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Introduction: Athletic performance in competitive ski jumping is evaluated

based on the aggregate scores of the jump distance and flying style. However,

an understanding of how angular momentum influences performance,

particularly during the approach to takeoff phases, is lacking. Therefore, this

study aimed to quantify the angular momentum during the takeoff motion on

a medium hill and to examine the appropriate angular momentum.

Methods: The study participants included 21 jumpers (16 males and five females;

height: 1.65 ± 0.09 m; total weight: 54.6 ± 8.9 kg; age: 19.2 ± 6.8 years)

performing on a medium hill. The angular momentum of the center of gravity

of the jumper + ski system (AMCG) at takeoff was filmed at 200 Hz using a

high-speed camera and analyzed in the sagittal plane.

Results: As a result of confirming the relationship between AMCG at takeoff and

jump distance, a significant quadratic approximation curve was obtained,

indicating that the value at the apex of the X-axis was 0.0391 s−1 (p < 0.05).

Discussion: This study shows that the appropriate AMCG value at takeoff was

approximately 0.0391 s−1. The study findings are expected to contribute to

coaching with objective indicators.
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1 Introduction

The performance of athletes in competitive ski jumping is evaluated based on the jump

distance and flying style, with the aggregate of these points determining their overall score.

The significance of jump distance in this scoring system elevates it as a primary

determinant of competitive success.

Ski jumping involves a sequence of movements segmented into four phases: the

approach, takeoff, flight, and landing. The jump distance is influenced by the initial

flight phase conditions and the forces acting on the jumper and the center of gravity

(CG) of the ski system during flight. Despite the constrained lift generation of the flight

phase, it predominantly comprises falling motion under gravitational influence. As

such, the takeoff phase is critical because it sets the initial conditions for the flight

phase (1, 2).

Two primary mechanical objectives exist during the takeoff aimed at increasing jump

distance, as outlined by Schwameder (1). The first objective is to “attain vertical velocity at

the jumper’s CG during takeoff.” The second objective is to “generate appropriate forward

angular momentum around the jumper’s CG.”

Numerous studies have focused on the first objective, and in the actual jump scenario,

a positive correlation has been observed between the impulse of the ground reaction force
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during the takeoff motion and the vertical velocity of the CG of the

jumper, as captured by video cameras or the resulting jump

distance achieved, respectively (3–6). These findings confirm the

importance of the first objective.

Conversely, only a few studies have focused on the second

objective. Ettema et al. (7, 8) calculated the angular momentum

in simulated jumps that mimicked actual takeoff motion. These

simulations included athlete jumps with friction at the foot sole

and jumps on a board with rollers, performed on a −2° slope at

speeds of approximately 1.6 m/s, where foot sole friction is

negligible. However, recognizing that the conditions for

simulated jumps differ from those of actual jumps is crucial. In

the actual hill jump, the ground reaction force vector only acts

vertically to the takeoff table at a speed of approximately 20 m/s.

The difference in velocity influences angular momentum, limiting

the quantification of angular momentum in simulated jumps.

Schwameder (1) analyzed the angular momentum in actual ski

jumping takeoff. Building upon the study by Schwameder and

Muller (9), Schwameder (1) calculated the angular momentum

around the CG of the jumper during the takeoff motion of a

highly skilled athlete. This calculation involved utilizing plantar

pressure data obtained from an insole-type pressure meter in

conjunction with coordinate data sourced from video camera

footage. Schwameder (1) presented the changes as a time series;

however, the study did not delve into the magnitude or examine

its relationship with jump distance in detail. This gap highlights

a lack of comprehensive understanding of how angular

momentum influences performance, particularly from the

approach to takeoff phases. Previous studies extensively cover the

takeoff phase (1, 7, 8), yet there remains a dearth of detailed

examination of the angular momentum of the jumper

throughout the entire approach and takeoff sequence. Yamanobe

(10) further emphasized the need to provide (in advance)

angular momentum around the CG of the jumper during the

takeoff motion. However, the required angular momentum

during takeoff to obtain an appropriate forward tilt posture is

unknown. Therefore, quantifying the angular momentum

is crucial.

Obtaining the change in angular momentum of the takeoff

motion of jumpers with a wide range of skills on the medium

hill and examining the appropriate angular momentum can serve

as fundamental reference data.

Therefore, this study investigates the approach and takeoff

phases using a medium hill scenario. We aim to examine and

quantify the appropriate angular momentum during the takeoff

motion on the medium hill. The approach phase, spanning

55.2 m from the start gate to takeoff, involves descending a −35°

slope, transitioning through a 59 m radius curve, and concluding

with a 5.5 m straight takeoff section at a −9.5° angle (takeoff

table). During this time, the coefficient of friction between the

skis of jumpers and the snow surface is minimal, resulting in a

limited frictional force (1). This implies that the takeoff motion

must be made in the straight section at −9.5°, where the friction

force is approximately zero. This can be described as a situation

in which the ground reaction force vector only acts vertically to

the takeoff table.

2 Methods

The participants and trials leveraged in this study are identical

to those by Funato and Sakurai (6). A brief description is provided

below. Funato and Sakurai (6) focused on the first mechanical

objectives of the takeoff phase, whereas this study focused on the

second mechanical objective. Therefore, the two studies are

clearly different.

2.1 Participants

Twenty-one ski jumpers participated in this study, comprising

16 males and 5 females. Their physical characteristics were as

follows: an average height of 1.65 ± 0.09 m, an average body mass

of 54.6 ± 8.9 kg, and an average age of 19.2 ± 6.8 years. Notably,

the participants encompassed a wide range of jumping

proficiency levels, ranging from elite jumpers with Olympic

experience to elementary school students.

Ethical approval for this study was obtained from the Ethics

Committee of Chukyo University, and informed consent was

acquired from all participants. In cases where a participant was a

minor, consent was obtained from their parents or legal guardians.

2.2 Data collection and smoothing

Ski jumping hills are classified into five levels, following the

regulations of the International Ski Federation (FIS): small,

medium, normal, large, and flying hills (11). Medium hills are

particularly versatile, accommodating jumpers with varying levels

of technique.

The study was conducted on a medium summer hill with a hill

size of 68.0 m. Throughout the experimental trials, all participants

initiated their jumps from a standardized gate position, and their

ski-run surfaces were treated with paraffin wax. Although wind

measurements were unavailable, the conditions were

characterized by minimal wind interference, ranging from nearly

windless to light winds, maintaining relatively consistent

conditions. On the day of the experiment, the average wind

speed in the area was 2.2 m/s, as reported by the Japan

Meteorological Agency. The average value of the component in

the movement direction of the jumper was a headwind of 0.6 m/s.

Two synchronized high-speed digital video cameras (Phantom

Miro 4c, Vision Research Inc.) operating at 200 Hz with a shutter

speed of 1/1,000 were employed to capture the takeoff motions of

the jumpers. These cameras utilize 3D direct linear transformation

filming and calibration techniques.

The jump distance was measured using a digital video camera

(HDR-CX700, SONY) positioned alongside the landing area,

adhering to the regulations outlined by the FIS, i.e., “The landing

is considered complete when both feet are in full contact with

the landing slope. For abnormal landings (one-foot landing, e.g.,

one foot on the snow and the other remaining in the air

noticeably longer than it would take for a normal landing), the
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jump distance measured will be the point where the first foot is in

full contact with the landing slope.”

Participants were instructed to perform the jump task one to

three times, and for those who executed multiple jumps, the

attempt yielding the greatest jump distance was chosen for

subsequent analysis.

A stationary coordinate system was established for the analysis,

with the x-axis horizontal to the direction of progression of the

jumper, the y-axis oriented vertically upward, and the z-axis

representing the left–right directions. The average standard errors

in the real coordinates were 0.007 m, 0.010 m, and 0.011 m in

the X, Y, and Z directions, respectively. These errors correspond

to 0.11%, 0.50%, and 1.38% within a calibration range of 6.1 m,

2.0 m, and 0.8 m, respectively.

From the video data, 11 key points located on the left side of

the body were manually digitized using motion analysis software

(Frame-DIAS V, DKH) and smoothed using a Butterworth low

pass filter, with a cutoff frequency of 8 Hz. These points included

the vertex, tragus, shoulder, elbow, wrist, top of the finger, hip

joint, knee joint, ankle, heel, and toe.

The ski specifications of each jumper were determined based

on the data derived from one participant. First, the ski mass was

identified as 6.405 kg. Subsequently, using the center of mass

board method, the center of mass of the ski was pinpointed at

57.3643% from the tip. Next, the height and weight of the

jumper was to determine the length of the ski (e.g., for a BMI of

21 or higher, a ski length equal to 145% of the height of the

jumper was applied). Consequently, the ski length of each

participant was ascertained using these data. Furthermore, the ski

mass for each participant was estimated referencing the ski mass

obtained from one participant. According to the FIS rule, the

toes are fixed at 57% from the tip of the skis. Therefore, the CG

of the skis was determined to be parallel to the takeoff table

based on the toes. The ski segment of each participant was

constructed based on the calculated center of mass.

The motion of ski jumping is generally considered to be

symmetrical. Computer simulation models are also modeled

symmetrically [e.g., (12)]. Therefore, a nine-segment model was

then constructed for the jumper + ski and subsequently analyzed

in the sagittal plane (Figure 1).

2.3 Calculated items

2.3.1 Angular momentum

The angular momentum of each body part (Hi) was calculated

using the equation defined by Dapena (13) and Hay et al. (14)

Hi ¼ ri=G �miV i þ Iivi

where ri=G represents the position vector of the CG of body part i

(CGi) relative to the CG of the jumper + ski system, mi denotes the

mass of i, Vi denotes the velocity vector of the CGi relative to the

CG of the jumper + ski system, Ii denotes the moment of inertia of

body part i about its partial CG, and vi is the angular velocity

FIGURE 1

An example of changes in angular momentum.
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vector of body part i. Notably, the inertial properties of the body

parts were estimated using the inertial parameters of the body

segments proposed by Ae (15) and Yokoi et al. (16). The

equation is divided into two parts: the first term on the right

side accounts for the angular momentum of the CG of body part

i relative to the overall CG of the jumper + ski system, often

referred to as the “transfer term.” The second term deals with

the angular momentum of body part i around its own CG,

commonly referred to as the “local term.”

The takeoff table is a flat surface, as the jump stands are made

according to the profile specified in the rules. The skis thus have no

angular velocity on the takeoff table. Therefore, only the transfer

term is calculated for the angular momentum of the skis, and the

local term is assumed to be zero. The same conditions apply to

snow since the grooves are created by ice.

To determine the angular momentum of the CG of the

jumper + ski system (AMCG), the angular momenta of all body

parts were summed together using the following equation:

AMCG ¼

X9

i¼1

Hi

The body was segmented into the head-trunk (AMHead–trunk,

encompassing head and trunk), arms (AMArms, including the

upper arm, forearm, and hand), and legs–ski (AMLegs–ski,

comprising thigh, lower leg, foot, and ski), to further understand

which body parts contribute to generating angular momentum

following Hinrichs (17). Subsequently, the angular momentum

for each section was calculated.

Standardization of the calculated angular momentum was

achieved by dividing it by the product of the square of the height

and total weight (body and ski masses) of each jumper, a

method also outlined by Hinrichs (17). The unit for this

standardized angular momentum is expressed as s−1. In this

study, a forward rotation is assigned a positive value, while a

backward rotation is considered negative.

2.4 Statistics

The relationship between AMCG at takeoff and jump distance

was confirmed using curve regression analysis. The significance

level for statistical analysis was set to 5%.

3 Results

Figure 2 shows the time series of AMCG and the angular

momentum of each body part. The AMCG was approximately

−0.01 s−1 in the first half of the takeoff motion; however, its

value became positive in the middle of the takeoff motion. The

value at takeoff was 0.018 ± 0.035 s−1 (Figure 2A). The AMHead–

trunk value was approximately −0.01 s−1 from beginning to end

(Figure 2B). AMArms exhibited a value of approximately zero

throughout (Figure 2C). Meanwhile, AMLegs–ski had a value of

approximately 0 s−¹ in the first half of the takeoff motion, shifted

to a positive value in the latter half, and exhibited a positive

value at takeoff (Figure 2D).

Figure 3 shows the relationship between AMCG at takeoff and

the jump distance. The results of the curve regression analysis

revealed a significant quadratic function approximation curve,

indicating that the value of the apex of the X-axis was 0.0391 s−1

(p < 0.05). The R2 value was 0.346.

4 Discussion

To the best of our knowledge, this is the first study investigating

the angular momentum during ski jumping, which, despite being

considered important during the takeoff motion, had previously

remained unknown. Main findings of this study are two-fold;

First, an increase in AMCG does not necessarily lead to an

increase in the jump distance. Second, the appropriate value of

AMCG at takeoff was found to be approximately 0.0391 s−¹. The

details are discussed below.

4.1 Relationship between angular
momentum of the center of gravity of the
jumper + ski system and jump distance

As shown in Figure 2A, the AMCG exhibited a slightly negative

angular momentum in the first half of the takeoff motion, similar

to Schwameder (1). During actual jumps, air resistance imparts a

backward moment. Wind tunnel experiments on takeoff motions

conducted by Virmavirta et al. (18) indicated a notable increase

in the angle between the trunk and the ground due to air

resistance. This suggests that the aerodynamic force must have

recorded backward AMCG during the first half of the

takeoff motion.

In the middle phase of the takeoff motion, the AMCG changed

to a positive value. Consequently, the jumpers obtained a forward

AMCG at takeoff. However, as shown in Figure 3, the relationship

between AMCG and the jump distance at takeoff was not linear,

indicating that an increase in AMCG does not necessarily lead to

an increase in jump distance. This finding was also consistent

with that by Schwameder (1), who describe the objective

“generate appropriate forward angular momentum around the

jumper’s CG.”

As shown in Figure 3, the X value of the apex of the

approximation curve was 0.0391 s−¹. This result indicates that the

appropriate AMCG value at takeoff is approximately 0.0391 s−¹.

In addition, in Figure 3, a large variation from the approximate

curve was observed, and the coefficient of determination was not

high. This may be because not only the angular momentum, but

also the initial velocity, and the angle of the velocity vector at

takeoff affect the determination of the jump distance. A sample

size of 21 jumpers was used in this study. Therefore, a post hoc

test was performed. The results showed that the power (1-β)

was 0.88.
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The AMCG at takeoff and the jump distance were related by a

quadratic function curve for two possible reasons. First, excessive

forward AMCG may cause a fall. Second, the generation of AMCG

may affect the vertical velocity of the jumper’s CG. The AMCG

generated by the jumper is determined by the length between the

ground reaction force vector (GRFV) and the jumper’s CG. The

GRFV can be divided into the vector acting on the jumper’s CG

and the vector generating the AMCG. Furthermore, the vector

FIGURE 2

The average values of AMCG (A), AMHead–trunk (B), AMArms (C), and AMLegs–ski (D) over time. The black line represents the average value, and the gray line

represents the standard deviation.
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acting on the jumper’s CG can be divided into components acting

in the vertical and horizontal directions. Assuming a fixed GRFV,

the longer the length between the GRFV and the jumper’s CG

(moment arm), the larger the AMCG. However, the vertical

component of the vector acting on the jumper’s CG becomes

smaller. Consequently, it can be considered that, although the

center of pressure of the GRFV is unknown in this study, when

AMCG becomes too large, the vertical velocity of the jumper’s

CG cannot be sufficiently obtained, resulting in a shorter

jump distance.

One purpose for obtaining an appropriate AMCG is to

smoothly transition to the flight position. In fact, Virmavirta

et al. (19) reported that the angle between the body and the

horizontal axis should be small for 0.5 s immediately after

takeoff. In addition, Virmavirta et al. (19) showed in their study

on large hills that a significant negative correlation exists between

the vertical velocity of the jumper’s CG immediately after takeoff

and the flight distance. These studies suggest that obtaining an

appropriate AMCG is crucial, even at the expense of components

that contribute to the vertical velocity of the jumper’s CG in the

GRFV, particularly in large hills.

4.2 Practical implications

Funato and Sakurai (6) indicated the importance of

maintaining a low shank angle and a high angular velocity of the

knee joint extension during the takeoff motion. This motion thus

contributes to the positive angular momentum of the local term

of the thigh and the positive angular momentum of the transfer

term of the AMHead–trunk. In addition, Funato and Sakurai (6)

demonstrated the importance of reducing the trunk angle,

indicating that this motion contributes to controlling the negative

angular momentum of the local term of the AMHead–trunk. These

specific movements not only contribute to increasing the vertical

velocity of the jumper’s CG while minimizing the frontal

projected area exposed to drag forces but also aid in acquiring

forward AMCG.

Ski jumping instruction is generally based on the subjectivity of

the coach. For example, beginners mainly begin their training on

small or medium hills, and as they progress, they increase the

size of their hill jumps. The timing of this switch is basically

left to the subjectivity of the coach. In particular, in this

study, some jumpers recorded negative AMCG values at takeoff.

Given that the larger the hill size, the more important it is to

have an appropriate forward AMCG, it can be considered that at

least a positive AMCG value is an indicator for considering a

change in the hill size. In particular, for junior jumpers, it is

essential to consider that obtaining AMCG may depend on

muscle strength.

This study successfully quantified angular momentum values,

combining the forward angular momentum produced by the

jumper around the CG of the jumper + ski system and the

backward angular momentum due to air resistance. Notably,

these calculations did not account for air resistance during

simulated jumps.

FIGURE 3

Relationship between jump distance and the AMCG at takeoff. The orange dots represent the data points. The black dashed line represents the fitted

curve. The green line represents the upper bound of the 95% confidence interval, and the blue line represents the lower bound.
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4.3 Limitations

The limitation of this study is that direct air resistance could

not be measured.

We analyzed the best jumps for jumpers who performed two or

more jumps to eliminate jumps in which jumpers who were clearly

aware of their mistakes in the takeoff phase broke their flight

position voluntarily during the flight phase and did not

maximize their jump distance. Among the jumpers who did not

make such jumps, the difference in jump distance between the

two jumpers with the largest differences was 3 m (participant 1:

62–59 m, participant 2: 20–17 m). Consequently, it can be

considered that the jumps used in this study were not outliers

and were appropriate. Furthermore, since the confidence interval

for the relationship between the AMCG at takeoff and the jump

distance is not wide, the accuracy of the estimation is considered

to be acceptable (Figure 3).

In this study, the local term for skiing was calculated to zero.

The angle and angular velocity of the skis were examined

(Figure 4) to validate this result. Consequently, the angular

velocity of the skis was approximately zero. Note that before

approximately −0.27 s, the curve before the takeoff table

caused some angular changes. In addition, the slight angular

velocity recorded just before takeoff was because the ski tip

was slightly bent. Therefore, we determined that calculating

the local term of the ski as zero in future AMCG calculations

poses no issues.

5 Conclusion

We aimed to quantify the angular momentum during the

takeoff motion on a medium hill and to examine the

appropriate angular momentum. The study participants

included 21 jumpers performing on a medium hill. The AMCG

at takeoff was filmed at 200 Hz using a high-speed camera and

analyzed in the sagittal plane. The results showed that an

increase in AMCG does not necessarily lead to an increase in

jump distance. In addition, the appropriate value of AMCG at

takeoff was found to be approximately 0.0391 s−¹. The findings

of this study are expected to contribute to coaching with

objective indicators.

FIGURE 4

Average values of the ski angle and angular velocity over time. The black line represents the average value, and the gray line represents the

standard deviation.
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