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Handgrip strength (HGS) is a simple and reliable indicator of general muscular

strength, yet its relevance in elite youth football remains insufficiently

understood. This study examined the utility of HGS as a practical indicator of

athletic performance in this population, focusing on its associations with

sport-specific motor abilities and the moderating influence of age and

biological maturation. A total of 221 elite male youth football players aged

11–19 years completed a standardized performance test battery that included

HGS (via dynamometer), dynamic balance (Star Excursion Balance Test),

vertical jumps (Counter Movement Jump, Abalakov Jump, Heading Jump),

horizontal jumps (Broad Jump, Single-Leg Hop for Distance), and sprints

(10 m and 30 m). Pearson correlation coefficients were used to assess

associations between HGS and motor performance outcomes, while linear

regression models tested the moderating effects of age and maturity offset.

HGS was strongly associated with jumping (r= 0.69–0.75 for vertical; r= 0.73–

0.75 for horizontal) and sprinting performance (r=−0.62 to −0.73) and

showed small but significant associations with dynamic balance (r=−0.29; all

p < .001). Regression analyses confirmed significant main effects of HGS on

jumping (β= 0.31–0.60) and sprinting (β=−0.23 to −0.33), moderated by both

age and maturation status. No significant effects were observed for balance.

The combination of HGS and age accounted for up to 67% of the variance in

sprinting and up to 61% in jumping. These findings demonstrate that HGS is a

robust and practical predictor of sprinting and jumping performance,

especially when combined with age. This makes HGS a valuable,

resource-efficient tool for performance diagnostics and talent development in

elite and youth football, especially in settings where extensive testing is

impractical.
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Introduction

Elite youth football represents a demanding and multifaceted

environment in which players must meet extensive physical and

physiological requirements. Match play is marked by frequent

transitions between high-intensity anaerobic efforts-such as

sprinting, jumping, and directional changes-and lower-intensity

aerobic activities like jogging and walking (1). These demands

necessitate the development of speed, strength, endurance, and

agility to support repeated explosive actions and sustained

performance (2). High-intensity efforts are particularly influential

in goal-related situations and are often decisive for team success

(3). With the ongoing evolution of the game toward greater

speed and intensity, the physical performance thresholds required

at elite levels have increased significantly (4).

To meet these demands, youth players in professional academy

systems are immersed in structured training environments that

mirror the standards of senior-level football. These systems aim

to systematically enhance the physical, technical, and tactical

profiles of athletes in preparation for professional competition

(5). A central element in this process is the objective evaluation

of individual development trajectories, considering both

performance capacity and biological maturation (6, 7).

Empirical studies demonstrate that elite youth players

consistently outperform their non-elite counterparts in strength,

power, and speed assessments (8, 9). Widely used field-based

tests include linear sprint tests (e.g., 10–30 m) to measure

acceleration and top-end speed (10), as well as vertical jump

assessments such as the countermovement jump and Abalakov

jump to evaluate lower-limb explosive power (11). Horizontal

tests like the broad jump are also commonly applied due to their

relevance to sprinting and change of direction ability (12, 13).

However, the identification and progression of talent within

these systems are hampered by several well-documented

challenges. The relative age effect results in a selection bias

favoring players born earlier in the selection year, while

variations in biological maturation among age-matched athletes

further complicate developmental assessments (14, 15). Early-

maturing players often exhibit temporary advantages in strength,

speed, and power, which may not reflect long-term potential

(16). During adolescence, rapid physiological changes-particularly

around peak height velocity-can lead to temporary declines in

coordination and neuromuscular control, increasing susceptibility

to injury (17, 18). Injury incidence rates are notably elevated in

under-15 to under-17 age groups during this period of

accelerated growth (19, 20). As a result, individualized

monitoring and targeted injury prevention strategies have

become integral components of modern academy practice (21).

Beyond performance monitoring, physical testing contributes

to injury risk identification. Functional movement assessments,

including evaluations of balance, flexibility, and neuromuscular

control, have become central to injury prevention strategies (22,

23). The Star Excursion Balance Test is widely used to assess

dynamic balance and postural stability-both of which are linked

to lower-limb injury risk (24–26). Deficits identified in preseason

testing can inform individualized intervention programs and

reduce injury incidence during the competitive season (27, 28).

In response to these challenges, physical performance testing has

emerged as a key tool in the assessment and development of youth

football players. While anthropometric data and body composition

measurements offer valuable structural insights, they provide

limited predictive power regarding functional performance and

future success (29). In contrast, sport-specific performance tests

allow for the assessment of key athletic qualities and are now

routinely implemented in youth academies (30).

Although comprehensive test batteries provide important data,

they are often resource-intensive and time-consuming. Simpler,

scalable, and accessible assessments are thus increasingly needed.

One such test is hand grip strength (HGS), which offers a

practical and low-cost measure of general muscular strength

(22, 31). HGS testing is quick to administer, requires minimal

equipment, and is suitable for a wide range of populations,

including those with limited test tolerance (32).

While HGS is primarily used to assess upper-body strength,

research indicates that it is also moderately associated with

lower-body strength, sprinting, and jumping performance

(33, 34). In athletic populations, stronger HGS values have been

correlated with higher muscle mass and superior neuromuscular

performance (31). In youth football, HGS has been linked to

sprint speed, change of direction, and dynamic balance,

especially when accounting for age and maturation status

(35, 36). Furthermore, positional demands in football, such as

goalkeeping and defensive duels, often require upper-body

strength, reinforcing the functional relevance of HGS in this

context (33).

Despite its simplicity, the role of HGS in football-specific

performance diagnostics remains underexplored (22, 31).

Previous studies have indicated associations between HGS and

general athletic capacities, such as balance, jumping, and

sprinting (33, 34, 35, 36). However, there is a lack of systematic

evidence considering developmental factors, such as

chronological age and biological maturation, in elite youth

football. This study addresses this gap by analyzing the

associations between HGS and three key sport-specific

performance outcomes: dynamic balance, vertical and horizontal

jumping, and sprinting. These analyses were conducted using a

large, age-diverse sample of elite youth players.

Based on existing research, we hypothesize that HGS will be

strongly associated with explosive motor tasks (e.g., sprinting and

jumping) and that these relationships will be moderated by age

and biological maturity (37–39). Furthermore, we hypothesize

that HGS, particularly in combination with age, may serve as a

practical predictor of performance outcomes (31, 34). Our

findings aim to inform more efficient and scalable strategies for

performance diagnostics and talent identification in youth

football (7, 30).

Abbreviations

AJ, Abalakov jump; BJ, broad jump; BMI, body mass index; CMJ,
countermovement jump; HGS, hand grip strength; HJ, heading jump; MO,
maturity offset; PHV, peak height velocity; SEBT, star excursion balance test;
SLHD, single leg hop for distance.
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Materials and methods

Study design

This prospective, observational, cross-sectional study was

conducted in cooperation with two German elite youth football

academies affiliated with professional men’s teams competing in

the first national and second national division. Due to the

mandated gender segregation in youth football (DFB & DFL,

2022), the sample exclusively comprised male participants. Data

collection took place during the annual Pre-Competition Medical

Assessments (PCMAs) conducted in the pre-season period of

June to September 2023. All procedures were carried out on-site

at the training facilities of the respective clubs and at the

Department of Sports and Rehabilitation Medicine of Ulm

University Hospital. The assessments were embedded within the

clubs’ regular diagnostic routines and followed standardized

protocols. The study was conducted in accordance with the latest

version of the World Medical Association’s Declaration of

Helsinki—Ethical Principles for Medical Research Involving

Human Subjects 2008 and approved by the ethics committee of

Ulm University (No. 371/23).

Population

The study included 221 male elite youth football players aged 11–

18 years. All participants were recruited from two professional

academies affiliated with first and second division clubs in the

German national football league. Eligibility required enrollment in

the respective academy for at least one full season, ensuring

standardized exposure to elite-level training and competition. Players

with chronic conditions preventing competitive football participation

or whose consent was withdrawn (either by themselves or their legal

guardians) were excluded. Verbal assent was obtained from all

players and written informed consent from at least one parent or

legal guardian was provided prior to participation.

All players competed within a structured academy framework,

aligned with the national seasonal calendar (August–December and

February–May). Players were assigned to age groups from Under-

12 (U12) to Under-19 (U19), with training load progressively

increasing with age. Training sessions followed standardized

long-term development curricula implemented across both

academies. U12 players trained approximately three times per

week (60–75 min per session), focusing on coordination and

basic technical skills. U13–U15 players trained four times per

week (75–90 min), incorporating structured endurance, strength,

and tactical elements. U16–U19 players trained five times per

week (90–105 min), including high-intensity aerobic

conditioning, strength and power sessions (twice weekly), and

position-specific technical-tactical integration.

Competitive level also increased with age and development stage.

Younger players (U12) typically competed in the 6th national

division, U13–U15 teams in the 2nd to 3rd divisions, and U16–U19

players regularly participated in matches at the 1st or 2nd national

division level. Match frequency ranged from one official league

match per week (U12–U15) to one or two matches per week,

including league, friendly, and international fixtures, in the older

age groups. While individual training histories in total years were

not assessed, the structured and age-graded progression within the

academies ensured comparable developmental conditions and a

consistently high level of competition across all participants.

The final sample of 221 participants had a mean age of

14.7 ± 2.3 years, a mean height of 168.7 ± 12.8 cm, a mean body

mass of 57.4 ± 14.1 kg, and a mean body fat percentage of

11.1 ± 3.1%. Biological maturation was estimated using maturity

offset (MO), with an average MO of 0.85 ± 2.03 years. Players

reported an average training frequency of 3.6 ± 0.5 sessions per

week, consistent with their respective academy schedules. Table 1

presents detailed participant characteristics and performance data.

Performance test battery

Once eligibility for study was confirmed, participants

underwent additional assessments of anthropometry and

performance tests.

Anthropometrics

Body mass [kg] and body fat percentage [kg/m2] were

measured using bioelectrical impedance analysis (InBody 770,

Biospace Korea, Seoul, Korea) following the standard protocol

described by Kyle and colleagues (40). Standing height and

sitting height were recorded using a portable stadiometer with

0.1 cm precision (Seca 213, seca GmbH & Co. KG, Hamburg,

Germany). With the same precision the leg length was measured

as the distance between the anterior superior iliac spine and the

medial malleolus at each ankle joint (27).

Biological maturity

To assess biological maturity, a previously validated regression

equation incorporating age, body mass, leg length, standing height,

and sitting height was applied. The MO was calculated as the

difference between the adolescent’s chronological age and their

estimated age at peak height velocity (PHV), providing an indicator

of biological maturity relative to peers. A positive MO value

indicates that the participants have passed their peak growth phase,

whereas a negative value indicated that they are pre-PHV (38).

Handgrip strength

Handgrip strength (HGS) was measured using a hand

dynamometer (SH1003, Saehan Corp., Donghae, Korea).

Participants were instructed to apply maximal force to the

dynamometer while maintaining a standardised posture: shoulder

adducted to the body, elbow flexed at 90° (unsupported), and wrist

in a neutral position (41). Participants were instructed to avoid
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compensatory movements that could compromise the accuracy of the

test, and to ensure that the force was generated solely by the hand and

forearm muscles. Each participant performed the test with both the

dominant and non-dominant hand. Three measurements were

recorded for each hand, and the mean value derived from the best

measurements of each hand [kg] was used for analysis (42).

Dynamic balance

To assess dynamic balance, the Star Excursion Balance Test

(SEBT) was performed according to the protocols of Dominguez-

Navarro and colleagues (43) and Mohammadi Nia Samakosh and

colleagues (44). Participants performed the test barefoot on a

marked mat (Orthelligent Screening Mat, OPED Medical Inc.,

Braselton, USA). They were instructed to place both hands on

their hips, balance one leg, lift the other leg off the floor, extend

it as far as possible to lightly touch the floor, and return to the

starting position without losing balance. The SEBT was

performed in three directions: anterior, posteromedial and

posterolateral. Each direction was tested alternately three times

per leg and the maximum reach was recorded for each trial.

To calculate a normalized composite reach score for each leg, the

sum of the reach distances in the three directions (anterior,

posteromedial, and posterolateral) was divided by three times the leg

length and the result was multiplied by 100. This procedure was

performed separately for the dominant and non-dominant leg.

Finally, the Limb Symmetry Index (LSI) was used to assess the

symmetry between the compound scores of the less dominant leg

and the dominant leg. An LSI of 100% indicates equal performance

between the legs, while values below 100% suggest a balance

asymmetry (45).

Vertical jumping tests

Vertical jump performance was assessed using three tests: the

Counter Movement Jump (CMJ), the Abalakov Jump (AJ), and

the football-specific Heading Jump (HJ). All tests were performed

in accordance with current methodological standards for the

assessment of athletic performance in adolescents (46) on a

piezoelectric one-dimensional force plate (Quattro Jump, type

9290DD, Kistler, Winterthur, Switzerland), recording jump

height [cm] and relative power [W/kg].

For the CMJ and AJ, participants stood upright on the platform

with body weight evenly distributed between both legs. Following a

verbal reference, they performed a rapid downward movement

immediately followed by a maximal vertical jump. The CMJ was

performed without arm movement, while the AJ included an active

arm swing to enhance takeoff (47). The HJ was designed to replicate

football-specific movement patterns. Players initiated the jump with

a preparatory diagonal step and aimed to contact a suspended ball,

simulating heading behavior under realistic game conditions. Arm

movement was allowed to maintain ecological validity (48).

Each jump type was performed three times. The highest score

for each trial was retained for further analysis. To minimize fatigue

effects, a passive rest period of at least 2 min was observed between

trials. All test procedures were performed by experienced personnel

under standardized laboratory conditions to ensure high reliability

and feasibility.

Horizontal jumping tests

Horizontal jump performance was evaluated using the double-leg

Broad Jump (BJ) and the Single-LegHop for Distance (SLHD) (49, 50).

TABLE 1 Participant characteristics and performance tests.

Test Unit U12 U13 U14 U15 U16 U17 U19

Age, M (SD) [years] 11.3 (0.3) 12.5 (0.3) 13.4 (0.4) 14.6 (0.2) 15.4 (0.2) 16.4 (0.2) 17.7 (0.5)

Total players, n 27 29 31 31 33 32 38

Body mass, M (SD) [kg] 38.0 (6.5) 43.0 (6.6) 49.3 (9.2) 59.5 (10.2) 64.0 (7.6) 69.2 (6.2) 71.2 (6.5)

Body height, M (SD) [cm] 148.9 (7.3) 155.9 (7.1) 164.2 (9.2) 171.8 (7.2) 175.4 (5.9) 178.4 (5.6) 179.8 (6.7)

BMI, M (SD) [kg/m2] 17.0 (1.8) 17.6 (2.1) 18.2 (2.1) 20.0 (2.3) 20.7 (1.6) 21.7 (1.5) 22.0 (1.5)

SMM/body height, M (SD) [kg/m2] 7.5 (0.7) 8.2 (1.0) 8.8 (1.1) 9.2 (1.2) 9.8 (1.3) 10.2 (1.2) 10.2 (1.1)

PBF, M (SD) [%] 11.5 (3.1) 11.2 (4.3) 11.9 (3.7) 10.5 (2.6) 10.7 (3.0) 11.3 (2.9) 10.9 (2.2)

Leg Length M (SD) [cm] 75.0 (5.6) 80.1 (5.4) 83.7 (5.6) 88.4 (4.4) 90.0 (5.3) 91.4 (3.8) 91.4 (4.3)

Maturity Offset M (SD) [years to pHV] −2.3 (0.5) −1.3 (0.5) −0.3 (0.8) 0.9 (0.7) 1.7 (0.7) 2.6 (0.5) 3.5 (0.6)

Training frequency, n [sessions per week] 3 3 3 4 4 4 4

Playing level [national division] 4th to 5th 2nd to 3rd 2nd to 3rd 2nd to 3rd 1st to 2nd 1st to 2nd 1st to 2nd

Handgrip, M (SD) [kg] 18.9 (4.0) 23.3 (5.2) 26.0 (6.7) 33.1 (6.1) 35.9 (5.3) 39.8 (8.4) 42.5 (7.7)

SEBT-LSI, M (SD) [%] 105.9 (10.6) 102.3 (7.9) 101.7 (7.1) 98.6 (5.9) 97.6 (7.6) 95.9 (5.2) 97.6 (7.0)

CMJ, M (SD) [cm] 31.8 (4.5) 32.9 (4.5) 37.1 (3.8) 40.7 (5.3) 40.5 (5.8) 42.0 (3.4) 44.7 (5.5)

AJ, M (SD) [cm] 37.1 (4.9) 38.6 (5.7) 43.0 (4.7) 47.4 (6.1) 50.2 (6.4) 51.1 (6.6) 53.7 (5.5)

HJ, M (SD) [cm] 38.9 (3.3) 39.8 (5.5) 46.4 (5.3) 51.0 (5.9) 50.6 (5.5) 54.0 (4.3) 56.1 (6.9)

BJ, M (SD) [cm] 161.1 (18.0) 170.4 (16.7) 185.1 (15.7) 200.0 (17.6) 201.3 (18.0) 208.0 (16.5) 219.3 (18.3)

SLHD, M (SD) [cm] 134.2 (14.0) 145.2 (16.9) 158.9 (12.5) 175.5 (19.4) 178.0 (15.4) 181.4 (13.0) 193.4 (14.4)

Sprint 10 m, M (SD) [s] 2.13 (0.12) 2.02 (0.12) 1.95 (0.07) 1.86 (0.09) 1.89 (0.13) 1.79 (0.10) 1.83 (0.10)

Sprint 30 m, M (SD) [s] 5.13 (0.28) 4.91 (0.27) 4.71 (0.21) 4.43 (0.23) 4.40 (0.25) 4.20 (0.17) 4.22 (0.12)

BMI, body mass index; SMM, skeletal muscle mass; PBF, percent body fat; PHV, peak high velocity; SEBT-LSI, star excursion balance test—limb symmetry index; CMJ, counter movement

jump; AJ, Abalakov jump; HJ, heading jump; BJ, broad jump; SLHD, single-leg hop for distance. Data except for total players, trainings frequence and playing level are presented as mean (M)

and standard deviation (SD); Leg length and SLHD represent the mean of left and right leg values.
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For the BJ, participants stood with both feet parallel behind the

0.00 m mark on a floor-mounted measuring tape. For the SLHD,

they positioned one foot directly behind the starting line. In both

tests, participants were instructed to jump forward as far as

possible. In the SLHD, they were required to land on the same

leg used for take-off and maintain balance.

A trial was considered valid if the participant landed without

falling, using their hands, or lifting the foot (SLHD) or feet (BJ)

and maintained a stable stance for at least 3 s. The jump distance

[cm] was measured from the take-off line to the nearest point of

contact on landing, typically the heel. Each test was performed

three times per leg (SLHD) or overall (BJ), with at least 2 min of

rest between attempts. For analysis, the furthest valid distance

was used for the BJ, while for the SLHD, the average of the best

attempts from both legs was used.

Sprint test

Sprint performance was assessed using a 30-m sprint test on

dry artificial turf, a standard and validated method for assessing

linear speed in football (3, 51). Timing was recorded using a

high-precision photocell system (Witty GATE System, type

WIT002, MICROGATE, Bolzano, Italy) with gates positioned at

0 m, 10 m and 30 m. The system is characterized by excellent

reliability (ICC = 0.96–0.99) and accuracy <.001 s (52) (WITTY

Microgate, 2024).

Participants wore football boots and initiated each sprint from

a standing, staggered position. They were instructed to run with

maximal effort for 30-m and completed up to three trials. To

minimize fatigue, rest intervals of at least 3 min were provided

between trials. The fastest sprint time across trials was retained

for analysis.

Statistics

All statistical analyses were performed using JASP (version

0.19.2; JASP Team, 2024) and R (version 4.4.1, The

R Foundation of Statistical Analysis) (R Core Team, 2024).

Descriptive statistics (M, SD) were calculated for all study

variables. Pearson correlation coefficients were calculated to

assess associations between HGS and motor performance in

sport. Due to the presence of outliers in some performance

measures, additional percentage bend correlations were calculated

(53). As both methods gave comparable results, the results of the

Pearson correlations are presented in the manuscript. The

strength of the correlations was interpreted according to Cohen’s

guidelines (54): small (r = 10–0.29), medium (r = 0.30–0.49) and

large (r≥ 0.50).

To examine the potential moderating effects of age and MO on

the relationship between HGS and performance scores, a series of

linear regression analyses were conducted. In these models,

performance scores served as the dependent variable, HGS was

included as a predictor, and either age or MO was entered as a

moderator (HGS ×Moderator).

In addition, linear regression models were used to assess the

predictive value of HGS and age on sport motor performance.

Due to multicollinearity concerns (Variance Inflation Factor > 10)

when both age and MO were included as predictors, age was

selected as a proxy for biological development due to its greater

practical relevance. Models were calculated using raw,

unstandardized values to maintain applicability in practical

contexts. The explanatory power of each model was assessed

using the coefficient of determination (R2), with higher R2 values

indicating better model fit. Statistical significance was defined

as p≤ .05.

Results

Of the initial 276 participants, 55 were excluded due to missing

data in anthropometric or sport-specific performance measures.

Thus, the final analysis was conducted with a sample of 221

participants aged 11–18 years (Table 1).

Correlation analyses

Table 2 displays the descriptive statistics and Pearson

correlation coefficients between HGS and all performance tests.

A small but statistically significant negative correlation was found

between HGS and the SEBT. Significant negative correlations

were also observed between HGS and sprint performance. In

contrast, large positive correlations emerged between HGS and

both vertical and horizontal jump performance.

Moderation analyses

This section presents the results of the moderation analyses,

investigating whether age and MO independently moderate the

relationship between HGS and sport-specific performance tests.

For comparability, all variables were z-standardized. First, the

TABLE 2 Descriptive statistics and correlations between HGS and
performance tests.

Performance test Unit Mean
(SD)

r p-value

Handgrip strength [kg] 32.1 (10.3) — —

Star excursion balance test—limb

symmetry index

[%] 99.7 (8.0) −0.29 <.001

Counter movement jump [cm] 38.9 (6.5) 0.69 <.001

Abalakov jump [cm] 46.4 (8.2) 0.75 <.001

Heading jump [cm] 48.7 (8.2) 0.73 <.001

Broad jump [cm] 193.9 (25.7) 0.75 <.001

Single-leg hop for distance [cm] 168.5 (24.6) 0.73 <.001

Sprint 10 m [s] 1.92 (0.15) −0.62 <.001

Sprint 30 m [s] 4.54 (0.39) −0.73 <.001

Pearson’s r; effect size: small [r = 0.10–0.29], medium [r = 0.30–0.49] and large [r≥ 0.50],

Cohen (1988) (54). The Bonferroni-corrected p-value based on eight tests is p = .00625.

SD, standard deviation.

Schulz et al. 10.3389/fspor.2025.1625015

Frontiers in Sports and Active Living 05 frontiersin.org

https://doi.org/10.3389/fspor.2025.1625015
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


moderating role of age is presented (Figures 1A–D), followed by

the analyses with MO as the moderator (Figures 2A–D).

Age

For dynamic balance performance (SEBT, Figure 1A), no

significant main effect of HGS was found, but a negative main

effect of age was found (β =−0.27, p = .008). Additionally, a

positive interaction between HGS and age was observed (β = 0.14,

p = .045), suggesting that the association between HGS and

balance performance strengthened with increasing age.

Regarding vertical jump performance (Figure 1B), positive

main effects of HGS were found for the countermovement jump

(CMJ; β = 0.44, p < .001), the Abalakov jump (AJ; β = 0.50,

p < .001), and the heading jump (HJ; β = 0.40, p < .001). Age also

showed positive main effects on CMJ (β = 0.32, p < .001), AJ

(β = 0.32, p < .001), and HJ performance (β = 0.41, p < .001). No

significant interaction effects between HGS and age were

observed for any of the vertical jumping tests.

For horizontal jump performance (Figure 1C), positive main

effects of HGS were observed for the broad jump (BJ; β = 0.45,

p < .001) and the single leg hop for distance (SLHD; β = 0.33,

p < .001). Age also showed positive main effects on BJ (β = 0.38,

p < .001) and SLHD (β = 0.51, p < .001) performance. A negative

interaction between HGS and age was found for SLHD

(β =−0.11, p = .01), suggesting a slight decrease in the strength of

the association between HGS and SLHD with increasing age. No

significant interaction effect was found for BJ.

Finally, for sprint performance (Figure 1D), negative main

effects of HGS were found for both the 10 m sprint (β =−0.31,

p < .001) and the 30 m sprint (β =−0.33, p < .001), indicating that

higher HGS was associated with faster sprint times. Age also

showed negative main effects on 10 m (β =−0.40, p < .001) and

30 m sprint performance (β =−0.52, p < .001). In addition,

positive interaction effects between HGS and age were observed

for both sprint distances (10m: β = 0.26, p < .001; 30 m: β = 0.24,

p < .001), suggesting that the positive association between HGS

and sprint performance became stronger as players aged.

Maturity offset

For dynamic balance (SEBT, Figure 2A), no significant main

effect of HGS was observed, but a negative main effect of MO

was found (β =−0.33, p = .005). There was no significant

interaction between HGS and MO.

For vertical jump performance (CMJ, AJ, HJ, Figure 2B),

positive main effects of HGS were observed for the CMJ

(β = 0.37, p < .001), AJ (β = 0.44, p < .001), and HJ (β = 0.31,

p < .001). MO also showed positive main effects on CMJ

(β = 0.38, p < .001), AJ (β = 0.37, p < .001), and HJ (β = 0.50,

p < .001). No significant interaction effects between HGS and

MO were found for any vertical jump test.

For horizontal jump performance (BJ, SLHD, Figure 2C), HGS

showed positive main effects for both the BJ (β = 0.35, p < .001) and

SLHD (β = 0.22, p = .003). MO also showed positive main effects

for the BJ (β = 0.48, p < .001) and SLHD (β = 0.60, p < .001). No

significant interaction effects between HGS and MO were found

for the horizontal jumping tests.

In sprint performance (10 m and 30 m Sprint, Figure 2D), HGS

showed negative main effects for the 10 m sprint (β =−0.23,

p = .010) and the 30 m sprint (β =−0.24, p < .001). MO exhibited

strong negative main effects for the 10 m sprint (β =−0.46,

p < .001) and the 30 m Sprint (β =−0.59, p < .001). Additionally,

positive interaction effects between HGS and MO were found

for the 10 m sprint (β = 0.24, p < .001) and the 30 m sprint

(β = 0.21, p < .001).

Predictors of sport performance: handgrip
strength and age

To evaluate the predictive value of HGS and age on sport-

specific performance outcomes in elite youth football players, a

series of linear regression analyses was performed. For each

performance test, HGS [kg] and age [years] were included as

predictors. The predictive strength of each model was assessed

using the coefficient of determination (R2), representing the

proportion of variance in performance explained by the

two predictors.

The models showed significant predictive validity for almost all

tests, except for the SEBT, where no significant prediction was

observed after adjusting for age. For all other sport-specific tests

—including vertical jumps, horizontal jumps, and sprint

performance—HGS and age together accounted for a meaningful

proportion of performance variability. Full regression coefficients,

equations, and R2 values for each outcome are detailed in Table 3.

Discussion

The aim of the study was to investigate the associations

between HGS and key sport-specific performance parameters—

including dynamic balance, vertical and horizontal jumps, and

sprinting—in a cohort of elite youth football players. This

prospective, cross-sectional study included 221 male athletes aged

11–18 years from two German football academies. To our

knowledge, no previous study has examined such a large sample

from two elite youth football academies.

The results showed strong associations between HGS and both

jumping and sprinting performance, whereas the relationship

between HGS and dynamic balance was comparatively weak. In

addition, the moderating effects of age and biological maturity

on these associations were examined. While HGS consistently

predicted better jumping and sprinting performance across age

groups and maturity levels, balance performance was primarily

influenced by developmental factors rather than strength. These

findings underline the relevance of HGS as a general marker of

neuromuscular performance in explosive tasks and highlight the

need to consider age- and maturity-related influences in talent

development and performance diagnostics.
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FIGURE 1

Linear regression analysis examining the relationship between handgrip strength and (A) dynamic balance (star excursion balance test—limb symmetry

Index), (B) vertical jumps (countermovement jump, Abalakov jump, heading jump), (C) horizontal jumps (broad jump, single-Leg Hop for distance), and

(D) sprint performance (10 m, 30 m), with age included as a moderating variable. All variables are z-standardized. Handgrip strength (x-axis) and

performance outcomes (y-axis) are plotted at three levels of age: one standard deviation (SD) below the mean (−1 SD, red line), at the mean (blue

line), and one SD above the mean (+1 SD, green line). Number of participants: n= 221.
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FIGURE 2

Linear regression analysis examining the relationship between handgrip strength and (A) dynamic balance (star excursion balance test—limb symmetry

Index), (B) vertical jumps (countermovement jump, abalakov jump, heading jump), (C) horizontal jumps (broad jump, single-Leg Hop for distance), and

(D) sprint performance (10 m, 30 m), with maturity offset (MO) included as a moderating variable. All variables are z-standardized. Handgrip strength

(x-axis) and performance outcomes (y-axis) are plotted at three levels of MO: one standard deviation (SD) below the mean (−1 SD, red line), at the

mean (blue line), and one SD above the mean (+1 SD, green line). Number of participants: n= 221.
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The relationship between HGS and dynamic balance

performance, as measured by the SEBT, was small (r =−0.29,

p < .001). Most studies investigating HGS and balance have

focused on older populations, with inconsistent results (55). In

youth athletes, Kartal (35) reported moderate positive

correlations (r = 0.51–0.55) between HGS and SEBT performance,

whereas Muehlbauer and colleagues (56) observed only minimal

associations (r = .01). The SEBT primarily assesses lower limb

strength, proprioception and flexibility (55), which may not be

adequately captured by handgrip strength alone.

In addition, anthropometric factors such as body weight may

explain the small inverse relationship observed in this study.

While higher body weight is often associated with greater HGS

(57), it can impair dynamic balance performance (58). Despite

age-related increases in muscle mass and strength during

adolescence, transient declines in postural stability and

neuromuscular control have been reported (59, 60), further

complicating the relationship between HGS and dynamic balance.

Jumping performance was strongly associated with HGS,

reinforcing the role of the HGS as an indicator of whole-body

strength (31). Among the vertical jumping tasks, the AJ showed

the strongest correlation (r = 0.75, p < .001), closely followed by

the HJ (r = 0.73, p < .001). Both tests are likely to have larger

correlations due to the involvement of arm swing and upper

body dynamics, increasing the contribution of the HGS to

ground reaction forces (61). In contrast, the CMJ, performed

without arm swing, showed a slightly weaker correlation

(r = 0.69, p < .001), highlighting the reduced role of upper body

strength under these conditions.

Similar patterns have been reported in other sports

populations. Hammami and colleagues (62) observed weaker

correlations (r = 0.47–0.49) in adolescent handball players,

possibly reflecting sport-specific demands that favour throwing

and agility over jumping power. Debelsio and Otterson (63)

reported a negative correlation (r =−0.41) between HGS and

vertical jump performance in college football players, which

reversed to a positive correlation after adjustment for BMI,

highlighting the critical role of anthropometric factors in

strength-performance relationships.

The horizontal jumping tasks followed a similar trend. BJ

(r = 0.75, p < .001) and the SLHD (r = 0.73, p < .001) showed

strong positive correlations with HGS. These results highlight the

importance of HGS for forward explosive movements. Previous

studies have reported different correlations depending on the

athletic background: Nara and colleagues (64) found moderate

correlations in male college students (r = 0.43), whereas Sarvaiya

and Puntambekar (65) found very strong correlations in

adolescent fencers (r = 0.84–0.86). These discrepancies suggest

that sports that emphasize upper body strength may strengthen

the association between HGS and horizontal jump performance.

Sprint performance over the 10 m and 30 m distances also

showed large negative correlations with HGS, highlighting its role

in both acceleration and speed maintenance. The 30 m sprint

showed a stronger negative correlation (r =−0.73, p < .001)

compared to the 10 m sprint (r =−0.62, p < .001), suggesting that

HGS may contribute more to maximal sprint velocity than to

initial acceleration. The initial acceleration phase is primarily

dependent on lower limb explosive power and technical

execution (66), whereas maintaining high velocity requires

greater upper body strength for postural control and running

efficiency (67). This finding is consistent with previous studies

highlighting the role of whole-body strength in sprint

performance in young athletes (68, 69). Although Cronin and

colleagues (31) questioned the direct relevance of HGS to

sprinting in field sports, several studies have documented

significant negative correlations between HGS and sprint

times in different populations, including male children and

adolescents (37, 70–72).

Moderating effects of age and maturity
offset on the relationship between handgrip
strength and performance tests

SEBT, as a parameter of dynamic balance, was significantly

influenced by both age and MO, but not by HGS. Older and

more biologically mature players had lower SEBT scores, likely

reflecting growth-related changes in limb proportions and center

of mass that temporarily impair postural stability during

adolescence (60, 73). These findings are consistent with previous

findings indicating superior balance control in less biologically

mature athletes (74).

Interestingly, a modest positive interaction between HGS and

age (β = 0.14, p = .045) suggests that greater strength may slightly

attenuate the age-related decline in balance performance. As

athletes progress beyond PHV, improvements in neuromuscular

control may facilitate more effective integration of strength into

postural stability tasks (75). In contrast, the lack of a significant

interaction between HGS and MO suggests that biological

maturity alone does not significantly alter this relationship.

Overall, dynamic balance appears to depend more on lower limb

strength, proprioceptive abilities, and flexibility than on general

measures of strength such as HGS (55).

While dynamic balance performance showed only limited

associations with HGS, jumping and sprinting abilities were

strongly linked to strength capacities across all stages of

maturation. Specifically, higher HGS was associated with better

vertical (CMJ, AJ, HJ; β = 0.31–0.60, p < .001) and horizontal

jump performance (BJ, SLHD; β = 0.33–0.60, p < .001), as well as

TABLE 3 Linear regression models predicting sport-specific performance
based on handgrip strength and age.

Performance test Regression equation R2-value

Counter movement jump 15:13þ 0:27�HGSþ 1:04� Age 0.523

Abalakov jump 14:67þ 0:39�HGSþ 1:31� Age 0.610

Heading jump 14:42þ 0:31�HGSþ 1:65� Age 0.601

Broad jump 88:21þ 1:10�HGSþ 4:81� Age 0.621

Single-leg hop for distance 53:86þ 0:74�HGSþ 6:18� Age 0.636

Sprint 10 m 2:50–3� 10�3
�HGS � 0:03� Age 0.464

Sprint 30 m 6:45� 0:01�HGS� 0:11� Age 0.672

Regression equations and corresponding coefficients of determination (R2) for each

performance test. Number of participants: n = 221.
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faster sprint times over 10 m and 30 m (β =−0.23 to −0.33,

p < .001), independent of chronological age or MO. These

findings align with previous research by Pichardo and colleagues

(39), who identified muscular strength as a key determinant of

sprinting and jumping capacities in adolescent athletes.

Chronological age and MO independently influenced motor

performance, with older and more biologically mature players

performing better. This observation is consistent with previous

research linking maturity-related increases in muscle mass,

neuromuscular coordination, and biomechanical efficiency to

improved physical performance (76, 77).

No significant interaction effects between HGS and either age

or MO were observed for the vertical jumping tasks (CMJ, AJ,

HJ), suggesting that the relationship between strength and jump

height remains stable across different stages of maturation.

Similar patterns have been reported in previous studies with

children and adolescents (37).

For horizontal jumps, no interaction between HGS and age was

found for the BJ. However, a small but significant negative

interaction was found for the SLHD (β =−0.11, p = .01),

suggesting that the contribution of HGS to unilateral jump

performance may decrease slightly with increasing age. This

trend likely reflects the increasing importance of technical skill

and movement efficiency over pure strength (25, 26).

The strength of the association between HGS and sprint

performance increased with advancing chronological age and

biological maturity, as reflected by positive interaction effects for

both the 10 m (β = 0.24, p < .001) and 30 m sprints (β = 0.21–

0.26, p < .001). These findings suggest that HGS, as a marker of

general upper-body and total-body strength, becomes

increasingly important during the sprint acceleration and

maximal velocity phases of adolescent maturation (67, 69, 78).

Predicting performance tests based on
handgrip strength and age

Among the various performance tests examined, HGS and age

showed distinct predictive patterns. For dynamic balance

performance, as assessed by the SEBT, HGS showed no

significant predictive ability. This lack of association highlights

the need for task-specific measures when assessing balance-

related abilities, which are likely to be more dependent on

flexibility, proprioception, and neuromuscular control (55). In

addition, anthropometric variables such as height and body

weight may have a stronger influence on SEBT performance than

general strength measures (58).

In contrast, for explosive movements such as jumping and

sprinting, HGS and age proved to be strong predictors. For

vertical jumping, AJ (R2 = 0.610) and HJ (R2 = 0.601) had the

highest predictive values, highlighting the importance of upper-

body strength and coordination in jumping tasks involving arm

swing dynamics. These findings are consistent with previous

research suggesting that vertical jump performance is not solely

dependent on lower body strength, but also on the effective

interplay between upper and lower body mechanics (79). The

slightly lower predictive ability observed for the CMJ (R2 = 0.523)

supports this notion, as the CMJ is performed without an arm

swing and relies more heavily on isolated lower-body strength

and stretch-shortening cycle efficiency (80). Similar results have

been reported in young basketball players, where HGS was

identified as a significant predictor of vertical jump height (81).

Regression models further confirmed the predictive value of

HGS and age for horizontal jump performance, with results for

BJ (R2 = 0.621) and SLHD (R2 = 0.636) exceeding those observed

for vertical jumps. Even higher predictive values have been

reported in previous studies, such as Vaidya and Nariya (82) in

college students (R2 = 0.677). Similarly, Nara et al. (64) validated

the use of HGS as a predictor of horizontal jump performance in

male collegiate athletes. The greater biomechanical complexity of

horizontal jumps may explain their stronger association with

HGS and age compared to vertical jumps. Unlike vertical jumps,

which primarily involve upward forces, horizontal jumps require

both vertical and forward forces, which more intensely engage

the hip extensors and core stabilizers (83). Furthermore,

unilateral tasks introduce additional balance and stability

demands, increasing the need for neuromuscular control (25, 26).

This may explain why the SLHD demonstrated slightly higher

predictive power than the BJ, as greater postural stability

demands place additional emphasis on strength-related skills.

Additionally, the greater neuromuscular control required for

single leg jumping is strongly influenced by maturational

development (75), suggesting that age plays a more prominent

role in predicting single leg jump performance.

Finally, HGS and age also significantly predicted sprint

performance, with the 30 m sprint (R2 = 0.672) demonstrating

the strongest predictive ability of all motor tests. This finding

highlights the broader relevance of HGS as an indicator of

whole-body strength, particularly for longer sprint distances

where sustained speed and upper-body stabilization become

increasingly important (69, 67). The 10 m sprint (R2 = 0.464),

while still significantly predicted, had a lower predictive capacity,

consistent with its greater emphasis on short-term explosiveness

and technical skill rather than sustained strength over an

extended sprint phase (66).

Limitations and further research

The findings of this study were interpreted with critical

consideration of the study design and current evidence, aiming

to provide a differentiated understanding of the role of HGS in

elite youth football.

Despite the strengths of this study, several methodological

considerations must be acknowledged to appropriately interpret

the findings. The cross-sectional design, with data collection at a

single pre-season time point, limits the ability to capture seasonal

variations in performance related to training load, fatigue, and

ongoing maturation. Future research should employ longitudinal

designs to track individual performance trajectories over time.

Moreover, all performance tests were conducted on the same

day, which may have introduced fatigue-related effects despite
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standardized rest periods. Although rest intervals were carefully

managed, the possibility of cumulative fatigue cannot be entirely

excluded. Another methodological consideration involves the use

of multiple examiners due to the large sample size (n = 221).

Although standardized protocols were followed, minor variations

in instruction, encouragement, or measurement techniques may

have occurred. To ensure consistency, a maximum of three

different examiners were assigned per test station. Nevertheless,

manual measurement of horizontal jump distances, while

practical, may have introduced slight inaccuracies; future studies

should consider using laser-based or force plate systems to

enhance measurement precision. In addition, although the

moderating effects of chronological age and MO were accounted

for, HGS alone does not fully represent the complex

biomechanical and neuromuscular determinants of sport motor

performance. Finally, as the study sample consisted exclusively of

elite male youth football players, the generalizability of the

findings is limited. Future studies should examine whether the

observed relationships differ by sex, competition level, age group,

or sport-specific demands, and also account for potential sources

of inter-individual variability in HGS values, such as hand size,

hand dominance, and minor fluctuations in fatigue or motivation.

Practical implications and
recommendations for elite youth football

Based on these findings, several practical applications for elite

youth football develop. The results highlight the value of HGS

testing as a simple, efficient, and accessible tool for assessing

strength-related abilities, particularly in settings where more

comprehensive performance diagnostics may not be feasible (84).

Given its associations with sprinting and lower-body, HGS offers

a practical alternative for talent identification and athletic

monitoring in resource-limited environments. The regression

models developed in this study suggest that coaches can estimate

sprint and jump performance based on HGS and chronological

age. While these estimates are not intended to replace direct

performance tests, they may support initial screening and serve

as supplementary indicators when full testing is impractical.

From an applied perspective, HGS testing is quick (under

2 min), requires minimal equipment (e.g., a handheld

dynamometer), and can be administered by a single trained

coach. These characteristics make regular implementation

feasible, even in environments with limited resources (84).

Integrating HGS into routine assessments could support tracking

neuromuscular development across different stages of maturation.

As a general indicator of neuromuscular readiness, HGS reflects

strength adaptations during periods of growth (85). Defining

normative values according to age and maturation status would

further enhance its utility by enabling coaches to compare

players to developmental benchmarks and support talent

identification and long-term monitoring (38).

However, it is important to note that this study did not reveal

any direct implications for injury prevention based on dynamic

balance testing. Given that dynamic balance performance is

multifactorial and best assessed through dedicated tools such as

the Y-Balance Test or dynamic postural stability measures (24, 26).

Taken together, HGS assessment has potential as a scalable and

complementary tool in athlete monitoring and talent development

strategies in elite youth football.

Conclusion

This study examined the role of handgrip strength (HGS) in

elite youth football. It investigated the relationship between HGS

and key performance tests, the influence of biological maturation

and chronological age on HGS, and HGS’s predictive value for

performance outcomes. HGS was strongly associated with lower-

limb power, particularly sprint and jump performance, but

showed only a weak relationship with dynamic balance.

Regression analyses indicated that HGS, when combined with

chronological age, was a strong predictor of sprinting and

jumping ability. The influence of HGS on sprint performance

increased with age and maturity, while its association with jump

performance remained stable across maturation stages.

These findings highlight HGS as a practical, time-efficient tool

for athletic profiling and talent monitoring in elite youth football,

particularly where comprehensive testing is not feasible. Coaches

can use HGS to track neuromuscular development and estimate

performance capacities across developmental stages. To our

knowledge, this is the first study to examine the predictive value

and maturational interplay of HGS in relation to multiple sport-

specific motor skills in elite youth football.
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