±0.33 m·s−1 condition (red solid and broken lines). Enlarged figures were inserted into the upper left (p < 0.05 at 37%–51%) and middle left panels

(p < 0.05 at 41%–60%).
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rejected. Previous studies reported that there was a TD between

thigh and shank motions even in young adults (9, 10). Such a TD

in the shank-foot coordination may provide greater distortion of

the IC plane planarity. Some considerations were still necessary

because step variabilities are quite large because the coefficient of

variance of the total TD was 97.6% (±0.33 m·s−1) and 53.3%

(±0.67 m·s−1) at the 60 s period condition (Figure 3C), whereas

relatively smaller CVsw was found in the ±0.33 m·s−1 condition

(26.5%) and ±0.67 m·s−1 condition (33.5%) at the 60s period

condition (Figure 2B). Notably, excessive gait variability could be

associated with increased fall risks not only in the elderly

population (19–23) but also in young adults (30, 31); however,

these large variations in the step variabilities may reflect flexible

locomotor control ability against passive gait speed changes in

healthy young adults.

Step variabilities are also associated with an ability of the

neuromuscular system to adapt to changing gait conditions (16,

17), so that step variabilities could result in different time series

of each limb. Thus, we compared the relative time series of each

limb elevation angle to examine which limbs are attributed to

TDSL and/or TDSF. The TDs of the thigh-shank and shank-foot

decreased as gait speed increased (8, 9), indicating that

followability of the lower extremities was enhanced against

treadmill speed particularly at faster gait speed. Indeed, we also

observed that the shank and foot elevation angles were

significantly delayed in the ±0.67 m·s−1 condition than in the

±0.33 m·s−1 at the middle gait cycle during the acceleration

phase (Figure 4A). Conversely, the thigh and shank elevation

angles significantly proceeded in the ±0.67 m·s−1 condition than

in the ±0.33 m·s−1 condition during the deceleration phase

(Figure 4B). That is, more distal limbs were delayed in greater

amplitude conditions than in the smaller amplitude conditions at

the middle gait cycle during acceleration phase, whereas more

proximal limbs proceeded in these conditions during the

deceleration phase. These opposite behaviors between the distal

and proximal limbs during acceleration and deceleration phases

can induce small perturbations that would generate torque to

push or pull the center of body mass (COM). Indeed, ground

reaction force passes in front of the COM at the heel strike, and

it does behind the COM at the toe-off (32, 33), which is a little-

known biological feature only in human bipedal walking. Such a

generated torque can restore dynamic gait stability similar to a

“passive walk” performed by a bipedal robot that intentionally

creates an unstable state with a perturbation (33–36). A passive

walk is characterized by lesser energy cost (37), and this may be

related to a high efficiency of human gait (38, 39). Since the

thigh and shank angles are controlled by hip and knee joints, the

knee flexion determined by these angles could play an important

role in allowing toe clearance during the swing phase and in

facilitating shock absorption during the stance phase. In a

sinusoidal speed changing condition requiring continuous step

adjustments, relatively greater TDSL and TDSF still existed even

in young adults only (Figures 3A, 3B), which was in line with our

recent studies (14, 15). These results suggested that anatomical

functions of shock absorption and allowing toe clearance should not

adequately activate even if a quick and proper adjustment of SL and

SF is necessary. Different distal and proximal limbs controls

(Figures 4A,B) would be necessary to compensate such situations.

In addition to the above-mentioned passive walker model, leg

joint stiffness in humans is different among each joint, and those

joint stiffness alters during the gait cycle (40), particularly in the

foot. This is due to three arches of the foot to absorb passive

reaction forces from the ground. This anatomical function of the

foot would be one of the sources explaining the delayed time

course of the foot elevation angle during the acceleration phase

(Figure 4A) as stated before. The knee joint also has an interesting

feature of increasing stiffness during the stance phase and

decreasing it during the swing phase (40). A decrease in the knee

joint stiffness during the swing phase is controlled by releasing the

co-contraction of thigh antagonist muscles to facilitate lower leg

movement during the swing phase, which can potentially

contribute to minimize energy costs of walking. Such a dynamic

change in the knee joint stiffness have also been observed during

hopping (41, 42). Taken together, the proximal thigh is primarily

controlled quickly, instead, the distal shank and foot were delayed

at the middle gait cycle during the acceleration phase in response

to sinusoidal speed changes (Figure 4A). On the contrary, the

proximal thigh takes precedence against sinusoidal speed change

during the deceleration phase to create a time margin for

executing successful next step adjustment (Figure 4B).

Consequently, highly accurate step-by-step control in response to

the passive force from the ground must be given up for adopting

a strategy of gait stability within a few steps.

A sinusoidal speed changing condition is almost equivalent to a

gradual speed changing condition. As demonstrated (12), visual

illusion makes walkers change their preferred gait speed, which is

likely to occur at dusk. A gradual gait speed change in

association with a passive step adjustment should necessarily

occur at a pedestrian crossing or at a railroad crossing just before

a train passes. It should also occur if slippery and non-slippery

surfaces are mixed on icy roads or in busy places. Thus, we are

being forced to face with gradual speed changes in our daily lives

without realizing it. However, a study limitation should be stated

because our present study involved only young adult participants.

Since this study was originally aimed to explore potential factors

that cause gait and step variabilities in human bipedal walking, it

could be rather appropriate to limit to young participants in

order to exclude the age effect. Therefore, the interpretations of

our present results should not be easily expanded to aged

populations or clinical patients.

5 Conclusions

Greater amplitude of sinusoidal speed change increased

anteroposterior gait variability, but not lateral gait variability,

regardless of periods even in healthy young adults. The time

courses of more distal limb elevation angles were delayed in

greater speed amplitude conditions during the acceleration phase,

whereas the time courses of more proximal limb elevation angles

proceeded in that condition during the deceleration phase. These

different behaviors of the lower limb segments suggest that the
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distal and proximal limbs are controlled differently when

continuous step adjustment is required during walking, and this

may be attributed to step variabilities.
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