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Should GPS data be normalized
for performance and fatigue
monitoring in soccer?
A theoretical-practical discussion
on high-speed running
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High-speed running (HSR) is one of the performance metrics of interest, as the
volume of HSR during matches has been increasing over the last decade,
which suggests that weekly training loads should be adjusted to align with this
trend, enabling players to cope with match demands. However, the use of
HSR thresholds lacks a solid rationale for their application and fails to
account for individual player capacities, likely not reflecting their actual HSR
efforts. As such, this theoretical-discussion provides important implications
for training prescription, aiming to optimize performance and minimize
fatigue. It emphasizes the significant differences in the conceptualization
of HSR and highlights the advantages of adopting a normalized approach
that reflects the physiological, mechanical and neuromuscular aspects
related to HSR, as well as the intermittent profile of football matches.
Practical HSR threshold definitions tailored to the capacities of each athlete
are proposed, enabling a more evidence-based approach for the
interpretation of training loads and game/player profiling. More specifically,
within our proposal, HSR can be subdivided into two types: (1) HSR-1,
characterized by an entry threshold based on a normalized critical speed, and
(2) HSR-2, defined by an entry threshold corresponding to 75% of the athlete’s
maximum speed.
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Introduction

The Global Positioning System (GPS) was first used for athlete tracking in 1997 (1).

Since then, its utilization has spread across various sports, including soccer, enabling

real-time analysis of players’ on-field activity profiles during training and competition

(2). The activity profile includes various metrics related to various aspects of the

athlete’s physical performance, such as running performance. It has been observed that

match intensity in male soccer, in terms of high-speed running (HSR) metrics, has

increased over the last decade (3, 4). Such increases suggest that players probably
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require training adjustments to align with the evolving physical

demands of soccer matches (5). Indeed, previous studies has

focused on examining the effects of various game-based formats

(e.g., small-sided and large-sided games) on both external and

internal load metrics, owing to the widespread implementation

of such formats in training sessions across the microcycle and

their relevance to soccer-specific demands (6–8). However,

adequate adjustments warrant appropriate data analysis and

interpretation, which are fundamental steps preceding the

operationalization of the training stimulus. In this context, a

problem arises when considering what constitutes realistic efforts

in terms of the actual workloads experienced by the athletes. The

fixed thresholds for HSR are set between 14.4 km/h and 21.1 km/

h for males, and between 12.2 km/h and 15.6 km/h for females,

with the most common thresholds being 19.8–25.2 km/h for

males and 12.5–22.5 km/h for females which results in

approximately 1,000 m and 760 m for professional female and

male players, respectively (9). However, the rationale behind the

conceptualization of these thresholds remains unknown. The use

of such thresholds may hinder coaches from providing tailored

training stimuli to players, thereby failing to achieve the desired

adaptations and potentially increasing the risk of injuries (10,

11). Considering the principle of individualization, the creation

of relative thresholds would address this issue. This review

substantiates the importance of considering the normalization of

HSR data for an adequate load management in male soccer players.
The problematic applicability

Erroneous interpretations of the external load imposed on the

athletes might lead to inadequate training exposure, resulting in

insufficient or excessive stimulation for optimal training

adaptations or overtraining (10, 11). In theory, the use of

normalized speed thresholds should contribute to better

approximating the workload applied to individual athletes in

relation to the intended physiological stimulus. With training

individualization being one of the fundamental principles of

exercise training, it is expected that normalization of the

threshold values according to the individual’s maximum or

relative capacities would be an approach that more closely

resembles the real physiological impact experienced by the

athletes. Previous studies linked the second ventilatory threshold

(VT2) (point at which occurs a shift in the ventilation strategy

with an exponential increase in ventilations per minute relative

to oxygen uptake) to the corresponding speed attained at that

specific moment, using it as the reference value for HSR entry

(12, 13). This speed was approximately 15 km/h, which was

4.8 km/h lower than the 19.8 km/h absolute threshold. In those

studies, HSR distance > 15 km/h (normalized value) was

2,258 m, compared to 845 m covered using the 19.8 km/h

absolute threshold value, representing a 167% increase in HSR

distance when using a normalized approach. This example is

illustrated in Figure 1.

In addition, utilizing the VT2 as reference for the lower

HSR threshold signifies that a speed amplitude of 10.2 km/h
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from 15 to 25.2 km/h, within this HSR range will reflect

substantially different kinematic patterns experienced by the

athletes (14, 15).

A proper definition of running intensity would encompass

the physiological, mechanical, and neuromuscular domains

of physical exertion. As running speed increases, the changes in

the running pattern (16), VO2 kinetics (17) and neuromuscular

activation of specific muscle groups (18) become more

noticeable. Considering these responses collectively provides

a more nuanced perspective on how to establish an HSR

threshold that accurately reflects the effort experienced by

the athlete.

Substantial differences arise between the application of absolute

and normalized threshold values in defining HSR entry probably

leading to misinterpretations of the athletes’ exertion further

compromise the accuracy of training prescriptions and the

validity of game and training analyses (13, 19). Moreover, there

remains a lack of conclusive evidence supporting the superiority

of normalized over absolute thresholds for HSR efforts in

soccer. Further investigations are required to identify the

most appropriate method for assessing and establishing

normalized thresholds.
Physiological domain

The player’s aerobic capacity is frequently evaluated as it is

recognized as a key physical attribute for success in team sports

(20). Various protocols have been used to assess this physical

capacity in team sports; however, they may capture subtle yet

significantly distinct physical characteristics (21), which can

prevent coaches from making direct comparisons between results

obtained from different protocols, even when used for the

same purpose.

Researchers have considered the HSR definition as the speed

corresponding to maximal oxygen consumption (VO2max) (22),

reporting running speeds of approximately 16.2–16.5 km/h at

VO2max in professional soccer players (23). A higher VO2max

has been related to the player’s capacity to cope with match

demands (24) and a faster recovery between high-intensity

actions (25). Furthermore, VO2max may be similar between

players with distinct running performance capacities (26). To

differentiate athletes with similar VO2max values, physiological

cut-points may be utilized, serving as running-intensity

thresholds and representing key speed markers attained by the

athlete, such as maximal aerobic speed (minimum running speed

at which maximum oxygen uptake occurs) or the maximum

lactate steady state (highest exercise intensity where a balance is

observed between the rate of production and removal of

blood lactate).

Typically, three physiological domains are used to characterize

training intensities from moderate, heavy and severe (27).

Nevertheless, the assessment of physiological cut-points

commonly encompasses logistical and methodological limitations.

Commonly, these physiological cut-points are assessed during a

laboratory treadmill test (28), which are considered non-
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FIGURE 1

Comparison between HSR distances using the second ventilatory threshold (15 km/h) and the absolute threshold of 19.8 km/h in soccer male athletes.
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ecologically valid since soccer is profiled as an intermittent sport

(20). Moreover, running kinematics and kinetics are affected by

increasing speed, which has repercussions at the neuromuscular

and mechanical levels, and their relationship with the

physiological cut-points remains unclear. Tests considered more

ecological, such as the 30-15 Intermittent Fitness Test (30-15IFT),

have been conducted to assess aerobic fitness and intermittent

exercise capacity related to gameplay (29) incorporating speed

and change of direction abilities, along with lower-limb power

and inter-effort recovery (29). Although the final speed of the

30-15IFT appears more appropriate as a threshold for HSR due

to its specificity and its closer alignment with the locomotor

profile observed in soccer, it must be acknowledged that there is

currently no established method to validate it for this purpose.

Since locomotion at varying intensities in soccer does not occur

over standardized distances and trajectories, it is not feasible to

establish a field test that accurately determines the onset of

high-intensity running. Consequently, selecting a test to define

the cut-off point will inevitably involve an inherent degree of

arbitrariness. Partially solving these issues, validation of soccer

match GPS-derived critical speed (CS) estimates between 13.7

and 14.4 km/h have been reported (30) recurring to a

mathematical time-based modeling of competition games and

CS field tests for posterior correlation analysis, withdrawing

the necessity of conduction specific and time consuming tests.

This may also apply for the assessment of other running

performance metrics such as maximal speed (31). Therefore, CS

could be a plausible cut-point of a physiological-based lower
Frontiers in Sports and Active Living 03
HSR threshold since it is intimately associated with each player’s

running capacity.
Kinematic and mechanical domain

The progressive increase in running speed is associated with an

evolving running pattern marked by significant kinematic

differences (14). It has been suggested that HSR may be more

accurately described as velocities near 75% of the maximum

speed, as this better reflects relative speeds associated with

individual striding patterns (16). Given that HSR (considering

speeds between 19.8 km/h and 25.1 km/h) accounts for

approximately 7%–11% of the total distance covered during a

soccer match (3), the majority of the distance covered is

associated with lower-intensity movement patterns, such as

running, jogging, or walking. However, while 75% of maximum

speed represents a striding pattern for the sample observed in

that study, it is possible that this finding may not be

generalizable to professional soccer players. At a neuromuscular

and mechanical level, this could have significant implications.

Indeed, previous studies report neuromuscular and mechanical

repercussions of increasing running at the hamstrings muscle

group. The peak musculotendinous stretch of the hamstrings was

observed to occur at 80% of the peak speed (32), while further

increases in speed were related to a higher negative work of the

hamstrings (33, 34) and a peak neuromuscular activation of the

hamstrings at 90% peak speed (35). However, it is important to
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note that these observations are specific to the hamstrings and may

differ for other muscle groups, such as quadriceps and calf

musculature (15). Altogether, current data regarding

neuromuscular, mechanical and kinematic parameters of running

speed, abet the idea that 75% peak speed might be an adequate

starting point to observe a HSR mechanical-oriented stimulus

with an upper ceiling of 90% peak speed, from which the players

will adopt maximal sprinting kinematics (16). Indeed, a recent

study developed the rationale regarding the normalization of

maximal sprinting speed >90%, when compared to absolute

thresholds (36). Furthermore, 75% and 90% peak speed represent

mean values of a given sample, as so, it is expected to

prognosticate variations according to the peak speed values of

each athlete. Even so, since they were obtained through an

individualization procedure, these peak speed mean values

probably provide a better approximation to the real HSR efforts

compared to the commonly used arbitrary thresholds, reinforcing

the need to assess HSR kinematics of each individual.
Practical application—refining speed
thresholds in soccer

Different studies have used different physiological approaches

to relate speed thresholds (12, 37). Nevertheless, the protocols

applied fail to adequately represent the intermittent and repeated

acceleration associated with soccer games (38), and therefore, can

be deemed as inaccurate tests to generate tailored speed

thresholds. The use of speed thresholds that do not adequately fit

the real physiological and mechanical effort exerted by athletes

leads coaches and sport scientists to erroneous interpretations,

which will likely result in inappropriate training monitoring,

potentially impacting fatigue management of the squad and

increasing the injury risk, not only in healthy players but also in

those undergoing rehabilitation processes (10, 11).

Due to the aforementioned variables, justifying the generation

of a proper normalized HSR threshold is a very complex task. Still,
FIGURE 2

Kinematic differences between different high-speed running types (1 and 2
initiates above the normalized critical velocity, HSR2 (mechanical) intensity
above 90% maximum velocity. (+) and (-) signs, represent an arbitrary emph
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we do consider that some variables could give us insights into, or at

least, define the boundaries of HSR intensities. The CS corresponds

to the highest running speed value that an athlete can sustain

without a significant fatigue accumulation (39) closely related to

the second lactate threshold or to the severe intensity exercise

domain, since running beyond the CS will result in a rapid

accumulation of lactate, making it impossible for the athlete to

maintain that running speed for long. Regardless of the running

mechanics associated with the CS, we can be confident that

above this threshold, the athletes will develop significant levels of

fatigue, as has been observed elsewhere (40).

As HSR speed continues to increase above the CS, not only will

fatigue develop more rapidly, but the running patterns will

progressively approximate into a sprinting pattern, from running

to striding and near maximal sprinting. Since all patterns

comprise speeds above CS, a kinematic-based approach to define

the upper limit could eventually be considered as an eventual

solution. The altered running kinematics approximating the

sprint kinematics will be associated with neuromuscular

activation and mechanical strains experienced by the muscles

that are significantly superior compared to running speeds closer

to the lower HSR threshold. Since maximum neuromuscular

hamstrings activation occurs at 90% maximum sprint speed (35),

this could be applied as the maximal HSR threshold.

Unfortunately, there is not sufficient evidence to justify an

intermediate threshold between the upper and lower limits of

HSR intensities, besides the observations of 75% of maximum

speed representing a striding pattern in a group of amateur field-

sports athletes (16). This rationale of a two-zone HSR intensity,

separating a more cardiometabolic type (intensities closer to the

CS) to 75% of maximal speed and a more mechanical type

(intensities between 75% of maximal speed and 90% of

maximum sprint speed), paves the way for an HSR spectrum

construct that will aid in the analysis of the running load profile

of the soccer players (Figure 2). Considering the actual

thresholds, if a player covers a certain number of meters in HSR,

using the arbitrary threshold of >19.8 km/h, we will likely miss a
) and sprint and their respective thresholds. HSR1 (metabolic) intensity
initiates above the 75% maximum velocity and sprint intensity initiates
asis regarding the quantity of the observed variable.
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great cardiometabolic component that is already present at lower

running speeds, since these speeds already elicit significant

cardiorespiratory stress (13). On the superior portion of the

spectrum, some athletes may actually present an individual level

of HSR intensity corresponding to speeds greater than the

commonly used arbitrary thresholds (16), resulting in an

overestimation of the external workload, and thereby overlooking

the actual training load, which could have significant

consequences for performance and fatigue monitoring. Further

research is needed to understand what variables might help

identify the transition between lower HSR intensities and higher

HSR intensities. Since both intensities are situated above the CS,

variables related to HSR kinematics could provide valuable

insights into this complex phenomenon, given that running

kinematics are associated with neuromuscular and mechanical

demands experienced by muscle groups such as the hamstrings.
Discussion

Male soccer players of elite status have been observed to cover

a total mean distance between 10 and 12 km (41). The majority of

the distance is covered below the anaerobic threshold in elite

soccer players, with an accepted corresponding running speed

of 14.4 km/h (42) which is substantially inferior compared to

the absolute threshold (19.8 km/h) commonly characterizing

HSR (9). Thus, whenever players cover HSR distances, whether

normalized or not, a greater rate of fatigue is expected to

develop compared to lower-intensity running speeds especially

for slower players whose HSR thresholds are relatively closer to

their maximum speed capacity. As running speeds come closer

to the upper limit of HSR intensity, a greater effect of fatigue is

observed, due to an increased neuromuscular (18) and

mechanical effort in muscles of the lower limbs. As running

speed increases, eccentric contractions at higher velocities

become more frequent (43), particularly in the hamstrings,

leading to increased muscle damage (18) and an elevated

neuromuscular demand, which likely contributes to reduced

neuromuscular performance. As previously reported in the

literature, load management might be crucial for performance

optimization and/or injury prevention (44). However, the

differences between using normalized or absolute threshold are

likely to result in disparate load management metrics,

ultimately leading to different interpretations of their practical

applications. It should be noted that 10% of the total distance

covered per match is performed at high-intensity (45) with

significant match-to-match variations and player (46). Values

reported regarding HSR variables between studies including

teams from the same or different competitive leagues should

not be generalized or applied in different contexts (47) since

tactics, predominant style of play, and players’ quality (in terms

of technical-tactical skills) may be significantly distinct (48).

For instance, considering a player with a maximum speed

capacity of 36 km/h, the absolute HSR threshold of 19.8 km/h
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represents 55% of their maximum capacity, while for an athlete

with a maximum speed capacity of 30 km/h, the same

threshold represents 66% of their maximum capacity.

Therefore, this suggests that game profiling should consider

reporting HSR distances according to their proximity to the

lower (CS to75% maximum speed) and upper limits (75%–90%

maximum speed) of normalized HSR intensities, as they will

reflect different mechanical and neuromuscular impacts.

Moreover, ideal training adaptations require the repeated

application of appropriate training stimulus which is compliant

with fundamental training principles such as individualization

and progressive overload. In order to consummate such

principles, coaches need to identify the athlete’s maximal

capacities and subsequently prescribe training intensities and

volumes according to those maximal references. However,

external load monitoring recurring to arbitrary speed thresholds

precludes coaches not only from properly interpreting external

load produced by the athletes but also to prescribe training loads

in an individualized manner. In other words, coaches may be

erroneously applying training intensities for half of the squad,

likely increasing the injury risk occurrence while minimizing the

promotion of positive training adaptations. Indeed, appropriate

running intensity exposure as is the case for intensities superior

to 90% of maximum speed capacity (49), has been reported to

enhance sprint performance and simultaneously provide a

prophylactic effect for soft-tissue injury (50).

Normalized HSR values for performance and fatigue

monitoring could be an advantage for prescribing training

loads for each athlete, but it does not facilitate the comparison

between athletes. The comparison between athletes requires the

use of absolute HSR thresholds to benchmark players’

performance in game or training sessions, providing a collective

measure for the team or specific positions, which allows for

ranking the athletes. Even if each player’s individual capacities

are assessed accurately, they may still fall well below the

average absolute capacity expected for their field position or

team standards. Such inter-athlete comparisons must rely on an

HSR threshold value that aligns as closely with the average

(albeit unknown) mean of HSR speeds, so as to capture the

majority of HSR efforts experienced by players. This approach

requires further investigation.

This perspective discussion article substantiates the importance

of considering the normalization of HSR data for an adequate load

management in soccer players. A two-dimensional

conceptualization of HSR is proposed, based on the

physiological, neuromuscular, mechanical and kinematic

parameters, (1) a metabolic HSR, composed of running speeds

between critical velocity threshold and 75% of maximal speed;

(2) a mechanical HSR initiating at 75% peak speed with an

upper threshold of 90% peak speed, with expected variation

according to the peak speed of each player. In practical terms,

the current proposal also enables strength and conditioning

coaches for a better understanding of the real HSR consequences

on fatigue development will contribute to minimizing fatigue and
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enhancing performance, concomitantly having a possible beneficial

impact over the injury risk.
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