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Introduction: Athlete performance monitoring is effective for optimizing

training strategies and preventing injuries. However, applying machine learning

(ML) frameworks to this domain remains challenging due to data scarcity

limitations. This study extends previous research by evaluating Tabular

Variational Autoencoders (TVAE) for generating synthetic data to predict

performance attenuation in Gaelic football athletes.

Methods: This study assesses synthetic data quality through a comprehensive

evaluation framework combining column shape similarity metrics and

Hellinger distance analysis, quantifying distributional fidelity across individual

variables. Our ML implementation follows a two-phase approach. In the first

phase, we evaluated models trained on hybrid datasets with varying synthetic

proportions (10%–100%). In the second phase, we examined models trained

exclusively on synthetic data and tested them on real data to analyze the

utility of the synthetic data.

Results: Our results demonstrate that TVAE-generated synthetic data closely

replicates original distribution patterns, achieving 85.53% column shape

similarity and a Hellinger distance of 0.169. Models trained with additional

synthetic data or exclusively on synthetic data outperformed real-data

baselines across multiple metrics, particularly for neuromuscular parameters.

Our findings emphasize that this approach increased data availability and

improved model performance in specific scenarios.

Discussion: Several limitations remain: (1) there is limited framework

transferability to sports with different physiological demands; (2) the Synthetic

Data Generation (SDG) does not currently enforce feature constraints, and

future implementations must ensure the procedure respects domain-specific

feature limits; and (3) TVAE faced data fidelity challenges with certain variables,

such as VO2max. These findings demonstrate the utility of synthetic data for

predicting performance attenuation in Gaelic Football athletes. They address

the challenge of data scarcity and highlight how synthetic data can be

effectively integrated across physiological, neuromuscular, and perceptual

metrics in athlete monitoring. This opens new possibilities for exploring similar

classification tasks in sports performance analysis.
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1 Introduction

The interplay of fitness components, match-day performance,

and recovery from match-play offers a significant opportunity for

data-driven performance monitoring (1). In Gaelic football,

athletes’ performance involves a combination of high-intensity

actions and aerobic demands, leading to fatigue and muscle

damage influenced by physical, mental, and metabolic factors

(1–3). Performance attenuation refers to a decline in physical

and mental performance during or after demanding activities. It

results from accumulated fatigue, muscle damage, and several

physiological factors, including metabolite build-up, reduced

muscle contractility, and depleted glycogen stores (1–4).

Addressing this issue is essential, as it directly impacts an

athlete’s ability to maintain peak performance and recover

adequately between matches. To decode these complex

interactions, machine learning (ML) can reveal non-linear

patterns in performance metrics datasets, enabling a predictive-

based understanding of performance predictors (5, 6). However,

creating high-quality datasets remains challenging because of

privacy concerns and high costs associated with data collection,

including qualified personnel and expensive monitoring systems

(6). Therefore, synthetic data generation (SDG) offers a viable

solution, augmenting datasets while preserving the statistical

properties of real-world data, improving ML applicability in

sports analytics (7).

SDG methods range from basic statistical techniques to

advanced generative algorithms for generating synthetic tabular

data. Statistical approaches such as masking, coarsening, and

mimicking (8, 9) are easy to implement but struggle to preserve

inter-column relationships. Joint distribution sampling (10)

improves relationship preservation but faces scalability challenges

with complex datasets. Thus, sophisticated algorithms are needed

to capture individual patterns in sports performance data, which

often includes multi-modal metrics such as neuromuscular,

perceptual, and biochemical responses. However, each algorithm

has its advantages and limitations, and choosing an appropriate

method is a nuanced decision based on the available data,

specific goals, and computational resources (11).

Recent advancements in deep learning have popularized

generative algorithms for data synthesis, with Variational

Autoencoders (VAEs) and Generative Adversarial Networks (GANs)

emerging as leading approaches (12). While GANs excel in

generating high-fidelity synthetic images, their performance on

tabular data, particularly mixed datasets with continuous and

categorical variables, has shown limitations in capturing full data

diversity and maintaining training stability (13–15). Moreover,

training and evaluating GANs is challenging due to their sensitivity

to random initialization and hyperparameter settings, often causing

generators with similar architectures to behave unpredictably (16).

In light of these challenges, this study focuses on VAEs for SDG,

specifically TVAE (Tabular Variational Autoencoder) (17), ensuring

its ability to generate synthetic data replicating the original dataset’s

relationships and statistical properties (18–20).

SDG applications in sports science have advanced in recent

years, with studies demonstrating their potential to address data

scarcity limitations (21). used VAEs to generate synthetic posture

data, effectively capturing biomechanical relationships and

improving model training outcomes, though limitations in

replicating high-precision details were noted in their analysis.

Similarly (22), applied VAEs, generative adversarial networks

(TimeGAN), and Autoregressive Denoising Diffusion Models

(TimeGrad) to synthesize athlete time-series data (e.g., sleep

quality, mood, training load), achieving superior fidelity when

using TimeGAN but facing challenges in generalizing results

because of their biological data complexity and small sample

sizes (five athletes). These examples highlight the need for SDG

methods that preserve complex inter-domain relationships and

generate sufficient samples to overcome statistical limitations

related to data scarcity.

Integrating ML and SDG can address challenges in sports

analytics, such as improving dataset diversity for accurate

performance attenuation predictions. By augmenting limited real-

world datasets with synthetic samples generated via TVAEs, this

approach can reduce overfitting risks and enhance model

generalizability (7, 23) (e.g., for scenarios like atypical

performance profile patterns that are underrepresented in small

datasets). This study addresses three research questions: (1), Can

TVAE-generated synthetic data effectively replicate the statistical

properties of our athlete performance data? (2), To what extent

does augmenting limited real data with synthetic samples

improve performance attenuation prediction across physiological

and perceptual metrics? (3), Can models trained exclusively on

synthetic data perform as well as or better than those trained on

real data for performance attenuation classification tasks?

To address these research questions and analyze the potential

of synthetic data for performance attenuation prediction, we

developed a comprehensive methodological framework. First, we

evaluated the statistical fidelity of TVAE-generated synthetic data

through multiple validation techniques, including Hellinger

distance measurements, column shape analysis, and column pair

trend assessments. We then established benchmark performance

by training ML classifiers exclusively on real data. Following

these preliminary steps, our framework employed a two-phase

methodology combining ML models with TVAE-based SDG. The

first phase evaluates predictive performance when training ML

models on hybrid datasets containing real and synthetic samples

at varying proportions. The second phase assesses the standalone

utility of synthetic data by training models exclusively on TVAE-

generated samples and testing them on real data, then evaluating

them at different proportions of synthetic samples. This

structured approach enables the investigation of optimal real-to-

synthetic data ratios and explores whether synthetic data can

serve as a viable substitute when access to real performance data

is limited.

This approach diverges from previous research in sports

analytics through SDG, which has predominantly employed

traditional resampling techniques for class imbalance issues.

Instead, we apply generative artificial intelligence through TVAEs

to create high-dimensional synthetic performance data. While

prior data augmentation investigations have demonstrated

potential, whether ML models trained on synthetic data can
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perform comparably or superior to real-data baselines remains

underexplored in sports performance literature. This exploration

framework can determine the optimal synthetic data integration

ratios for similar performance attenuation contexts and establish

synthetic data’s potential as a standalone training resource,

extending beyond the class-balancing applications that have

dominated previous sports analytics research.

Through this predictive modeling and synthetic data

implementation approach, this work aims to advance the

development of cost-effective, data-driven tools for performance

monitoring in resource-constrained sports environments, where

challenges such as limited data availability and computational

resources are common.

2 Methods

2.1 Data source and participants

The data were obtained from the performance attenuation and

timeline of the recovery study (1); this is a tertiary exploratory

analysis of this existing data. The secondary exploratory

investigation focused on traditional balancing techniques

(SMOTE, ROSE, and ADASYN) to address class imbalance

issues, and this tertiary investigation introduces a different

approach through generative artificial intelligence via Tabular

Variational Auto-Encoder (TVAE) to create high-dimensional

synthetic performance data.

This study included 41 active and healthy male senior club-

level Gaelic football players, aged 18–32, with experience in

resistance training and Gaelic football (mean ± SD, age: 23.3 ± 4.2

years; height: 178.3 ± 7.91 cm; body mass: 80.64 ± 9.47 kg, sum of

7 skinfolds: 81.3 ± 28.0, percentage body fat: 14.3 ± 5.2). More

details about their experience can be found in (1).

Neuromuscular, perceptual, and biochemical markers were

measured at various time points: pre-match, half-time, post-

match, and 24- and 48-h post-match. The neuromuscular-related

parameters included Drop Jump (DJ), DJ Contact time (in

seconds), Reactive Strength Index, and Countermovement Jump

(CMJ) in centimeters (cm). Strength was assessed via one-

repetition maximum (1RM) for Squat and Hip Thrust, measured

in kilograms (kg). Regarding physiological parameters, Creatine

Kinase (CK) levels were measured in international units per L

(IU/L) and used to indicate an estimate of muscle damage.

Anthropometric measurements included body mass (kg) and

body fat percentage. Cardiorespiratory fitness was evaluated

through VO2max (in ml/kg/min). Additionally, Distance Total

(meters), Total Accelerations, Total Sprints (>20 km/h), and

Total Explosive Distance (meters) were implemented and

captured using 18 Hz GPS units (24). Finally, a 5-question Likert

Scale Questionnaire evaluated perceptual responses, assessing

subjective aspects such as fatigue, sleep quality, muscle soreness,

mood, and stress levels on a scale from 1 to 5, capturing athletes’

self-reported well-being and performance-related perceptions (25).

Among these variables, the Machine Learning (ML) models’

input and output variables were distinguished (Table 1). The

input variables comprised all the above-cited anthropometric

measurements, strength metrics, VO2max, total distance, sprints,

accelerations, and baseline neuromuscular-related parameters.

The temporal measurements of perceptual response, DJ, DJ

Contact Time, RSI, CMJ, and CK levels were used to calculate

athlete rankings through the methodology detailed in subsection

2.3, serving as the output variables for the models.

2.2 Data preprocessing

We implemented an athlete performance ranking system that

prioritizes targeted variables, reduces data noise, and enables

more accurate attenuation prediction by structuring data around

key patterns (26), see Figure 1 for more details regarding

this structure.

Following the rationale that physical abilities may be

compromised during the latter stages of a match (27), we

quantified performance attenuation through a ranking system

based on pre-post-match differences. This tracking of differences

between pre-match and post-match can provide relevant

information about players’ capability to cope with match

demands. So, by using the Pandas library (28), we computed

these differences for each output variable, e.g., a decrease from a

pre-match CMJ height of 50 cm to a post-match height of 45 cm

yielded a −5 cm difference.

To refine rankings, we introduced a benchmark function

through a systematic process, which quantifies in-match

performance attenuation by the differences computed between

second-half and first-half values for four physical metrics: total

distance covered, number of accelerations, sprints, and explosive

distance. This methodological decision was based on findings

related to the strength correlations between match running-

related indicators and post-match muscle damage and

neuromuscular performance declines (29, 30), while specifically

designed to address inter-individual variability in our dataset. For

example, consider an athlete whose distance covered drops from

TABLE 1 The input and output variables.

Input Output
aBaseline Drop Jump Perceptual Response rank
aBaseline Drop Jump Contact Time Creatine Kinase rank
aBaseline Countermovement Jump Countermovement Jump rank
aBaseline Reactive Strength Index Drop Jump rank

Age Drop Jump Contact Time rank

VO2max Reactive Strength Index rank

Body Mass

Body Fat%

1RM Hip Thrust

1RM Back Squat

Distance Total

Total Accelerations

Total Sprints

Total Explosive Distance

aThe input baseline values are not used in the output rankings calculation detailed in

subsection 2.3, which shows that temporal measurements, e.g., pre/post-match values are

used for that purpose.
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1,000 m to 800 m (i.e., −200 m), with similar accelerations, sprints,

and explosive distance declines. These raw declines are scaled to a

0–1 range (e.g., −200 m becomes 0.4) to normalize metrics with

different units (e.g., meters, counts), ensuring fair comparisons.

The normalized declines [e.g., (0.4, 0.5, 0.6, 0.3)] are averaged

with equal weights (25% per metric) into an “overall decline

score” (e.g., 0.45). This score is multiplied by pre-existing

rankings to generate adjusted rankings, amplifying the intra-

match performance attenuation impact. Finally, athletes are

categorized into two subgroups: Group 0 (minimal decline,

adjusted rankings≤median) and Group 1 (significant decline,

adjusted rankings > median). For example, if the median adjusted

ranking for CMJ is 0.5, athletes scoring≤ 0.5 are assigned to

Group 0, while those >0.5 are assigned to Group 1.

As mentioned, by encoding baseline performance and in-

match performance decline, these rankings provide ML models

with richer individualized characteristics, expecting an

improvement in their ability to generalize across athletes with

diverse attenuation patterns.

2.3 Synthetic data generation

2.3.1 Tabular variational autoencoder (TVAE)
The Tabular Variational Auto-Encoder (TVAE) (17) is a deep

generative model designed to synthesize realistic tabular data by

adapting the Variational Auto-Encoder (VAE) framework (31).

As noted in the introduction, TVAE was selected over alternative

FIGURE 1

Flowchart of the methodology for predicting performance attenuation in gaelic football athletes. The steps consist of four systematic processes: (1)

data collection of baseline and pre-/post-match metrics, (2) data preprocessing (benchmark function (2.1): intra-match decline calculation,

normalization, weighted scoring; rankings refinement (2.2): adjusted rankings via median split; (3) Synthetic data generation using TVAE synthesizer

and the data quality evaluation; (4) machine learning modeling. This framework addresses data scarcity while evaluating the quality of the

synthetic data generated.
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models due to its capabilities with tabular data containing

continuous and categorical variables, addressing challenges when

modeling complex athlete performance metrics (18–20). VAEs

consist of an encoder-decoder architecture where the encoder

maps input data into a low-dimensional latent space, and the

decoder reconstructs the original data from these latent

representations. In VAE, a regularization term is added over the

latent space of the auto-encoder by adding a loss function to

avoid overfitting (32). TVAE extends this framework, optimizing

the Evidence Lower Bound (ELBO) loss function, which balances

reconstruction accuracy and latent space regularization. The

model employs the Adam optimizer with a learning rate of “1e-

3” to refine synthetic samples. Further, the created synthetic data,

A (x), can be kept as in Equation 1.

A (x) ¼ B (Decomp (Comp (x))) (1)

Where x represents the actual performance dataset, B is the TVAE

method with x as the input value and generates A (x). The Comp

method, which acts as an encoder, masters the latent diffusions on

actual data. Further, the Decomp method (Decoder) generates

synthetic data by inspecting the latent diffusions. This

methodology is supported in (33) and improved performance on

real tabular datasets (17).

In our experiment, we implemented the TVAE using the SDV

library (version 1.17.4) (34). TVAE inputs and outputs are shown

in Table 1. Table 2 contains a summary of the configuration

parameters used in this experiment. This configuration represents

the model architecture and training specifications applied to the

athlete performance dataset. This architectural configuration was

selected following iterative evaluation of multiple parameter

combinations, where each configuration was assessed using the

SDMetrics library quality report measuring statistical fidelity

across univariate distributions (column shapes) and multivariate

relationships (column pair trends). The selected configuration

demonstrated superior preservation of distributional characteristics.

2.4 Synthetic data generation (SDG) quality
assessment

2.4.1 Synthetic data quality evaluation

To quantify distributional similarity between original and

synthetic datasets, we employed the Hellinger distance analysis

(35, 36). This statistical measure quantifies distributional

similarity by directly comparing probability densities, with two

distinct advantages for synthetic data evaluation. First, its

bounded range [0–1] provides interpretational clarity, where

distance approaching zero indicates near-identical distributions,

and the distance of one indicates disjoint distributions. Second, it

maintains dimensional consistency when aggregated across

multiple variables, enabling systematic quality assessment across

the entire feature space. These properties distinguish it from

alternative metrics such as Kullback-Leibler divergence, which

measures relative entropy, or Wasserstein distance, which

quantifies the amount of distribution weight that must be moved

and how far (37). The Hellinger distance is defined as Equation 2:

H(x, x0) ¼
1
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

ffiffiffiffi

qi
p

�
ffiffiffiffiffi

pi
p� �2

r

(2)

Where qi and pi are the probabilities of every distinct result in x

and x’ variable spaces, respectively.

To complement the Hellinger distance analysis, we used the

Single Table Quality Report from the SDMetrics library (38). This

report evaluates the similarity between the real and synthetic

datasets using two approaches: column shapes and column pair

trends. “Column Shapes” measures the similarity between the real

and synthetic datasets’ marginal distributions (distributions of

individual columns). The Kolmogorov–Smirnov (KS) Complement

metric (39) is used for numerical and/or time-based columns,

while the Total Variation (TV) Complement metric (40) is used

for boolean and/or categorical columns. Moreover, “Column Pair

Trends” measures the similarity between the relationships or

trends between pairs of columns in real and synthetic datasets.

The Correlation Similarity metric is used for pairs of numerical

or time-based columns, the Contingency Similarity metric (41) is

used for pairs of categorical or Boolean columns, and a

combination of discretization and Contingency Similarity is used

for pairs of numerical or time-based and categorical or

Boolean columns.

Thus, by covering marginal and joint distributions, this report

identifies areas where the synthetic data presents issues with

features compared to the real data.

2.4.2 Machine learning

To assess synthetic data utility in performance attenuation

prediction, we employed four classification algorithms: Random

Forrest (42), AdaBoost (43), XGBoost (44), and Linear Support

Vector Machine (45). Our models’ performance was assessed via

precision, indicating the proportion of true positive predictions

out of all positive predictions made by the model, the f1-score,

providing the balancing of precision and recall of the model,

making it helpful in evaluating performance in classification

tasks where false positives and false negatives are important, and

recall, measuring the proportion of true positive predictions out

of all actual positives (46).

TABLE 2 Configuration parameters implemented for the
TVAE synthesizer.

Tool Synthesizer Configuration parameters

SDV (32) TVAE (17) Enforce_min_max_values: True

Enforce_rounding: True

Embedding_dim: 128

Compress_dims: (128, 128)

Decompress_dims: (128, 128)

l2scale: 0.001

Batch_size: 500

Epochs: 500

Loss_factor: 2
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For all experimental conditions, including models trained on

real data only and those incorporating synthetic data, we

implemented a hyperparameter optimization protocol using grid

search with stratified 5-fold cross-validation (47). For Random

Forest, we optimized the number of estimators (50, 100, 200)

and maximum tree depth (None, 10, 20, 30). For XGBoost, we

tuned the number of estimators (50, 100, 200), learning rate

(0.01, 0.1, 0.2), and maximum depth (3, 6, 9). AdaBoost

optimization included the number of estimators (50, 100, 200)

and learning rate (0.01, 0.1, 1.0), using decision tree classifiers

with a maximum depth of 1 as base estimators. For Linear SVM,

we optimized the regularization parameter C (0.01, 0.1, 1.0, 10.0)

and maximum iterations (1,000, 2,000).

We implemented a two-phase experimental framework using

200 TVAE-generated synthetic samples for our experimental

framework. It is important to note that our original dataset was

already balanced by design through our median-split

methodology mentioned in Section 2.2. This approach ensured

near-equal-sized groups in the original data. We validated the

preservation of this balanced distribution using synthetic data

evaluation metrics from the SDMetrics package support

(TVComplement score of 0.91 for categorical variables confirmed

that our synthetic data preserved the balanced distribution

present in the original dataset. Complementary to this, the

KSComplement score of 0.92 for numerical variables

demonstrated that we maintained the statistical properties of the

performance metrics within each group and preserved the

original balanced design.

Phase 1— Hybrid Data Integration. In this phase, we evaluated

the models’ performance through additional synthetic data

augmentation. The real dataset was divided into 75% training

and 25% testing sets. The training set was augmented with

synthetic samples at proportions ranging from 10% to 100%.

Models were evaluated on the held-out real data test set to assess

how synthetic augmentation affects generalization.

Phase 2 — Pure Synthetic Training. This phase tested

whether models trained exclusively on synthetic data could

predict performance attenuation in real athletes. Models were

trained solely on synthetic samples at varying proportions

(40%-100%) and evaluated against the complete real dataset.

We limited our investigation to synthetic data proportions

between 40% and 100% to ensure a sufficient sample size for

reliable model training. At lower proportions, models exhibited

high variance across validation folds, indicating instability

in the learned patterns. The 40% threshold represents the

empirically derived minimum proportion necessary to achieve

stable model convergence while enabling a strong assessment

of synthetic data’s utility across a considerable range

of proportions.

Results from both phases were benchmarked against all the

best models’ results for each ranking metric prediction when

they were trained exclusively on real data using identical

validation procedures. Therefore, in other words, only one model

(i.e., the best model result) was selected for each performance

metric benchmark comparison. This procedure enabled the

assessment of synthetic data’s utility while identifying optimal

synthetic proportions for each performance metric and

classification algorithm.

2.5 Statistical considerations

As described in [1], the original dataset was verified for

normality using the Shapiro–Wilk test, and all variables met this

criterion successfully (p > 0.05), ensuring a statistically sound

basis for our subsequent analyses. The performance attenuation

rankings were based on pre-post match differences statistically

validated in the original study [1] via the multiple repeated

measures ANOVAs with Bonferroni post-hoc analysis. These tests

identified significant temporal changes in the key performance

metrics (CK, PR, DJ, RSI, DJ Contact Time, and CMJ), which we

subsequently used as ranking variables.

To deal with the possible issues of having a small sample size

(n = 41) in our machine learning approach, we implemented

methodological strategies as explained in Section 2.2. First, we

employed a median-split methodology to create our ranking

system, ensuring balanced representation between athletes who

were experiencing minimal performance decline (Group 0) vs.

significant performance decline (Group 1). This approach

mitigated potential imbalance issues that could disproportionately

affect model training with limited samples, especially when

training the models using only real data.

While we acknowledge that the small sample size constrains

the generalizability of our findings, these combined strategies

allowed us to conduct a viable exploration of synthetic data’s

potential for performance attenuation prediction using this

dataset’s characteristics.

3 Results

The SDMetrics quality report evaluated the data fidelity across

two approaches. The column shapes score of 85.53% demonstrated

strong performance in replicating individual variable distributions,

where the scores of KSComplement and TVComplement

remained above 0.7, confirming that the synthesizer accurately

captured the statistical properties of features (see Figure 2).

Meanwhile, the column pair trends score of 79.97% reflected

moderate success in preserving relationships between variables.

The overall score of 82.75%, calculated as the average of these

two components, indicates that the synthetic data reproduces

approximately 83% of the original dataset’s statistical patterns on

a scale where 100% represents perfect replication. These

quantitative results align with the visual assessment in Figure 3,

where the green curves, representing the synthetic data

distributions, align well with the gray curves, representing the

original data distributions.

Moreover, the Hellinger distance of 0.168 demonstrated strong

distributional similarity between synthetic and original datasets,

with this metric’s bounded range [0–1] providing interpretational

clarity (where 0 indicates identical distributions). Variable-

specific analysis revealed a pattern of synthesis fidelity:
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performance metrics such as Total Explosive Distance (0.064) and

Total Accelerations (0.079) exhibited exceptional distributional

alignment, while other parameters, including %Body Fat (0.237)

and Baseline CMJ (0.247), presented relatively greater synthesis

challenges. These Hellinger distances corroborate the quality

report’s overall score, showing the reliability of the synthetic

dataset for applications requiring fidelity to the original data’s

statistical properties while identifying opportunities for refinement.

Table 3 shows the best ranking predictions for different models

using only real data (as mentioned in the methods section, it is

referred to as the benchmark). AdaBoost and XGBoost provided

the best results for most metrics, with variations in performance

across different ranking classifications. The creatine kinase metric

achieves the highest performance, with XGBoost yielding an

accuracy of 0.72, an F1 score of 0.69, and precision and recall

values of 0.83 and 0.70, respectively. In contrast, the DJ metric

shows the lowest performance, with XGBoost achieving an

accuracy, F1 score, precision, and recall close to 0.45. These

results are important for our comparison with the addition of

synthetic data in the models’ training (phase 1) and models

trained exclusively with synthetic data (phase 2).

Table 4 shows the models for best-ranking metrics prediction

and their ideal additional synthetic data achieved. The optimal

combination of model, synthetic data ratio, and hyperparameters

depends on the unique demands of each performance metric.

AdaBoost and Random Forest dominate scenarios requiring

moderate to high synthetic data, while XGBoost excels in low-

data regimes. Specifically, Synthetic data ratios shaped

classification outcomes: low (10%–20%) improves generalization

for CMJ and RSI, moderate (50%) boosts reliability for PR, CK,

and DJ, and high (70%) captures better patterns in DJCT.

These metric-specific synthetic data ratios directly align with

the performance trends in Figures 4A–F, where accuracy peaks

align with their respective optimal synthetic data ratios (PR: 50%,

CK: 50%, CMJ: 10%, DJ: 50%, DJCT: 70%, RSI: 20%), though

some subplots reveal secondary peaks at alternative ratios.

Further, benchmark comparisons quantify performance gains

with more emphasis on PR, CMJ, DJ, and RSI rankings

classification. This hybrid approach yielded improvements over

real-data baselines, with accuracy gains of up to 50% for PR,

CMJ, and DJ classifications when optimal synthetic proportions

and model selection were applied. Moreover, to determine the

size of these improvements, we computed standardized

percentage effects at optimal proportions for all performance

measures. The hybrid approach yielded effect sizes of 50.0% for

PR, 0% for CK, 80.0% for CMJ, 80.0% for DJ, 28.6% for DJCT,

and 33.3% for RSI, showing great significance for the majority of

performance measures.

Moreover, after this analysis of hybrid real-synthetic data ratios

uncovering optimization strategies specific to each ranking

classification, Figures 5A–F explores data utility using models

trained solely on synthetic data and testing them on real data.

For PR and CK, accuracy improves steadily with higher synthetic

data ratios. Most models surpass real-data baselines for PR, while

only Random Forest clearly outperforms for CK. For CMJ and

DJ, accuracy trends are consistent with increased synthetic data,

and all models exceed real-data benchmarks. Moreover, minimal

accuracy gains occur with increased synthetic data for DJ contact

time, and only Random Forrest and Linear SVM models

outperform real-data baselines. Finally, for RSI, accuracy remains

stable across synthetic ratios, with most models outperforming

real-data benchmarks. Moreover, the standardized effect sizes for

models trained exclusively on synthetic data (at optimal

proportions) were 33.3% for PR, 12.5% for CK, 60.0% for CMJ,

60.0% for DJ, 14.3% for DJCT, and 16.7% for RSI. These

findings reveal that models trained exclusively on synthetic data

can achieve comparable or superior performance to real-data-

trained models across multiple metrics, particularly for

neuromuscular-related parameters, demonstrating the potential of

synthetic data as a standalone training resource for performance

attenuation prediction.

Finally, performance variation across synthetic data

percentages exhibited various model-specific patterns.

Consequently, Linear SVM demonstrated greater sensitivity to

synthetic data proportions, which can be attributed to its

dependence on a singular optimized hyperplane defined by

support vectors proximal to class margins, increasing its

vulnerability to synthetic data addition. Therefore, these findings

highlight the importance of model selection when employing

synthetic data in similar applications applied to ML.

FIGURE 2

Illustration of the similarity between the real and synthetic datasets’ marginal distributions (individual column distributions), n= 41 and n= 200,

respectively. The KSComplement, used in numerical columns, measures the maximum difference between cumulative distribution functions, and

the TVComplement, used in categorical columns, quantifies the absolute difference in probability distributions. Higher scores indicate stronger

alignment between the real and synthetic data, with a maximum score of 1.0 representing identical distributions.
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FIGURE 3

Distribution comparison between original and synthetic data with fidelity metrics. Variables are stratified into three categories based on their

distributional similarity scores: (A) high fidelity (similarity > 0.85), (B) moderate fidelity (similarity 0.80-0.85), and (C) lower fidelity (similarity < 0.80).

In each subplot, the green curve represents the distribution of a variable in the synthetic dataset, while the gray curve shows the corresponding

distribution in the original dataset. Each distribution includes its specific KSComplement or TVComplement score, quantifying the degree of

distributional alignment. This hierarchical visualization framework demonstrates variable-specific synthetic data quality, with categorical variables

achieving strong replication fidelity (0.92), while variables such as VO2max (0.70) present greater synthesis challenges.
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4 Discussion

This study investigates using SDG to improve performance

attenuation prediction in Gaelic football athletes. Table 4,

Figure 4,5 show Machine Learning (ML) models’ effectiveness in

predicting performance attenuation using phase 1 (hybrid-

additional synthetic data) or phase 2 (only synthetic data).

The TVAE model effectively replicated the real data structure,

confirmed by low Hellinger distance scores and aligning with

previous studies that have demonstrated the capability of TVAEs

to generate realistic synthetic data in tabular and high-

dimensional data (18, 19). However, challenges with variables

such as VO2max suggest the need for TVAE retuning when

working with small samples, as variational autoencoders can

struggle with representation learning, posterior collapse, and

model flexibility in such contexts (48–50).

The data scarcity issue is effectively mitigated through TVAE

in this study. While balancing techniques remain important,

Synthetic data generation (SDG) provided by generative models

offers the potential to explore small datasets with greater

flexibility, providing high-fidelity synthetic data that can unlock

previously unexplored outcomes. By increasing the quantity and

diversity of training data, and preserving the original

distribution patterns, synthetic augmentation helps machine

learning classifiers learn more robust feature relationships. This

data procedure improved, in this case, the ML models’ ability to

detect true performance attenuation profiles that could be

hidden in the limited original dataset. To achieve similar gains,

researchers must guarantee that the synthetic data are of high

quality and report clearly how they were created and how they

were supposed to be applied, thereby increasing data availability

and covering existing gaps in analysis.

TABLE 3 Best ranking prediction model results using only real data.

Metric rank Model Best parameters Accuracy F1 score Precision Recall
bPR Adaboost aLR: 0.01, NE: 50 0.54 0.48 0.52 0.53
bCK XGBoost aLR: 0.01,

MD: 3,

NE: 50

0.72 0.69 0.83 0.70

bCMJ XGBoost aLR: 0.2

MD:3

NE: 50

0.45 0.45 0.45 0.45

bDJ XGBoost aLR: 0.01

MD: 3

NE: 50

0.45 0.41 0.42 0.43

bDJCT AdaBoost aLR: 0.1,

NE: 50

0.63 0.61 0.65 0.62

bRSI AdaBoost aLR: 0.01, NE: 200 0.54 0.55 0.55 0.55

aMD, maximum depth; MSS, minimum Samples_Split; NE, number of estimators; C, regularization parameter; LR, learning rate, MI, max iteration.
bPR refers to perceptual response, encompassing subjective measures of athlete well-being and perceived exertion. CK denotes creatine kinase, a biochemical marker used to assess the extent of

exercise-induced muscle damage. CMJ stands for countermovement jump, a common test for evaluating lower-body explosive power. DJ represents the drop jump, a plyometric exercise used to

measure reactive strength and the effectiveness of the stretch-shortening cycle. DJCT is the drop jump contact time, referring to the ground contact duration during a DJ; shorter times are

generally associated with better neuromuscular efficiency and elastic reactive strength. RSI is the reactive strength index, calculated as jump height divided by ground contact time during a DJ; it

quantifies an athlete’s ability to rapidly transition from eccentric to concentric muscle action (i.e., reactive strength).

TABLE 4 Best ranking prediction model results and its ideal additional percentage of synthetic data.

Metric rank Model Synthetic data % Best parameters Accuracy F1 score Precision Recall
bPR aAB 50% aMD: 2

NE: 100

0.81 0.80 0.88 0.80

bCK aRF 50% aMD: none

NE: 200

0.72 0.72 0.81 0.75

bCMJ aXB 10% aLR: 0.1

NE: 100

0.81 0.82 0.82 0.82

bDJ aRF 50% aMD: none

NE: 50

0.81 0.80 0.88 0.80

bDJCT aAB 70% aMD: 3

NE: 200

0.81 0.80 0.88 0.80

bRSI aAB 20% aMD: 2

NE: 50

0.72 0.72 0.73 0.72

aMD, maximum depth; MSS, minimum samples split; NE, number of estimators; C, regularization parameter; LR, learning rate; MI, max iterations; RF, random forrest; XB, XGBoost; AB,

AdaBoost; NB, Linear SVM.
bPR refers to perceptual response, encompassing subjective measures of athlete well-being and perceived exertion. CK denotes creatine kinase, a biochemical marker used to assess the extent of

exercise-induced muscle damage. CMJ stands for countermovement jump, a common test for evaluating lower-body explosive power. DJ represents the drop jump, a plyometric exercise used to

measure reactive strength and the effectiveness of the stretch-shortening cycle. DJCT is the drop jump contact time, referring to the ground contact duration during a DJ; shorter times are

generally associated with better neuromuscular efficiency and elastic reactive strength. RSI is the reactive strength index, calculated as jump height divided by ground contact time during a DJ; it

quantifies an athlete’s ability to rapidly transition from eccentric to concentric muscle action (i.e., reactive strength).

.
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Furthermore, while this study demonstrates the potential of

synthetic data augmentation for improving classification

performance, our model-centric approach presents

methodological limitations in addressing domain-specific

constraints and it is important to acknowledge that our findings

are specific to Gaelic football and do not generalize to sports

with different physiological demands and performance profiles,

such as endurance sports. Future advancements in this SDG

investigation could benefit from integrating data-centric AI

frameworks (51) that dynamically profile datasets to guide model

selection, enforce domain-specific constraints, and optimize

synthetic data for downstream tasks, ensuring statistical fidelity

and data utility. Such frameworks would streamline the synthesis

process and ensure that generated data aligns with the

requirements of complex real-world applications, particularly

those involving temporal dependencies or heterogeneous

populations. For example, parameters such as VO2max exhibited

the lowest synthesis fidelity. Therefore, a data-centric approach

would first characterize these complex distribution patterns and

variable interdependencies, then enforce domain-specific

constraints (e.g., physiologically valid ranges and correlations)

during the synthesis process. This constraint enforcement is

important for sports performance applications where biological

plausibility must be maintained. By embedding these constraints

FIGURE 4

Ranking prediction models’ performance with additional synthetic data for perception responses (A), creatine kinase (B), countermovement jump (C),

drop jump (D), drop jump contact time (E), and reactive strength index (F). The upper graph shows the accuracy of each model over different additional

synthetic data percentages, while the lower graph shows the difference in accuracy compared to the benchmark.
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into the synthesis process, such frameworks would enhance the

practical utility of predictive models in data-limited scenarios,

facilitating more reliable, scalable, and domain-compliant SDG

solutions (52).

In clinical and sports performance contexts, synthetic data

generation approaches similar to those explored in our study

could potentially address data analytics challenges in return-to-

play assessment protocols. This represents an analogous

application area where practitioners frequently encounter data

limitations in the form of sparse longitudinal performance

benchmarks when athletes resume competition following injury

or extended absence. For example, sports scientists could

implement our or a similar TVAE-based approach within an

intelligent monitoring system that generates synthetic

performance profiles based on limited historical data, enabling

more reliable prediction of performance attenuation risks for

athletes returning from injury. This system could alert coaches to

potential declines in neuromuscular function before they

manifest in competitive settings, allowing for timely

training modifications.

FIGURE 5

Models performance using only synthetic data for Perception Responses ranking prediction (A), creatine kinase (B), countermovement jump (C), drop

jump (D), drop jump contact time (E), and reactive strength index (F). The upper graph illustrates the accuracy of each model across different synthetic

data proportions, while the lower graph shows the difference in accuracy compared to the benchmark.
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This study, alongside studies such as (53), demonstrates the

expanding scope of SDG applications within sports science. Our

TVAE-based approach focuses on a specific use case, augmenting

a limited dataset to enhance predictive modeling for performance

attenuation monitoring (53). explored SDG using an alternative

method, such as sequential tree-based algorithms, applied to a

similar performance monitoring context. Specifically, they used a

dataset from professional football players (n = 34) previously

employed to investigate training load and injury relationships,

adapting SDG for different purposes such as facilitating data

sharing, reproducibility, exploration, and developing an education

primer for potential application of these methods. These studies

illustrate how SDG is adapted for diverse objectives, moving

beyond simple data replication. Despite the different

methodologies and target applications, both highlight that the

expansion of SDG into any new use case requires attention to

the generation process alignment with the target analysis and

open documentation, as noted by (53).

4.1 Limitations

While we have mentioned slight limitations throughout this

discussion section, it is important to highlight this study’s

constraints for better clarity.

First, the generalizability of our findings is constrained to the

specific context of Gaelic football. Our results do not extend to

sports with different physiological demands and performance

profiles, such as endurance sports. The high-intensity demands

of Gaelic football create unique performance attenuation patterns

that are hard to manifest similarly in other sports contexts,

limiting the transferability of our approach. Additionally, our

sample consisted of male senior-level athletes, potentially limiting

the applicability of our findings to female athletes or other level

populations whose physiological responses to training and

competition differ.

Moreover, our approach focused solely on the TVAE

synthesizer. Future research should explore combining it with

architectures such as TimeGAN and Diffusion Models to provide

a broader assessment of these tools’ potential in enhancing

athlete monitoring. Although our TVAE implementation

generated high-quality data, alternative models may be more

effective at maintaining high fidelity in the generation of specific

performance metrics, especially in addressing the challenges this

study faced in preserving data fidelity for VO2max.

Our validation focused on statistical properties and predictive

performance, rather than incorporating biological plausibility into

the SDG process. This limitation emphasizes the importance of

data-centric AI frameworks that enforce physiological validity

during synthesis. Thus, future implementations should integrate

constraint-based mechanisms to ensure biologically plausible

conditions, particularly when generating synthetic data for rare

or underrepresented performance profiles.

Finally, regarding ML classification tasks for similar

applications, an important limitation to acknowledge is the

binary-based classification of our current approach. Future

investigations should incorporate, where feasible, multi-label

classification rather than binary categorization, especially in

groups where multiple performance attenuation patterns are

expected. This extension would enable more granular profiling of

performance decline responses and potentially improve predictive

accuracy for athletes showing complex profiles.

5 Conclusion

This study employed TVAE-based SDG (synthetic data

generation) to enhance performance attenuation prediction in

Gaelic football athletes. Answering our first research question,

TVAE effectively captured the overall statistical structure of the

dataset (85.53% similarity), with specific parameters

demonstrating lower replication fidelity, such as VO2max, %Body

Fat, and Baseline CMJ. These replication challenges likely stem

from our TVAE architecture variable-specific sensitivity and the

limited sample size (n = 41). Answering our second and third

research questions, our two-phase model performance analysis

showed principal findings regarding data utility: first, the hybrid

approach combining real and synthetic data improved

classification performance when applying metric-specific optimal

synthetic data proportion: PR classification accuracy increased by

50% (from 0.54 to 0.81) with 50% synthetic proportion, while

CMJ and DJ classifications both achieved 80% improvements

(from 0.45 to 0.81) with 10% and 50% synthetic proportions

respectively. DJCT and RSI classifications showed more modest

gains (28.6% and 33.3%) with 70% and 20% synthetic data

respectively, while CK classification maintained consistent

performance (0.72) with 50% synthetic data. Second, models

trained exclusively on synthetic data frequently outperformed

real-data baselines across multiple metrics, particularly for

neuromuscular parameters. This finding extends beyond mere

data augmentation to suggest synthetic data’s potential as a

viable alternative for primary model training resources in similar

performance analytics implementations. In summary, phase one

served an investigative function by identifying optimal mixing

“synthetic and real data” ratios, and phase two addressed the

practical question of synthetic data utility as a standalone

resource. These findings demonstrated the potential of TVAE-

generated synthetic data to improve performance attenuation

prediction in Gaelic Football or similar sports demands,

suggesting that synthetic data potentially addresses data scarcity

challenges in similar sports performance monitoring dataset,

where data availability constraints are common. Future studies

should explore integrating multiple generative models and SDG

domain-specific constraint enforcement to further enhance the

fidelity and applicability of synthetic data solutions in

athlete monitoring.
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