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Session-RPE for quantifying
workload in olympic
curling athletes

Junqi Wu and Chunlei Li*

Academy of Strength Training and Conditioning, Beijing Sport University, Beijing, China

Objective: To investigate the correlation between different workload methods

among Olympic curling athletes.

Materials and methods: Eight curlers were monitored after training during

Olympic seasons with three load quantification methods: external load

measurements, physiological/biochemical markers, and Omegawave state

indices. Intraclass Correlation Coefficient and Bland-Altman plots were used to

analyze the Session-RPE index [sRPE workload (RPE × session duration), acute:

chronic workload ratio (ACWR), etc.], external [number of draws (the number

of curling stones thrown during training/competition), training duration, etc.],

and internal [physiological and biochemical indices (testosterone, etc.), and

Omegawave sport performance evaluation system indices (comprehensive

readiness, etc.)] workloads.

Results: The sRPE index was significantly correlated with external loads and

Omegawave sport performance indicators at the 0.01 level (p < 0.01); it was

significantly correlated with cortisol and creatine kinase at the 0.05 level

(p < 0.05). In the standardized ICC and Bland-Altman plot concordance

analyses, the sRPE correlates showed moderate (0.4 < ICC < 0.6) to strong

(0.6 < ICC < 0.8) concordance with the corresponding external loading indices,

the Omegawave athletic status indices, and average (0.2 < ICC < 0.4) to

moderate agreement with the corresponding physiological and

biochemical indicators.

Conclusions: The sRPE is a valid curling training-load tool capturing sport-

specific demands but retains psychosocial limitations. Appropriate methods

should be selected based on actual conditions and needs when choosing how

to quantify and evaluate training load.
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Introduction

Curling, a strategically guided team sport, exhibits distinct characteristics including

prolonged duration, intermittent high-intensity efforts, and significant cognitive

demands (1, 2). These attributes necessitate specialized load monitoring approaches.

Given that tactical decisions substantially modulate in-game load magnitudes, discrete

quantification methods (e.g., single-stone presses or sweep frequency) prove inadequate

for curling load evaluation. Such metrics become temporally diluted over 2–3 h

matches, potentially yielding reductive assessments when used exclusively. Among

quantitative load-monitoring tools applied in team sports (e.g., football, basketball,

volleyball), sRPE offers superior cost-effectiveness, portability, universality, timeliness,

accuracy, and non-invasiveness. Crucially, sRPE uniquely accounts for athletes’
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psychological exertion during training and competition, but the

application of sRPE or comparable load monitoring tools

remains underdeveloped among curling athletes.

Borg pioneered the Rating of Perceived Exertion (RPE) in the

1960s–1970s to quantify physical exertion perception,

subsequently developing the 6–20, CR-10, and CR-100 scales (3).

Banister advanced this field by proposing the stimulus-fatigue

model and Training Impulse (TRIMP) metric, enabling heart

rate-based quantification of internal load across sports (4).

Building on this work, Foster optimized the CR-10 scale (now

the dominant RPE instrument in competitive sports) and

introduced the Session-RPE (sRPE) method (5). This technique

quantifies training/competition load by multiplying session

duration (min) by post-session RPE, expressed in arbitrary units

(a.u.) (5). As a practical metric of average intensity, sRPE enables

effective exercise load quantification (6).

sRPE demonstrates strong correlations with physiological

markers including heart rate (7), blood pressure (8), blood

lactate, cortisol (9), and lactate threshold (10). Researchers have

further utilized the RPE/blood lactate ratio for load analysis (11).

While sRPE shows limited utility for resistance training

evaluation (12), it correlates with Repetition in Reserve (RIR)

metrics (13). Resistance training modalities differentially affect

RPE scores, with high-intensity/low-repetition protocols yielding

higher values than low-intensity/high-repetition regimens (14).

sRPE associations extend to: 1. Total external workload

(frequency × load) (15); 2. Training duration (16); 3. Equivalent

training volume with varied loading patterns (17–20); 4. Work:

rest ratios (21).

Sport-specific correlations exist with program parameters [e.g.,

jump count (22), IMA metrics (acceleration, deceleration, direction

changes) (23)], though no relationships emerge with instantaneous

power, contraction time, or jump height (24). In mixed training,

sRPE exhibits stronger heart rate correlations than TRIMP, while

associating significantly with total and high-speed movement

distances (17, 25). Technical-tactical applications (26) and

positional demands (27) induce sRPE variability, potentially

reflecting differential functional exertion. For instance, dance

studies employ sRPE to quantify technical movement difficulty

(28). Modulating factors include: 1. Ambient temperature

extremes (29); 2. Psychological/environmental variables (e.g.,

affective states, social context, coach-athlete assessment

disparities) (30–32); 3. Exogenous substances (e.g., caffeine) (33).

sRPE evaluates athletes’: 1. Training awareness (34);

2. Movement perception proficiency (35); 3. RPE reliability

influenced by training experience (36). Coach-mediated CR-10

scale interpretations further impact RPE validity (37). Pedersen

additionally introduced perceived exertion for discomfort (RFD),

session displeasure/pleasure (SPDF), and exercise enjoyment

(EES) as load intensity metrics (20).

Athletes exhibit minimal injury risk when the Acute:Chronic

Workload Ratio (ACWR) ranges between 0.8 and 1.3, while

ACWR > 1.5 significantly elevates injury incidence (38). Critiques

of the rolling average method highlight its failure to account for

decaying training adaptations and fatigue effects over time,

suggesting acute loads warrant greater weighting. Consequently,

Exponentially Weighted Moving Averages (EWMA) were

implemented, demonstrating superior temporal load variation

sensitivity vs. ACWR. Practically, reduced daily training load

variability increases monotonicity, heightening overtraining risk

(39). While some researchers employ meanPRE for overreaching

assessment (40), others differentiate sRPE into breathlessness

(sRPE-B), cognitive/technical (sRPE-T), lower-limb (sRPE-L),

and upper-body (sRPE-U) components. Among these, sRPE-L

correlates most strongly with overall RPE, followed by sRPE-B,

sRPE-T, and sRPE-U (41). RPE serves both as an independent

metric for training-group intensity (42) and cross-group recovery

evaluation (43). Beyond Foster-Banister-Edward algorithms,

advanced methodologies include: 1. Time-series modeling

(EWMA, ARCH, GARCH) for load-injury analysis (38, 44, 45);

2. WER-modified TRIMP calculations addressing RPE’s interval/

intensity fluctuation limitations (46).

Operational focus centers on RPE reporting timing. Studies

validate sRPE reliability at 10 (47), 15 (48), 20 (49), and 30 (50)

min post-exercise, with Foster advocating 30-min assessments

during coach-athlete interactions (6). Fixed-time collection is

essential, as next-day recall introduces error (51). Consensus

supports 15–30 min reporting windows to mitigate recency bias-

preventing acute terminal high-intensity efforts from inflating

perceived exertion beyond the session’s mean load.

Scientific and systematic workload monitoring is critically

important in curling. The sport places exceptionally high

demands on athletes’ physical conditioning, technical skills, and

psychological resilience. Workload monitoring enables coaches to

precisely quantify the stimulus imposed on athletes, ensuring

training loads remain within the effective window for enhancing

athletic capacity. This prevents undertraining or overtraining,

optimizes training effects, and improves training efficiency.

Workload monitoring provides coaches with objective data to

analyze differences between athletes in various positions,

facilitating the personalization of training plans to maximize each

athlete’s potential. Furthermore, monitoring competition loads

helps characterize competition demands. Athletes can then

replicate these demands in training to enhance their adaptability

and stability during actual competition. This study aims to

investigate the correlation between different workload monitoring

methods among Olympic curling athletes. The hypothesis is that

variations in session-RPE (sRPE) are synchronized with

variations in other workload monitoring metrics.

Materials and methods

Subjects

The subjects were eight members of the Chinese National

Men’s Curling Training Team preparing for the Winter Olympic

Games, with an average age of 26.8 years (22–31 years), an

average height of 181.1 ± 10.7 years, an average body weight of

77.2 ± 5.5 years, and an average number of years of training of

8.6 ± 2.4 years (Table 1). All athletes completed an informed

consent form. The collection period was 211 consecutive days.
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The study implemented three load-monitoring modalities:

external load metrics, physiological/biochemical markers, and

Omegawave state indices. Omegawave and external load data

were collected daily, while physiological/biochemical parameters

were assessed at 15-day intervals, followed by time-synchronized

analyses. This 15-day period constitutes a mesocycle within the

preparation phase, comprising three 5-day microcycles. Each

microcycle featured four training days followed by a rest day, as

designed by Head Coach Lindholm Peja.

Subjective fatigue index

The study quantified training load using three methods:

external load measurements, physiological/biochemical markers,

and Omegawave state indices. Athletes provided RPE via the

Borg CR-10 scale 15–30 min post-training during field and

physical sessions. Injured athletes without training were assigned

0 A.U. We also calculated training monotony, training strain,

short-term (5-day) and long-term (20-day) loading, and the

short-term:long-term load ratio (using a sliding-window average).

Training duration (recorded to the nearest minute) was defined

as the period from the start to end of formal training. The

“start” denoted when athletes began coach-prescribed training

after standardized warm-ups on the field. The “end” occurred

when athletes completed prescribed tasks and exited the main

training area, excluding post-session stretching/relaxation.

Definition of the number of pots and
training time

This study categorizes draws (curling stone throws) as either

training draws or competition draws. Training draws encompass all

stones thrown during practice, including coach-prescribed throws

and athlete-initiated additional throws. Competition draws include

those made during intra-squad scrimmages, simulated matches

(where coaches directly set scenarios to mimic international

opponents), and official matches. Drawing on training and match

duration, we derived a secondary metric: curling density (draws per

unit time). Higher density (more throws in less time) indicates

reduced decision-making time and lower cognitive effort per throw,

while lower density (fewer throws over longer duration) reflects

greater time for tactical deliberation and higher cognitive effort.

Thus, draw density serves as a proxy for the ratio of cognitive to

physical effort. Specific draw types (e.g., guard, takeout) were not

statistically analyzed, as their occurrence is heavily influenced by

dynamic game tactics and strategy, limiting meaningful interpretation.

Omegawave athletic state evaluation
system

The Omegawave Athletic State Evaluation System, widely used in

training practice for assessing athletes’ immediate readiness (52), was

employed to evaluate subjects 15–30 min after their final daily

training session. This system qualitatively assessed central nervous

system (CNS) status and cardiac function through simultaneous

electroencephalogram (EEG) and electrocardiogram (ECG) analysis,

including cardiac bioelectrical current activation levels. Primary

evaluation indices comprised: Cardiopulmonary Regulation

Functional State (1–7 points) and CNS Readiness State (1–7 points).

Physiological and biochemical indicators

Physiological and biochemical markers were collected every

15 days under standardized protocols from the National Winter

Sports Center of China to evaluate athlete fatigue. Testing occurred

at 06:30 on the final rest day of each cycle, with athletes in a fasted

state. Four indicators assessed physiological response to training

load: blood urea, creatine kinase, testosterone, and cortisol.

Testosterone was measured using Chemiluminescent Microparticle

Immunoassay (CMIA) on an ARCHITECT i1000sr automated

immunoassay analyzer (ARCHITECT i1000sr, Abbott Laboratories

Co., Ltd, USA). Cortisol was determined by Enzyme-Linked

Immunosorbent Assay (ELISA). Creatine Kinase (CK) activity was

analyzed via the continuous monitoring (enzymatic kinetic) method

using an OLYMPUS AU2700 analyzer (OLYMPUS AU2700,

Olympus Corporation Co., Ltd, Japan). Hematocrit was assessed

using the impedance method on an HT-ESR24 dynamic hematocrit

analyzer (HT-ESR24, Zibo Hengtuo Analytical Instruments Co.,

Ltd, China). All analyses were performed by experienced

technicians according to standardized protocols.

Measurement procedures

During each training session, the number and type of stone

deliveries were recorded for each athlete. Within 15–30 min post-

training, session-RPE (sRPE) was collected. Athletes then

performed Omegawave state assessments in isolated, quiet

environments. On Day 15 of each cycle at 06:30 AM, fasting

athletes provided samples for Testosterone, Cortisol, Creatine

Kinase (CK), and Hematocrit assessment (Figure 1).

Statistical methods

Data were processed using SPSS (version 26; SPSS, IBM

Corporation, Armonk, New York, USA), WPS (version 2023;

TABLE 1 Basic information table of experimental subjects.

Information All (n = 8)

Age (year), mean (range) 26.8 (22–31)

Height (cm), mean (SD) 181.1 (4.9)

Weight (kg), mean (SD) 77.2 (5.5)

BMI (kg/m2), mean (SD) 23.5 (1.3)

Skeletal muscle (kg), mean (SD) 38.6 (3.0)

Body fat (%), mean (SD) 12.6 (1.6)

Training year (year), mean (SD) 8.6 (2.4)
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Kingsoft Office Software Co., Ltd., Beijing, China), and GraphPad

Prism (version 9.5.1; GraphPad Software, Inc., San Diego, USA).

Results are expressed as mean ± SD. All datasets met normality

assumptions. Pearson correlation analyzed relationships between

sRPE and: a. external load metrics, b. physiological/biochemical

markers, and c. Omegawave Athletic Status indices. Spearman

correlation was used for non-normally distributed data.

Normality was assessed via Shapiro–Wilk test with Q–Q plots

(n < 2,000) or Kolmogorov–Smirnov with Q–Q plots (n≥ 2,000).

Inter-metric consistency was evaluated using intraclass

correlation coefficients (ICC) with Bland-Altman plots on

standardized data (95% CI). ICC interpretation followed

established thresholds: <0.20: Very poor; 0.21–0.40: Weak;

0.41–0.60: Moderate; 0.61–0.80: Substantial; 0.80: Excellent.

Missing values were coded as 0. While this approach may

introduce bias, the large sample size mitigates its impact. The

computational formulas for sRPE, ACWR, Monotony, and

Training Pressure addressed in this study (53) were:

Workload ¼ RPE

� training duration (min), A:U: (Arbitrary Units)

ACWR ¼

Workload1week
WorkloadAverage 4weeks

Monotony ¼

Workloadlastweek
WeeklyWorkloadSD

Training Pressure ¼ Workloadweek �Monotony

Results

General description of the data

This is the descriptive statistics of all data in this study

(Table 2).

sRPE and external loads
Correlation analyses revealed significant associations (all

r < .01) between sRPE and curling duration, total duration,

training draws, and total draws (Table 3). The 5-day chronic

FIGURE 1

Measurement procedures.

TABLE 2 General description of the data.

Mean ± SD Position 1st &
2nd

Position 3rd &
4th

All

Acute load 7,063 ± 1,865.51 6,583 ± 1,664.31 6,804 ± 1,772.04

Chronic load 6,945 ± 1,073.55 6,513 ± 1,173.57 6,712 ± 1,146.44

ACWR 1.02 ± 0.23 1.01 ± 0.19 1.02 ± 0.21

Monotony 4 ± 1.48 5 ± 0.76 4 ± 1.20

Training

pressure

27,741 ± 10,258.38 30,817 ± 7,924.13 29,399 ± 9,182.41

Curling load 6,179 ± 1,827.91 5,701 ± 1,570.13 5,921 ± 1,706.62

Curling duration 848 ± 245.71 866 ± 239.29 858 ± 241.89

Total duration 986 ± 248.26 1,011 ± 253.18 999 ± 250.66

Training draws 156 ± 76.08 164.53 ± 78.59 161 ± 77.37

Competition

draws

78 ± 50.61 72 ± 49.67 75 ± 50.07

Total draws 234 ± 67.17 237 ± 68.07 236 ± 67.52

Curling Load: Training load accumulated by athletes during curling-specific training; Curling

Duration: Time duration expended by athletes in curling-specific training sessions.
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load (CL) correlated significantly (r < .01) with time-based metrics

(curling/total duration), volume metrics (training/total draws), and

draw density, but showed no association with competition draws.

The 5-day acute:chronic workload ratio (ACWR) demonstrated

significant correlations (r < .01) with all duration and draw

metrics. Training monotony correlated significantly with curling

duration, total duration, and training draws (r < .01), but not

competition or total draws, while training pressure showed

moderate consistency with time-based metrics and total draws,

and weak consistency with competition draws. Consistency

analyses (Table 3 and Figures 2–5) indicated substantial acute

load agreement with total draws (ICC = 0.6–0.8) and moderate

agreement with training draws (ICC = 0.4–0.6); chronic load

showed weak agreement with time-based metrics and total draws

(ICC = 0.2–0.4) and similar weak agreement with training draws;

ACWR demonstrated moderate agreement with time-based

metrics and total draws but weak agreement with training draws;

monotony exhibited weak agreement across all metrics; and

pressure showed moderate consistency with time-based metrics

and total draws but weak consistency with competition draws.

sRPE and physiological and biochemical indicators
Correlation analyses between physiological/biochemical markers

and sRPE (Table 4) revealed cortisol significantly correlated with

ACWR (r < 0.05), while blood urea showed significant correlation

with CL (r < 0.05); all other pairings were non-significant.

Consistency testing (Table 4 and Figures 5–8) demonstrated: short-

term load exhibited moderate agreement with blood urea

(ICC = 0.40–0.59) but weak agreement with cortisol; long-term

load showed moderate consistency with blood urea and weak

consistency with creatine kinase; ACWR displayed weak agreement

with testosterone and moderate agreement with cortisol.

sRPE and omegawave competitive status

evaluation system
Correlation analyses between Omegawave indicators and sRPE

(Table 5) demonstrated significant associations for daily training

load with all parameters at r < 0.01. Consistency assessments

(Table 5 and Figure 9) revealed daily load exhibited substantial

agreement with integrated physiological state and cardiac

function, while showing moderate agreement with resting heart

FIGURE 2

Bland-Altman plot of external loads and AL. From left to right: Bland-Altman plots of AL and training draws, competition draws, and total draws.

TABLE 3 Correlation analysis and consistency test table for external load and sRPE (N = 217).

Classification Acute load Chronic
load

ACWR Monotony Training
pressure

Curling load

Curling duration r 0.790** 0.508** 0.535** −0.304** 0.379** 0.862**

ICC 0.816 0.464 0.621 −0.248 0.446 0.847

95% CI 0.741 0.840 0.562 0.353 0.697 0.532 −0.119 −0.368 0.503 0.278 0.881 0.805

Total duration r 0.842** 0.524** 0.587** −0.259** 0.459** 0.840**

ICC 0.847 0.469 0.677 −0.217 0.462 0.824

95% CI 0.805 0.881 0.566 0.358 0.743 0.597 0.087 −0.340 0.561 0.351 0.863 0.776

Training draws r 0.473** 0.355** 0.252** −0.184** 0.235** 0.472**

ICC 0.476 0.372 0.281 −0.218 0.213 0.460

95% CI 0.366 0.572 0.482 0.252 0.399 0.154 −0.047 −0.304 0.337 0.083 0.559 0.348

Competition draws r 0.170* −0.047 0.210** 0.122 0.253** 0.209**

ICC 0.064 −0.105 0.175 0.224 0.220 0.097

95% CI 0.196 −0.069 0.028 −0.235 0.301 0.043 0.347 0.094 0.343 0.090 0.227 −0.036

Total draws r 0.544** 0.336** 0.343** −0.106 0.373** 0.567**

ICC 0.603 0.438 0.453 −0.038 0.408 0.600

95% CI 0.673 0.500 0.460 0.226 0.553 0.341 0.096 −0.170 0.513 0.291 0.679 0.507

In correlation analysis: **Significantly correlated at the 0.01 level (bilateral); *Significantly correlated at the 0.05 level (two-sided).In the ICC intragroup correlation coefficients, <0.2 is poor

correlation, 0.2–0.4 is fair correlation, 0.4–0.6 is moderate correlation, 0.6–0.8 is strong correlation, and 0.8–1.00 is very strong correlation.
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rate, central nervous system status, cardiac regulation, and

stress state.

Discussion

sRPE with external load

sRPE load metrics demonstrate strong correlation and

consistency with most external load indicators, as evidenced by

the high covariance with standardized training loads and total

draws in Figure 10, affirming their utility for tracking external

load variations. In curling, where physical exertion patterns

remain relatively consistent across techniques and intensity

primarily derives from ice sweeping and tactical cognition, the

extended recovery periods during prolonged training/competition

dilute acute physiological strain. Competition loads exhibit

particular complexity due to: 1. strategic demands creating

variable physical expenditure, 2. opponent strength disparities

(intra-squad to international matches) causing mental exertion

FIGURE 5

Bland-Altman plots of external load and training pressure. From left to right: Bland-Altman plots of training pressure and training draws, competition

draws, and total draws.

FIGURE 3

Bland-Altman plot of external loads and ACWRs. From left to right: Bland-Altman plots of ACWR and training draws, competition draws, and

total draws.

FIGURE 4

Bland-Altman plots of external load and monotonicity. From left to right: Bland-Altman plots of training monotony and training draws, competition

draws, and total draws.
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fluctuations—where superior opponents elevate sRPE through

psychological stress while inferior opponents depress it through

reduced engagement, and 3. the consistent phenomenon of lower

draw volumes but higher sRPE values in matches vs. training,

attributable to both heightened cognitive load and increased

sweeping intensity from competitive mentality. Consequently,

neither draw counts nor session duration—even in this cognition-

dominated sport—adequately capture athletes’ psychophysiological

exertion, evidenced by significant intensity differences between

equally timed training and competition. Furthermore, comparing

sRPE against external loads reveals load sensitivity: divergent sRPE

responses to statistically similar external loads may indicate high

sensitivity (suggesting fatigue onset) or low sensitivity (indicating

training adaptation), providing actionable biomarkers for athletic

status that warrant further validation.

sRPE and physiological and biochemical
indicators

Cortisol and blood urea exhibited weak correlations with sRPE-

quantified load, representing the only significant biochemical

relationships. Consistency analyses revealed moderate agreement

between both short- and long-term loads with blood urea, while

TABLE 4 Correlation analysis and consistency test table of physiological and biochemical indicators and sRPE (N = 27).

Classification Acute load Chronic load ACWR

Testosterone r −0.084 0.048 −0.240

ICC −0.086 −0.046 −0.241

95% CI 0.298 −0.445 0.413 −0.333 0.146 −0.564

Cortisol r −0.195 0.041 −0.400

ICC −0.236 0.041 −0.421

95% CI 0.192 −0.531 0.409 −0.338 −0.030 −0.673

Creatine Kinase r −0.180 −0.249 −0.002

ICC −0.180 −0.248 −0.002

95% CI 0.208 −0.519 0.139 −0.569 0.372 −0.376

Hematocrit r −0.362 −0.473 −0.073

ICC −0.422 −0.474 −0.072

95% CI 0.013 −0.648 −0.122 −0.720 0.310 −0.435

In the ICC intragroup correlation coefficients, <0.2 is poor correlation, 0.2–0.4 is fair correlation, 0.4–0.6 is moderate correlation, 0.6–0.8 is strong correlation, and 0.8–1.00 is very strong

correlation.

FIGURE 6

Bland-Altman plots of physiologic and biochemical indices and AL. From left to right: Bland-Altman plots of short-term loading and testosterone,

cortisol, creatine kinase, and hematocrit.

FIGURE 7

Bland-Altman plots of physiologic and biochemical indices and CL. From left to right: Bland-Altman plots of long-term loading and and testosterone,

cortisol, creatine kinase, and hematocrit.
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ACWR showed moderate consistency with cortisol. Critically,

cortisol demonstrated a negative correlation with ACWR,

indicating that increased training volatility reduces cortisol

concentration within physiological ranges. This suggests optimal

load fluctuation mitigates chronic fatigue accumulation.

Conversely, elevated long-term load correlated with increased

blood urea, signifying physiological fatigue from excessive

loading. These patterns collectively establish sRPE as a viable

proxy for biochemical markers in load monitoring.

sRPE and the omegawave athletic status
evaluation system

The Omegawave Athletic State evaluation and sRPE both assess

athlete load states yet differ fundamentally (Figure 11). Omegawave

precisely measures current physiological status but cannot isolate

daily training load impact, as residual fatigue from prior sessions

may elevate readings even during rest days. This temporal

insensitivity limits its accuracy for single-session evaluation.

While Omegawave testing surpasses biochemical markers in

convenience, it remains more time-intensive than sRPE

collection. Coaches requiring rapid daily load assessment should

prioritize sRPE, whereas Omegawave better characterizes

underlying physiological mechanisms. Crucially, sRPE reflects the

organism’s response to applied external load and effectively

quantifies training impact when athletes reliably report subjective

fatigue, though its subjectivity raises reliability concerns. External

load metrics offer objective quantification with similar

operational efficiency but fail to capture internal physiological

strain or psychological exertion. Physiological biomarkers provide

superior quantification precision yet require invasive procedures,

strict collection protocols, and retrospective analysis—offering

high-validity moment-state evaluation without predictive

capacity. Omegawave’s distinctive advantage lies in identifying

directional load effects to guide training adaptations, though

equipment dependency constrains practical implementation.

Comparative analysis of bases

In curling, front-end positions (S: first/second basemen)

primarily execute ice sweeping while back-end positions (V:

third/fourth basemen) direct tactical decision-making. Analysis of

pre-competition cycle loads (Figure 12) revealed minimal

differentiation between positions across external (draw counts)

and internal (sRPE-derived) load metrics. Notably, significant

training monotony divergence emerged, attributable to distinct

load sources: S positions experienced predominantly

physiological stress from sweeping, whereas V positions incurred

cognitive demands influenced by shot difficulty and opponent

tactics, thereby generating position-specific monotonicity profiles.

Comparative analysis between four load
quantification tools

sRPE provides superior assessment of the organism’s response

to external load when athletes accurately self-report, offering

TABLE 5 Table of correlation analysis and consistency test between
Omegawave athletic Status evaluation indicators and sRPE (N = 275).

Classification Daily load

Comprehensive preparation r −0.576**

ICC −0.679

95% CI −0.600 −0.745

Resting heart rate r −0.347**

ICC 0.413

95% CI 0.500 0.274

Central nervous system r −0.443

ICC −0.517

95% CI −0.412 −0.608

Cardiac function system r −0.472

ICC −0.608

95% CI −0.517 −0.686

Cardiac regulatory system r −0.429

ICC −0.565

95% CI −0.467 −0.650

Pressure r −0.480

ICC −0.518

95% CI −0.413 −0.610

In correlation analysis: **Significantly correlated at the 0.01 level (bilateral). In the ICC

intragroup correlation coefficients, <0.2 is poor correlation, 0.2–0.4 is fair correlation, 0.4–

0.6 is moderate correlation, 0.6–0.8 is strong correlation, and 0.8–1.00 is very strong

correlation.

FIGURE 8

Bland-Altman plots of physiologic and biochemical indices and ACWR. From left to right: Bland-Altman plots of ACWR and testosterone, cortisol,

creatine kinase, and hematocrit.
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reasonable evaluation of training impact despite reliability concerns

stemming from its inherent subjectivity. External load metrics

deliver objective quantification with comparable operational

efficiency but fail to capture internal physiological strain or

psychological exertion. Physiological biomarkers afford greater

quantification precision yet incur substantial time costs, require

stringent collection protocols that limit utility to retrospective

analysis, involve invasive procedures, and lack predictive capacity

despite high validity for momentary state assessment. The

Omegawave system’s principal advantage lies in identifying

directional load effects to inform training adaptations, though

practical implementation faces portability constraints.

Reflections on the degree of load
quantification

Different training load quantification methods exhibit distinct

characteristics, ranging from exceptionally precise quantitative

tools (accurate to 2–3 decimal places) to qualitatively analytical

FIGURE 10

Specialized training load-total number of pitches curve. This graph is the result after the data has been standardized.

FIGURE 9

Bland-Altman plots of Omegawave athletic status evaluation indicators vs. daily training loads. From top to bottom and from left to right: Bland-

Altman plots of daily training load vs. integrated readiness, resting heart rate, central nervous system functional status, cardiac functional status,

cardiac regulatory system, and stress.
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approaches. When selecting appropriate quantification methods,

coaches and researchers must consider not only sport-specific

requirements, athlete proficiency levels, and training phase

demands, but also required precision thresholds. In practical

training contexts, single-decimal accuracy typically suffices for

fatigue assessment relevance, making precision needs a critical

selection criterion. Given varying theoretical and applied values

across quantification tools, deliberate evaluation of

methodological alignment with both research objectives and

practical utility remains essential.

Practical applications

sRPE constitutes a reliable indicator for evaluating training

load in curling programs. The sRPE-workload assessment process

FIGURE 12

Comparative load analysis graph. This graph is the result of normalizing the data, where AC is acute chronic load ratio, AL is acute load, CL is chronic

load, SL is specialized training load, Mo is monotonicity, TP is training pressure, TD is number of training draws, CD is competition draws, tD is total

draws, ST is hours of curling, and sT is hours of all training. S is the ice sweeper (Position 1st and 2nd), V is the skip (Position 3rd and 4th).

FIGURE 11

Daily load-integrated readiness curve. This figure shows the results after normalization of the data.
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demonstrates operational convenience, facilitates phased evaluation

of training loads, and serves as an effective tool for coaches and

multidisciplinary support teams to implement load management

strategies. The sRPE evaluation methodology exhibits inherent

limitations, including the absence of categorical differentiation of

load magnitudes, susceptibility to subjective influences, and

potential cumulative overestimation of training loads when

applied across extended temporal frameworks. Prudent selection

of heterogeneous load assessment methodologies should be

predicated on the practical demands of training programs.

Conclusion

The session-Rating of Perceived Exertion (sRPE) demonstrates

reliable curling training load monitoring through operational

simplicity and phased assessment capabilities, proving valuable for

coaching load management. However, methodological limitations

persist, including unclassified load weighting, subjective bias

susceptibility, and potential load-stacking artifacts during extended

monitoring. While algorithmic refinements have been proposed,

they typically undermine sRPE’s inherent practicality. Our findings

consequently advocate context-specific selection of load

quantification tools aligned with distinct training objectives.

Limitation

This study was conducted outside strictly controlled laboratory

conditions within an actual Olympic preparation context. While

inherent constraints in experimental design, including limited

physiological biomarker sampling, may introduce bias, the

research retains significant practical validity. Furthermore,

potential time-lag effects in physiological and biochemical

indicators may particularly complicate longitudinal analyses.
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