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Purpose: Chronic ankle instability (CAI) is characterized by a combination of

peripheral dysfunction and maladaptive neuroplasticity in central nervous

system, leading to persistent postural stability deficits. This study aims to

investigate the effects of high-definition transcranial direct current stimulation

(HD-tDCS) combined with Bosu ball training (BBT) on the static and dynamic

postural stability in individuals with CAI.

Methods: A total of forty participants were randomized to receive either HD-

tDCS + BBT (n= 20) or BBT (n= 20) interventions, delivered over six weeks

with three 20-minute sessions per week. Static and dynamic postural stability

was assessed pre- and post-intervention via single-leg stance and drop

landing tests, with kinetic data captured by a force platform (1,000 Hz). Data

were analyzed using two-way mixed-design ANOVA.

Results: Significant group-by-time interactions were detected in the center of

pressure-root mean square (CoP_RMS) during single-leg stance (p= 0.036,

η
2
ₚ=0.134) and the time to stabilization (TTS) during drop landing (p= 0.007,

η
2
ₚ=0.209) in the mediolateral (ML) direction. Post hoc comparisons showed

that the both of them were decreased after intervention, and greater

decreases were observed by the intervention of HD-tDCS + BBT compared to

BBT. And, a significant time main effect was observed in the CoP_RMS

(p < 0.001, η
2
ₚ= 0.382) and the TTS (p= 0.005, η

2
ₚ=0.224) in the

anteroposterior direction, they both decreased after HD-tDCS + BBT and

BBT interventions.

Conclusions: Both BBT alone and the combined HD-tDCS + BBT interventions

enhanced static and dynamic postural stability in individuals with CAI, while

the combined HD-tDCS + BBT intervention demonstrated significantly greater

efficacy in improving postural stability in the ML direction compared to

BBT alone.
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1 Introduction

Lateral ankle sprains (LAS) represent a prevalent category

among musculoskeletal injuries, constituting 10%–30% of all

reported cases (1, 2). It is estimated a daily incidence exceeding

25,000 ankle sprain cases in the United States alone (3).

Approximately 46% of LAS progressing to chronic ankle

instability (CAI) (4), characterized by persistent symptoms such

as recurrent ankle sprain, “giving way”, pain, and weakness,

which may lead to long-term neuromuscular damage and an

increased risk of osteoarthritis (5–7). It is estimated that

approximately 2 million acute ankle sprains occur annually in

the United States (8), resulting in medical costs of about $6.2

billion (9).

Individuals with CAI exhibit disruptions in sensory-motor

integration, a critical process for maintaining postural stability.

This impairment arises from the damage to mechanoreceptors

and afferent fibers in the ankle joint due to recurrent sprains

(10), and the maladaptive neuroplastic changes in sensorimotor

cortical regions, particularly the primary motor cortex (M1) and

primary somatosensory cortex (S1) (11). Postural stability relies

on the integration of somatosensory inputs, central nervous

system (CNS) processing, and motor outputs that coordinate

muscle activity to regulate joint loading and balance (12). In

CAI, mechanoreceptor dysfunction compromises sensory input

from the ankle, while cortical reorganization in M1 and S1 alters

neuromuscular control pathways (13). These combined deficits

impair the CNS’s capacity to modulate joint mechanics and

muscle activation patterns, perpetuating postural instability and

functional limitations.

Individuals with CAI demonstrate deficits in both static and

dynamic postural stability, which are critical for injury

prevention and functional performance. Static postural stability is

commonly assessed via root mean square (RMS) of center of

pressure (CoP) displacement during single-leg stance (14), which

effectively predicts lower-limb injury risk and monitors

rehabilitation progress (15). Compared to healthy controls,

individuals with CAI exhibit greater CoP_RMS, particularly

under open-eye conditions (16). Dynamic postural stability,

usually evaluated through time to stabilization (TTS) during

drop-landing tasks, quantifies the ability to maintain balance

during high-demand activities (17). Individuals with CAI

demonstrate prolonged TTS, indicating delayed neuromuscular

adjustments and reduced dynamic control (18).

Conventional CAI interventions, such as sensory-targeted

training (19), cryotherapy (20), ankle joint mobilization (21),

and plantar massage (12), primarily target peripheral deficits

(e.g., tactile sensation, proprioception, muscle strength).

However, these approaches often yield limited efficacy, with

persistent instability or recurrent injury in many cases (22,

23). This may reflect inadequate consideration of maladaptive

CNS neuroplasticity, now recognized as a key contributor to

CAI-related postural deficits (11, 15). Previous studies

demonstrates reconceptualizing CAI as a global sensorimotor

integration disorder rather than a localized peripheral injury,

with neuroplastic maladaptations observed in cortical regions

associated with postural stability (24, 25). Multimodal

strategies integrating CNS interventions with peripheral

therapies are needed.

Emerging evidence supports transcranial direct current

stimulation (tDCS) as a promising CNS rehabilitation strategy for

CAI, and a more advanced variant, high-definition tDCS (HD-

tDCS), employs compact circular electrode arrays to modulate

cortical excitability, enhance neuroplasticity, and improve

postural stability with superior spatial specificity and prolonged

physiological effects (26–28). Preliminary studies in healthy

adults demonstrate that HD-tDCS enhances postural stability

(29), suggesting its potential to address CNS-mediated deficits in

CAI. Critical to the efficacy of HD-tDCS is the pairing of

stimulation with task-specific motor training, as concurrent

activation of sensorimotor networks during stimulation amplifies

motor learning and skill acquisition (30). For CAI rehabilitation,

progressive balance exercises—gradually increasing in complexity

—may synergize with HD-tDCS by challenging sensorimotor

adaptability and refining motor planning strategies, thereby

enhancing postural control (31). For instance, Bosu ball training

(BBT)—which creates an unstable surface environment—could

serve as an effective paired task, as it demands

continuous proprioceptive integration and reactive postural

adjustments (30–33).

As mentioned above, postural stability plays a critical role in

individuals with CAI, where postural instability serves as a key

contributor to recurrent ankle sprains. While tDCS has

demonstrated efficacy in improving postural stability in CAI

populations, existing studies have separately investigated static

and dynamic postural stability (29, 34–36). To our knowledge,

no studies have investigated the effects of HD-tDCS on both

static and dynamic postural stability concurrently, particularly

when combined with task-specific motor training such as BBT.

This study aims to investigate whether HD-tDCS paired with

BBT enhances postural stability in individuals with CAI

compared to BBT alone, hypothesizing that (1) Both the HD-

tDCS combined with BBT intervention and the BBT alone

could significantly improve static and dynamic postural

stability in individuals with CAI, represented by CoP_RMS

metric during single leg stance, and TTS during drop landing;

(2) the combined HD-tDCS + BBT intervention demonstrates

superior improvement compared to BBT alone.

2 Materials and methods

2.1 Sample size estimation

An a priori power analysis (G*Power 3.1) indicated that 26

participants were required to achieve 0.95 statistical power at

α = 0.05, based on a previous study’s group-by-time interaction

effect size (η2p = 0.122 equals to effects size f = 0.372) for

CoP_RMS during single-leg stance in individuals with CAI

undergoing neuromuscular electrical stimulation (pre:

8.13 ± 1.07 mm vs. post: 6.60 ± 1.14 mm) (37).
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2.2 Participants

Participants were recruited from August to October 2024 via

university e-newsletters, posters, and direct emails. Seventy-five

individuals were screened for eligibility using International Ankle

Consortium guidelines and additional criteria (38), with 40

providing informed consent. Inclusion criteria were: (1) history

of ≥1 ankle sprain >1 year prior with acute symptoms (pain,

swelling, activity limitation >1 day); (2) age 18–25 years without

athletic specialization; (3)≥ 2 episodes of ankle instability/"giving

way” in the past 6 months; (4) persistent instability/functional

impairment; and (5) Cumberland Ankle Instability Tool score

<24 (39). Exclusion criteria included lower-limb fractures/

surgeries, acute injury within 3 months, bilateral CAI, or

neurological disorders impairing motor control (e.g., cerebellar

disorders, stroke) (33). The study was approved by the Shandong

Sport University Ethics Committee (No. 2023036) and adhered

to the Declaration of Helsinki.

2.3 Protocol

This single-blind RCT employed a computer-generated random

sequence to allocate 40 participants (1:1) into two interventions: (1)

HD-tDCS + BBT and (2) BBT (sham HD-tDCS + BBT). Both

interventions underwent six weeks of intervention (3 sessions/

week, 20 min/session), with HD-tDCS/sham and BBT

administered concurrently. The protocol comprised: 10-minute

warm-up, four targeted exercises (30-second each, 30-second rest

intervals after each exercise, cycle repeated five times), totaling

20-minute of exercise, followed by 10-minute cooldown. Static and

dynamic postural stability were assessed pre- and post-

intervention, with test sequences randomized via computer-

generation to minimize order effects.

2.4 High-definition transcranial direct
current stimulation

HD-tDCS was delivered via a StarStim8 device (Neuroelectrics,

Spain) using a 10/20 EEG-compliant montage of five 5-mm

electrodes: one anode (Cz) and four cathodes (Fz, Pz, C3, C4)

(40) (Figure 1). Active stimulation applied 2 mA to the anode,

with return current distributed across cathodes. The protocol

included a 30-second ramp-up to 2 mA, 19-minute at 2 mA, and

a 30-second ramp-down. Sham stimulation mirrored this timing

but delivered subthreshold currents (<0.1 mA) during the

19-minute phase to preserve blinding (41). Neuro-modeling

confirmed focal targeting of sensorimotor cortices (M1/S1)

corresponding to foot-ankle representations (42).

FIGURE 1

Illustration of HD-tDCS electrode placement. The anode was placed over Cz of the 10/20 EEG template; the four cathodes were placed over Fz, C3,

Pz, and C4. Warmer and cooler colors reflect the larger and smaller modeled electric field normal component, respectively.
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2.5 Bosu ball training

Under the guidance of certified instructors, participants

performed Bosu ball training following a progressively

intensified program. The intervention involved standing on the

soft surface of the Bosu ball with the affected limb positioned

superiorly and the unaffected limb adjacent. During weeks 1–

2, the training progression consisted of: single-leg stance

maintenance; single-leg stance with lower extremity

anteroposterior swing (30°–45°); single-leg stance with lower

extremity mediolateral swing (20°–30°); and single-leg squats.

During weeks 3–4, the training progression consisted of:

swallow balance positions; single-leg stance with

anteroposterior swing (45°–60°); single-leg stance with lower

extremity mediolateral swing(30°–45°); and dynamic single-leg

squat take-ups. During weeks 5–6, the training progression

consisted of: single-leg stance with ball-catching; single-leg

stance with lower extremity anteroposterior mediolateral swing

(45°–60°); single-leg stance with lower extremity mediolateral

swing (30°–45°); and functional reaching tasks involving

forward trunk flexion to touch edge of Bosu ball while

maintaining single-leg stability(Figure 2).

2.6 Static postural stability test

Participants completed the single leg stance task to assess

static postural stability. After reviewing procedures, warming

up, and practicing (≥3 trials), they stood on their affected leg

atop a force platform (AMTI, Watertown, MA, USA), hands

on hips, gaze fixed forward. The unaffected leg was raised to

calf level, with the affected foot maintaining full contact for

30 s. Trials were discarded and repeated if: (1) limbs made

contact, (2) hands moved from hips, or (3) trunk/hip

deviation exceeded 30. Three valid trials were averaged for

analysis, with ≥1-minute rest between attempts to

minimize fatigue.

FIGURE 2

Illustrations of the bosu ball training movements (a) single-leg stance, (b) single-leg stance with swing forward-backward, (c) single-leg stance with

swing medial-lateral, (d) single-leg squat, (e) swallow balanced stance, (f) single-legged squat and take-ups, (g) catching a ball while single-leg stance,

and (h) bending over to touch the edge while single-leg stance.
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2.7 Dynamic postural stability test

Participants performed a drop-landing task to assess dynamic

postural stability (43). Standing on a 20 cm wooden platform in front

of a force plate, they positioned feet shoulder-width apart, hands at

their waist, and gaze fixed forward. Following instructions,

participants stepped forward with their affected limb, dropped onto

the force plate, and stabilized on the affected leg for 5 s (Figure 3) for

three trials. A successful trial required landing without losing balance

or corrective movements. Prior to the formal testing, participants

completed three practice trials to become familiar with the procedure.

2.8 Data reduction

During static postural stability test, CoP_RMS was calculated

from anteroposterior (AP) and mediolateral (ML) directions

using CoP data sampled at 1,000 Hz. The raw data were filtered

using a fourth-order low-pass Butterworth filter with a 12 Hz

cutoff frequency (14). Filtered data were used to compute

CoP_RMS (mm) for each participant using the following

formulas (14):

CoP RMSap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

(xi � �x)2

N � 1

s

(1)

CoP RMSml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

(yi � �y)2

N � 1

s

(2)

where xi and yi represent CoP coordinates in AP and ML

directions, while x bar and y bar denote their means. The

denominator N−1 reflects sample-based calculation.

During dynamic postural stability test, ground reaction force

(GRF) data were recorded at 1,000 Hz and filtered using a

fourth-order low-pass Butterworth filter with a 12 Hz cutoff

frequency (14). Filtered data from initial landing (GRF > 10N) to

5 s post-landing were used to compute time to stabilization (TTS)

through sequential average using the following formulas (44):

Sequential Average TTSap(n) ¼
X

1000

n¼1

Fx=n (3)

Sequential Average TTSml(n) ¼
X

1000

n¼1

Fy=n (4)

where Fx and Fy represent AP and ML GRF components. TTS was

defined as the time from landing to when the sequential average of

each component remained within ±25% of the standard deviation of

the overall mean GRF for ≥1 s (45) (Figure 4).

2.9 Statistics analysis

Normality was confirmed using the Shapiro–Wilk test. A two-

way mixed-design ANOVA evaluated main effects and interactions.

Group (HD-tDCS + BBT vs. BBT) was specified as the between-

subjects factor, and time (week0 vs. week7) as the within-subjects

factor. Significant interactions were decomposed using

Bonferroni-adjusted post hoc pairwise comparisons with

correction for multiple testing. Effect sizes were reported as

partial eta squared (η2ₚ: small = 0.01–0.06, moderate = 0.06–0.14,

large > 0.14) for ANOVA results (46) and Cohen’s d

(trivial < 0.20, small = 0.21–0.50, medium = 0.51–0.80,

large > 0.81) (47) for post hoc contrasts. Data are presented as

mean ± standard deviation (SD). Significance was set at p < 0.05.

FIGURE 3

Illustration of the dynamic postural stability test. (A) Starting position.

(B) Ending position. Right leg represents the affected side, while the

left leg represents the unaffected side.

FIGURE 4

Illustration of the time to stabilization (TTS) calculation. The moment

when the sequential average of ground reaction forces in the

anteroposterior and mediolateral directions reaches and remains

within the range of the series mean ± 0.25 SD is defined as the

TTS. TTS, time to stabilization.
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3 Results

All dependent variables were normally distributed. Forty

participants were randomly assigned to HD-tDCS + BBT (n = 20)

or BBT (n = 20) interventions (Figure 5). Six withdrew due to

scheduling conflicts, leaving 18 (HD-tDCS + BBT: 20.1 ± 1.3

years, 175.5 ± 8.0 cm, 72.4 ± 9.6 kg) and 16 (BBT: 21.0 ± 1.8 years,

173.3 ± 12.0 cm, 68.9 ± 11.5 kg) participants in each group. No

between-group differences in age, height, or body mass existed

(p > 0.05).

Figure 6 revealed a significant group × time interaction for

CoP_RMSml (p = 0.036, η
2
ₚ = 0.134). Post hocs showed both

interventions reduced CoP_RMSml from week0 to week7 (HD-

tDCS + BBT: p < 0.001, d = 1.826; BBT: p = 0.027, d = 0.765), with

a greater reduction in the HD-tDCS + BBT intervention

(p = 0.002, d = 1.105). CoP_RMSap exhibited a main effect of

time (p < 0.001, η2ₚ = 0.382), with decreases after interventions.

Figure 6 showed a significant group × time interaction for

TTSml (p = 0.007, η2ₚ = 0.209). Post hocs indicated reduced TTSml

over time in both groups (HD-tDCS + BBT: p < 0.001, d = 2.333;

BBT: p = 0.001, d = 1.329), with a larger decrease in the HD-

tDCS + BBT intervention (p = 0.007, d = 0.997). TTSap

demonstrated a main effect of time (p = 0.005, η2ₚ = 0.224), with

reductions after interventions.

4 Discussion

This study investigated the effects of HD-tDCS combined with

BBT on static and dynamic postural stability in individuals with

CAI. Our results supported Hypotheses 1 and 2, demonstrating

that both HD-tDCS + BBT and BBT alone significantly reduced

CoP_RMS and TTS. And, HD-tDCS + BBT elicited greater

FIGURE 5

Participation flow chart. Final analysis included data from 34 participants. 41 participants were excluded from the original 75 recruited due to various

reasons; HD-tDCS, high-definition transcranial direct current stimulation; BBT, Bosu ball training.
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improvements compared to BBT alone, suggesting enhanced

efficacy of the combined intervention for postural stability.

4.1 Bosu ball training improved static and
dynamic postural stability

This study demonstrates that both active and sham HD-tDCS,

when combined with BBT, significantly improved static and

dynamic postural stability in individuals with CAI in both AP

and ML directions, underscoring the effectiveness of BBT as a

rehabilitative intervention. These findings align with prior

research: one study reported that unstable surface training

enhances postural stability compared to stable surfaces by

increasing neuromuscular demands and sensory integration (32),

while another showed that such training elevates muscle

activation and proprioceptive feedback to optimize joint

stabilization (48). The observed improvements in postural

stability following BBT in CAI may stem from its dual

mechanisms of enhanced sensory input and neuromuscular

adaptation. The compliant surface of the Bosu ball increases

sensory stimulation by altering foot-support contact and pressure

distribution, which amplifies proprioceptive input (49, 50).

A meta-analysis confirmed that augmented sensory input

significantly enhances postural stability in CAI populations (51),

aligning with evidence of a strong correlation between

proprioceptive acuity and postural control in this cohort (52).

The inherent instability of the Bosu ball introduces controlled

postural perturbations, promoting sensory reweighting—a CNS

process that recalibrates reliance on visual, vestibular, and

FIGURE 6

Static and dynamic postural stability before and after intervention. CoP_RMS, root mean square of the center of pressure; HD-tDCS, high-definition

transcranial direct current stimulation; BBT, Bosu ball training; TTS, time to stabilization; ap, anterior-posterior direction; ml, medial-lateral direction.
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somatosensory inputs to compensate for instability (53). This

adaptive mechanism synergizes with neuromuscular demands, as

maintaining balance on an unstable surface requires dynamic

adjustments to the center of gravity within functional limits (54,

55), thereby counteracting CAI-related deficits in lower limb

strength and postural instability (56). Notably, a 4-week unstable

surface training protocol improved both muscular strength and

postural stability in CAI (48), supporting the results that

compliant surfaces elevate neuromuscular demands, fostering

enhanced muscle activation and force generation (57).

Consequently, these neuromuscular adaptations contribute to

improved postural stability in individuals with CAI.

4.2 Superior effects of combined HD-tDCS
and Bosu ball training over Bosu ball
training alone

Our findings demonstrate that HD-tDCS combined with BBT

exhibited superior efficacy compared to BBT alone in enhancing

static and dynamic postural stability among individuals with

CAI, these results align with previous studies showing that HD-

tDCS paired with foot-core exercises improves proprioception

and static balance in healthy adults (36), and that targeting M1/

S1 with HD-tDCS during short-foot exercises enhances

proprioception and dynamic balance in CAI populations (42).

Additionally, evidence that anodal tDCS over M1, when coupled

with targeted muscular attention, augments motor cortex

plasticity—evidenced by increased motor evoked potentials and

reduced short-interval intracortical inhibition—further supports

the synergistic effects of HD-tDCS and sensorimotor training on

postural stability and motor learning (58, 59).

The superior efficacy of the combined intervention may be

attributed to enhanced somatosensory integration, facilitated by

HD-tDCS-induced neuromodulation of sensorimotor networks.

Primary, HD-tDCS over S1 and M1 likely optimizes cortical

excitability, improving sensory processing and motor output

during BBT. This aligns with prior work demonstrating that

tDCS enhances peripheral somatosensory acuity—evidenced by

reduced vibration detection thresholds at the plantar surface and

improved hallux sensitivity—thereby refining foot-ankle

sensorimotor integration and postural control (60, 61). Such

effects may stem from tDCS-mediated modulation of S1

excitability, which could synergize with proprioceptive training to

enhance dynamic stability (62). Furthermore, tDCS applied over

adjacent temporal-parietal regions has shown benefits for

vestibulo-perceptual function (63), suggesting that stimulation

effects may extend beyond targeted areas (M1/S1) to

interconnected cortical networks involved in multisensory

integration, collectively contributing to improved postural

outcomes. Secondary, HD-tDCS may enhance postural stability

via M1-mediated modulation of lower limb motor output.

Individuals with CAI exhibit reduced M1 excitability projecting

to the peroneus longus compared to controls (57, 64). Anodal

tDCS increases M1 excitability by decreasing resting membrane

potential in targeted regions, thereby augmenting corticospinal

drive (34). This neuromodulation persists post-stimulation,

reducing short-interval intracortical inhibition and enhancing

voluntary muscle activation, which strengthens peroneal muscle

contributions to postural control (59, 65).

4.3 HD-tDCS induced additional
improvement of the postural stability in
the ML direction

Our results indicate that the additional benefits of HD-tDCS

occur specifically in the ML direction. This finding is partially

supported by a previous study, which demonstrated that

compared to a 4-week foot core training program, HD-tDCS

improved passive kinesthesia thresholds for ankle inversion and

eversion in healthy individuals, but had limited effects on ankle

proprioception for plantarflexion and dorsiflexion (36).

Neuromuscular control systems exhibit direction-dependent

modulation in postural compensation responses. During

perturbations in AP direction, postural stability is maintained

through coordinated limb swing patterns and compensatory foot

displacement (66). Conversely, perturbations in the ML direction

may present greater neuromuscular challenges due to anatomical

constraints in lateral limb repositioning (66). The stabilization

response in the ML direction initiates with activation of the

ankle eversion muscles to counteract inversion stresses (67, 68), a

mechanism potentially compromised in individuals with CAI,

thereby increasing the risk of sprain recurrence. This directional

situation shows a higher correlation between ML stability deficits

and fall risk compared to AP instability (69).

5 Limitations

There are several limitations to this study. Firstly, the study

compared the effects of active vs. sham HD-tDCS combined with

BBT on improving postural stability in individuals with CAI.

However, the isolated effects of HD-tDCS remain undetermined.

Despite this, our findings demonstrate that cortical stimulation

significantly enhances the efficacy of BBT, establishing a clinically

relevant physical therapeutic paradigm. Secondly, the study

focused on the outcomes of a six-week intervention without

evaluating long-term efficacy, which limits conclusions about the

sustained effects of the intervention. Nevertheless, the study

demonstrated clear improvements in postural stability, suggesting

the potential value of prolonged intervention.

6 Conclusion

Both HD-tDCS + BBT and BBT alone significantly improves

static and dynamic postural stability in individuals with CAI, while

the combination of HD-tDCS and BBT is more effective than BBT

alone, particularly in the ML direction. These findings highlight

the potential of combining CNS interventions with peripheral

therapies to improve postural instability for individuals with CAI.
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