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Since traditional, sport-specific training or exercise programs lack sufficient

stimulus to improve the function of the respiratory muscle, the rationale for

integrating additional respiratory muscle training (RMT) emerged. RMT has the

potential to improve intermittent exercise performance in team sports athletes,

as proven in multiple studies. This narrative review aims to provide coaches with

tools to select the appropriate form of RMT, tailored to the athletes’ needs,

using appropriate diagnostic methods, intervention protocols, and devices.

Common protocols may include performing 30 inspiratory maneuvers twice a

day, five days a week, with resistance-based trainers or engaging in 20–40 min

of vigorous ventilation with isocapnic devices every other day. Most of the

interventions that positively influence intermittent exercise performance

employed inspiratory pressure threshold loading, lasted 6–8 weeks, and relied

on a high frequency of training sessions, progressive overload, and relatively

high initial resistance (starting intensity). Less-investigated RMT methods, such

as tapered flow resistive loading or voluntary isocapnic hyperpnea, should be

analyzed in the context of intermittent exercise performance. Moreover, further

research addressing RMT and hypoxia, between-gender differences, and

athletes with disabilities seems warranted.
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Introduction

Team sports have gained immense popularity worldwide, involving millions of

participants who engage in dynamic and physically demanding activities (1). Based on

global participation, viewership, and cultural significance, disciplines such as soccer

(football), basketball, cricket, rugby, hockey, baseball, volleyball, and various types of

football are considered the most popular (2, 3). The performance determinants vary to

a certain extent depending on the discipline and players’ specific roles (4). However,

team-sports athletes are usually required to execute repeated skillful and high-intensity

actions such as accelerations, changes in pace and direction, sprints, jumps, and kicks.

These efforts are typically performed in cycles of maximal or near-maximal intensity,

interspersed with brief recovery periods that may consist of rest or low- to moderate-

intensity activity. Such activities often extend over prolonged periods, ranging from one
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to two hours, placing considerable demands on the athlete’s

physical capacities (5, 6). Noteworthy, physiological team-sports

requirements are closely intertwined with the execution of

specific skills, highlighting the complex and multifaceted nature

of team-sport performance (7).

The combination of technical skills and physical demands

requires athletes to maintain optimal conditioning tailored to the

unique challenges of their sport and athlete’s roles (4). The

interplay between high-intensity actions and recovery periods

underscores the importance of targeted physical preparation,

enabling athletes to perform effectively and consistently

throughout the game (8). Consequently, one of the most

emphasized physical training goals is the ability to repeatedly

perform intense exercise, often evaluated with the Yo-Yo Tests

(YYT) or Repeated Sprint Ability (RSA) assessments (9, 10). The

physiology of such testing is driven by the interplay of energy

systems, muscle function, and recovery mechanisms (7, 9). RSA

relies primarily on the phosphagen (ATP-PCr) system to supply

rapid energy during the initial seconds of each sprint, with

anaerobic glycolysis contributing as phosphocreatine (PCr) stores

become depleted. These systems enable short bursts of high-

intensity effort but are limited by the accumulation of metabolic

by-products such as hydrogen ions, contributing to fatigue.

Compared to RSA tests, which focus predominantly on anaerobic

power and fatigue resistance during repeated sprints, the YYT

places greater emphasis on sustained aerobic metabolism and

recovery between efforts (11). In both tests, recovery between

efforts depends heavily on the aerobic system, which supports PCr

resynthesis, lactate clearance, and the restoration of muscle pH (7,

11, 12). Additionally, effective intermittent exercise performance

requires well-developed neuromuscular efficiency and the ability to

resist fatigue-related reductions in motor unit activity (13–15).

No single type of training can be universally recommended as

the most effective for enhancing intermittent exercise performance

or addressing all the factors contributing to output declines during

repeated effort tasks (16). Typically, two recommended training

goals are improved single-sprint performance and improved

aerobic fitness to enhance the ability to recover between efforts

(16). Noteworthy, respiratory muscle training (RMT) may

improve intermittent exercise performance (17, 18). RMT is a

specific conditioning method designed to enhance the strength

and endurance of the muscles involved in breathing. Nicks et al.

(19) and Najafi et al. (20) reported that RMT improved

intermittent exercise performance in both male and female

soccer players (19, 20). Tong et al. (21) noted enhanced tolerance

to intense intermittent exercise after both RMT programs and

respiratory muscle warm-ups (21). Romer et al. (22) also

observed faster recovery time during high-intensity, intermittent

exercise in repetitive-sprint athletes (22). More recently, after

RMT interventions a decrease in sprint time and improved

exercise tolerance during RSA assessments in professional soccer

players, as well as increased distance covered by rugby athletes in

YYT were reported (23, 24).

On the physiological side, RMT was reported to attenuate the

blood lactate concentration, plasma ammonia, and uric acid

responses during high-intensity, intermittent exercise. Moreover, it

was associated with improved perceptual responses and

breathlessness (21, 22). All the relevant studies included in the

systematic review from Lorca-Santiago et al. reported significant

decreases in perceived exertion during RSA and YYT, from 8% to

29%, with large effect sizes (18). Moreover, the mechanistic

explanation may be associated with attenuated respiratory

metaboreflex and improved blood flow to limb muscles during

high intensity, as reported in professional women soccer players

(25). Although not easy to observe in applied environments, the

respiratory metaboreflex is widely associated with performance

improvements originating from RMT. The practical implications

stem from findings that fatigue and metabolite accumulation in

respiratory muscle lead to reduced blood flow to skeletal muscles,

redirecting it toward the respiratory muscle (26). This results in

vasoconstriction in the active limbs during exercise, contributing

to increased local fatigue and performance limitations (27). RMT

enhances respiratory muscle function and is anticipated to

counteract the negative effects of the metaboreflex, thereby

reducing its systemic impact.

Traditional sport-specific training or exercise programs lack

sufficient stimulus to improve the function of the respiratory

muscles, underscoring the rationale of integrating additional

RMT into training regimens (28, 29).

Training methods and equipment

A wide range of RMT methods and devices are available, with

three key approaches demonstrating significant benefits in athletic

contexts: inspiratory pressure threshold loading (IPTL), tapered

flow resistive loading (TFRL), and voluntary isocapnic hyperpnea

(VIH). While TFRL and IPTL are primarily linked to enhanced

respiratory muscle strength, VIH is more closely associated with

improvements in respiratory muscle endurance (29). Specifically,

IPTL and TFRL result in larger improvements in maximal

inspiratory pressures, and VIH was associated with improved

maximal voluntary ventilation, significant flow rates, and high

velocities of respiratory muscle contraction (17). Illustrative

application of both approaches is presented in Figure 1 (30).

TFRL and IPTL might be used as inspiratory-only,

expiratory-only, or mixed respiratory muscle training.

Inspiratory muscle training has consistently demonstrated

benefits in improving respiratory muscle strength, endurance,

and overall exercise performance in healthy and trained

subjects. In contrast, evidence regarding the effectiveness of

expiratory or mixed training remains inconsistent, with fewer

studies addressing its potential benefits in a well-trained

population. Hence, the following section focuses on inspiratory

muscle training as the optimal and proven approach. IPTL and

TFRL rely on dedicated breathing devices that provide

resistance during inspiration and allow for expiration without

additional resistance (31). Training protocols typically require

individuals to perform vigorous inspirations, starting from the

residual volume, against a resistance set at 30%–80% of their

maximal inspiratory pressure. Most popular and studied

programs require 30 quick and forceful maneuvers from
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functional residual capacity, twice daily for 5–6 days per week,

for at least 4–6 weeks (29). A key distinction between IPTL

and TFRL lies in how resistance is applied. In IPTL, the

resistance remains constant throughout the breath, resulting in

a progressive shift from low pressure and high airflow at

smaller lung volumes to high pressure and low airflow as the

lungs fill. Due to the pressure–flow dynamics of the respiratory

muscle, inspiration at higher lung volumes demands greater

muscle strength. Eventually, the resistance can surpass the

muscle’s capacity to generate sufficient inspiratory pressure,

limiting further shortening of respiratory muscle and

preventing full lung expansion. In contrast, TFRL features a

progressively decreasing external resistance during inspiration,

delivering moderate pressure and airflow evenly across the

entire vital capacity range (32).

VIH involves devices equipped with partial rebreathing circuits

and emphasizes controlled, intense breathing exercises. This

method relies on intentional hyperpnea as the primary training

stimulus, operating at an intensity of 60%–90% of maximal

voluntary ventilation, with minimal or no external resistance

applied. The rebreathing circuits help maintain an athlete’s

homeostasis, as prolonged hyperventilation without specialized

equipment is not feasible and, even over short periods, can cause

significant disturbances in blood gas levels and negatively impact

well-being (29). VIH training programs are usually based on 3–5

sessions per week, from 15 to 40 min each, and should last at

least 4–6 weeks.

Notably, not all RMT programs are associated with improved

performance, as this depends on the intervention design (33, 34).

Ineffective interventions may result from an insufficient training

stimulus, characterized by inadequate resistance, limited

program duration, or failure to implement progressive overload

principles (33, 35). Moreover, low motivation and adherence to

RMT programs may be significant limiting factors in achieving

optimal outcomes. Consequently, providing appropriate

supervision is essential to ensure consistent engagement and

maximize the effectiveness of the intervention (33). On the

other hand, most of the effective interventions addressing

intermittent performance share common characteristics and last

6–8 weeks, employ IPTL, rely on a high frequency of training

sessions, progressive overload, and relatively high initial

resistance (starting intensity). A summary of protocols resulting

in a significant, positive influence on intermittent exercise

performance from peer-reviewed studies is presented in Table 1.

Importantly, the lack of TFRL and VIH studies in Table 1 does

not mean they are not effective, but understudied. The available

literature that compares different RMT methods does not

address intermittent exercise performance. However, studies

typically report similar outcomes concerning continuous or

sport-specific efforts (30, 36, 37).

Products such as POWERbreathe®, Airofit, BreathWayBetter

(recently released as Isocapnic), and SpiroTiger® (recently

released as Idiag) are commonly used in sports science and

remain most popular on the market. Their brief characteristics

may be found in Table 2. Airofit devices might be particularly

useful for coaches or scientists, as they offer remote supervision

options, and staff may track RMT execution and progress via the

online platform.

FIGURE 1

Illustrative application of two training methods. (A) Presentation of respiratory muscle strength training. (B) Presentation of respiratory muscle

endurance training. Figure adapted from Kowalski et al. (30).
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Methodological considerations for
optimizing RMT interventions

Training interventions should begin with a well-defined

baseline, and RMT is no exception. Such an approach allows for

identifying an athlete’s needs and measuring adaptation or lack

thereof. Therefore, an evaluation of the athlete’s respiratory

muscle function is recommended before introducing RMT.

Noteworthy, it may be performed with easy-to-use and mobile

devices, such as the above-mentioned POWERbreathe® K-Series

or Airofit (38, 39).

The theory of sport outlines several key principles designed to

optimize the training process and athletic performance. While

different sources might list slightly different numbers or names

TABLE 1 Summary of protocols resulting in a significant, positive influence on intermittent exercise performance from peer-reviewed studies.

Study Population and N Intervention characteristics Test Performance

Romer et al. (22) M (24)

Mixed, mostly soccer and rugby

IPTL

6 weeks

7 days/week

2 sessions/day (30 reps)

50% MIP + PO

RSA +7%

Tong et al. (21) M (30)

Soccer and rugby

IPTL

6 weeks

6 days/week

2 sessions/day (30 reps)

50% MIP + PO

YYT +16%

Nicks et al. (19) M (20)

F (7)

Soccer

IPTL

5 weeks

5 days/week

2 sessions/day (30 reps)

50% MIP + PO

RSA +17%

Archiza et al. (25) F (18)

Soccer

IPTL

6 weeks

5 days/week

2 sessions/day (30 reps)

50% MIP + PO

RSA +4%–6%

Nunes Junior et al. (23) M (20)

Rugby

IPTL

12 weeks

3 sessions/week (30 reps)

80% MIP + PO

YYT +14%

Silva et al. (24) M (22)

Soccer

IPTL

2 weeks

6 days/week

1 session/day (15–30 reps)

50% MIP

RSA +4%–5%

Najafi et al. (20) M (30)

Soccer

IPTL

8 weeks

5 days/week

2 sessions/day (25–55 reps)

45–55% MIP + PO

YYT +8%–9%

Antonelli et al. (58) M (17)

Wheelchair basketball

IPTL

12 weeks

5 series of 10 reps, frequency unknown

50% MIP + PO

YYT +18%

IPTL, inspiratory pressure threshold loading; M/F, males/females; MIP, maximum inspiratory pressure; N, number of subjects; PO, progressive overload; RSA, repeated sprint ability; YYT, yo-

yo test.

TABLE 2 Overview of RMT devices and their characteristics, prices as of June 2025.

Training
equipment

Strength/
endurance oriented

Inspiratory Resistance
range (cmH2O)

Expiratory
resistance (cmH2O)

Price
(USD)

Mechanical/
electronic device

POWERbreathe® K4 Strength 5–200 Not available 725 E

POWERbreathe® Plus

Medium

Strength 23–186 Not available 89 M

AiroFit PRO 2.0 Strength 10–250 10–200 380 E

AiroFit Essential Strength 20–140 30–200 249 E

SpiroTiger® Idiag P100 Endurance Voluntary Voluntary 1,639 E

SpiroTiger® GO Endurance Voluntary Voluntary 999 E

Isocapnic BWB Endurance Voluntary Voluntary 149 M

E, electronic; IPTL, inspiratory pressure threshold loading; M, mechanical; TFRL, tapered flow resistive loading; VIH, voluntary isocapnic hyperpnoea.
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for these principles, they are generally consistent across

disciplines and also apply to RMT (40). Consequently,

progressive overload, periodization, training specificity, and

reversibility should be considered when designing RMT

programs. To implement progressive overload in RMT, the

workload must be gradually increased over time to stimulate

adaptation. This can be achieved by progressively adjusting

variables such as frequency, intensity, or duration of training

sessions. For IPTL and TFRL, it is recommended to increase

the resistance and maintain a similar number of training

sessions or repetitions. Most of the protocols are based on 30

inspiratory maneuvers per session, and if these 30 maneuvers

stop being a challenge, the resistance should be increased (29).

For VIH, the progressive overload should be achieved by

increased breathing frequency and total training time per week

(41). When considering periodization, it is warranted to focus

on efficient breathing patterns and proper RMT technique

before adding moderate or high training loads. Another

important aspect to consider is that RMT typically results in a

plateau concerning maximum dynamic inspiratory muscle

function after 6–9 weeks of training (40). Hence, to optimize

RMT periodization, the training method could be adjusted

every six to eight weeks. For example, this might involve

transitioning from VIH to IPTL or alternating phases

emphasizing lower repetitions with higher resistance and higher

repetitions with lower resistance (42). During a detraining

period, the respiratory muscle exhibits a decline in force-

generation ability similar to that observed in limb muscles with

similar practical implications (43). However, short periods

without RMT should not result in significant functional gains.

Notably, 8–12 weeks after RMT cessation, small yet significant

declines in inspiratory muscle function were observed (40).

Interestingly, reducing training frequency by 67% allowed for

the maintenance of respiratory function during the observed 18

weeks, and even after discontinuing RMT the athletes exhibited

improved pulmonary parameters compared with their pre-RMT

values (40, 44).

Although employing RMT during exercise caught the attention

of researchers and coaches, it is not a recommended combination

(45). Additional respiratory loading during aerobic exercise leads

to deterioration of performance due to an inadequate ventilatory

response, breathing discomfort, anxiety, and intensification of

effort (46). Rodrigues and McConnell (45) argued that additional

RMT during exercise had the same pitfalls as training at high

altitudes (45). Similarly, as the advantages of altitude training

could be optimized by adopting the ‘live-high-train-low’

paradigm where benefits of altitude exposure are achieved

without compromising training quality, separating RMT sessions

and specific exercises is recommended (47).

RMT is generally considered a low-risk, safe activity when

performed in accordance with the manufacturers’ guidelines.

Some athletes, particularly women, may experience minor acute

effects such as headaches or dizziness. The training load

associated with RMT is small yet noticeable, therefore should be

taken into account during training programming to limit the risk

of overtraining or overreaching (41).

Environmental and population factors

Although the presented guidelines are universal and may be

applied in multiple settings, environment- and population-

specific contexts should be considered. For example, exercising in

hypoxia might constitute an additional challenge for the

respiratory system and contribute to respiratory muscle fatigue

due to increased work of breathing (48, 49). The use of hypoxic

conditions in team sports is relatively limited, both in terms of

altitude training and in preparation for competition at altitude,

compared to the well-established practices in endurance sports

(50). However, several team-sports arenas are situated at high

altitude, including Mexico City’s Estadio Azteca (2,200 m above

sea level, ASL) and Estadio Akron in Guadalajara (1,672 m ASL),

both of which will host matches during the 2026 FIFA World

Cup. A recent review synthesizing findings from seven

independent studies (investigating altitudes from 1,400 to

5,500 m ASL) highlighted the advantages of RMT for

performance under hypoxic conditions (51). The outcomes

revealed that RMT helped reduce fatigue in the respiratory

muscle, enhanced the clearance and tolerance of anaerobic

byproducts, postponed the activation of the respiratory muscle

metaboreflex, and supported oxygen saturation and blood flow to

the muscles involved in the movement (51). These

multidimensional, positive influences are well-documented.

However, the reviewed studies generally focused on incremental

tests and performance-related physiological variables, rather than

intermittent performance. Consequently, further research could

explore how RMT affects RSA and YYT under various oxygen

availability conditions.

Available research suggests that the respiratory system may

impose greater limitations on athletic performance in women

than in men (52). Compared to men of similar anthropometric

indices, women generally have smaller lung volumes, reduced

diffusion surface area, lower maximal expiratory flow rates, and

narrower airways. As a result, they experience a higher work of

breathing, greater airway hyperresponsiveness, more pronounced

expiratory flow limitations, and an increased likelihood of

exercise-induced arterial hypoxemia (53, 54). Consequently, RMT

might be more beneficial in women in regular environments and

prior to or during altitude exposure (55).

Scientific reporting on RMT and intermittent exercise

performance in disabled team-sports athletes is scarce and not

conclusive regarding best practices. Contrary to body-abled well-

trained athletes, simple sport-specific training might have a

significant positive influence on respiratory function (56). Also, it

was suggested that combined inspiratory and expiratory training

might be the most effective modality in athletes with spinal cord

injuries (57). More specifically, studies on well-trained wheelchair

basketball players present mixed results depending on the applied

protocol. RMT of 12 weeks with progressive overload towards

70% of maximum inspiratory pressure increased YYT

performance and maximal inspiratory strength recovery (58),

whereas a shorter and lower-dose program (6 weeks and only

50% of maximum inspiratory pressure) did not result in

improvement of RSA (59). However, even in the latter study, the
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athletes reported “less breathlessness” and “less tightness in the

chest during the training”, and improved respiratory muscle

function was observed (59). The differences may also be

associated with the heterogeneity of the sample, which is a

natural limitation of studies in Paralympic athletes (60). Overall,

studies using cardiopulmonary exercise testing instead of

intermittent exercise performance assessment to evaluate

performance are prevalent in the disabled. Many report

improved respiratory muscle strength (57), but the reports on

exercise capacity are mixed (57, 61). The available evidence

suggests that although RMT may improve pulmonary function, it

should not be considered the primary method for improving the

exercise performance of athletes with disabilities.

State-of-the-art research provides guidance regarding

environments and populations discussed in this section.

However, studies concerning RMT’s influence on intermittent

exercise performance in hypoxia, between-gender differences, or

the disabled are scarce or non-existent. Consequently, any

relevant coaching decisions would be an educated guess rather

than following well-established, evidence-based protocol. Further

research might not only address the abovementioned populations

and environments, but also analyze less-investigated RMT

methods such as TFRL or VIH.

Conclusions and practical application

• Traditional sport-specific training or exercise programs lack

sufficient stimulus to improve the function of the respiratory

muscle, underscoring the rationale of integrating additional

RMT into training regimens.

• RMT has the potential to improve intermittent exercise

performance in team sports athletes, especially in women.

• Most of the interventions resulting in a significant, positive

influence on intermittent exercise performance employed

inspiratory pressure threshold loading, lasted 6–8 weeks, and

relied on a high frequency of training sessions, progressive

overload, and relatively high initial resistance (starting

intensity).

• The respiratory muscle shares structural and functional

similarities with other striated muscles, allowing standard

training principles such as progressive overload, periodization,

specificity, and reversibility to be applied when creating

RMT programs.

• A variety of RMT devices and protocols can be tailored to the

athlete’s training level, preference, and performance goals.

Common protocols may include performing 30 inspiratory

maneuvers twice a day, five days a week, with resistance-based

trainers or engaging in 20–40 min of vigorous ventilation with

isocapnic devices every other day.

• Less-investigated RMT methods, such as TFRL or VIH, should

be analyzed in the context of intermittent exercise performance.

Moreover, further research addressing RMT and hypoxia,

between-gender differences, and athletes with disabilities

seems warranted.
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