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Introduction: Gait stability assessment in older adults is challenged by limited

data availability and measurement complexity, particularly among vulnerable

populations and in limited resource settings. We address three research

questions: (1) can synthetic data accurately replicate the statistical properties

of gait parameters in older adults? (2) how effectively do synthetic data-

trained models predict the Margin of Stability (MoS) when tested on real-world

data? and (3) what specific biomechanical features contribute most

significantly to the MoS predictions in older adults? To address these

challenges, the present study proposes a novel approach to gait stability

prediction by integrating computer vision with a data-centric synthetic data

generation (SDG) approach using accessible, low-cost technology.

Methods: Using a public dataset from 14 healthy older adults (86.7 ± 6.2 years),

we implemented a constraint-based SDG methodology that preserved

biomechanical relationships through SDG metadata configuration and rank

correlation-based constraints. Gait analysis was performed through a

smartphone (Motorola Moto G5 Play) and the open-source MediaPipe

algorithm to extract body landmarks from frontal plane gait videos, making the

approach suitable for resource-limited settings.

Results: Our approach achieved exceptional fidelity (97.09% overall) and

maintained biomechanical variable relationships. The model trained exclusively

on synthetic data (TSTR) outperformed the model trained on real data (TRTR),

with error reductions (RMSE decreased by 56.3%, MAE by 58.2%, and MSE by

80.9%) and improved variance explanation (R2 increase of 31.2%). SHAP

analysis revealed that the synthetic data approach enhanced feature attribution

alignment with established principles, particularly for step width, BMI, and

fall history.

Discussion: Therefore, our results show that: (1) synthetic data accurately

replicated gait parameters with high fidelity; (2) synthetic data-trained models

outperformed real data-trained models in MoS prediction; and (3) step width,

BMI, and fall history were the most significant predictors of MoS in older

adults. These findings demonstrate the potential of synthetic biomechanical

time series to overcome data scarcity, improve predictive modeling

capabilities, and enhance clinical gait assessment through accessible, low-cost

computer vision methods.
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1 Introduction

Human walking is a method of locomotion involving the use of

the two legs alternately to provide support and propulsion by at

least one foot throughout the gait cycle (1). Consequently, gait is

an individual trait in healthy subjects that can be used for

personal identification (2). However, it changes with age (3, 4)

and can be transformed by emotions (5), exercise-related or

cognitive fatigue (6), or environmental factors (7). Assessing gait

stability is particularly important in older adults, where

impairments in walking can affect both independence and

quality of life. Gait stability, pragmatically defined as the ability

to walk without falling despite perturbations (8), is essential for

maintaining active living. Therefore, various methods have been

developed to assess gait stability, given that neuromuscular

conditions and physical impairments can compromise balance

control and lead to increased fall risk (9).

The consequences of mobility loss are severe for older adults.

By age 70, approximately one-third report mobility restrictions,

increasing to the majority by age 80. These limitations are linked

to age-related declines in muscle strength, oxygen consumption,

and sensory function, which collectively impair balance control

and increase the risk of instability and falls (10–12). Early

identification of gait abnormalities and effective quantification of

stability in many clinical populations has gained significant

interest as increased knowledge of balance deficits or

compensatory strategies may aid rehabilitation and inform

therapeutic interventions to improve quality of life and

functional capacity (11).

As described in (13), gait stability assessment relies on

biomechanical principles investigated at the center of mass

(CoM), the weighted average of a body’s mass. During walking,

stability depends on two factors: (1) the position of the CoM

relative to the base of support (BoS), which determines whether

the body is within stable limits, and (2) CoM velocity, which

creates momentum that must be controlled through corrective

forces to maintain balance. The extrapolated center of mass

(XCoM) extends the CoM concept by incorporating its velocity

scaled by a person-specific constant, enabling stability predictions

during motion. This stability analysis can be quantified using the

margin of stability (MoS), defined as the signed distance between

the XCoM and the BoS (13). This MoS serves as the prediction

target for our machine-learning models.

However, gait-related assessment in older adults can face

relevant challenges, including limited data availability,

measurement complexity, and resource constraints due to a

diverse set of problems, such as mobility constraints, cognitive

impairments, variability in functional capacity, inconsistent

adherence to assessment protocols, and the heterogeneity of age-

related gait patterns (10–12). The integration of synthetic data

generation (SDG) techniques has emerged as a promising

approach to improve the accuracy and robustness of gait pattern

modeling (14, 15). Researchers can address data scarcity, privacy

concerns, and data quality challenges by generating synthetic

data that replicates real-world statistical properties, enabling the

training of more accurate machine learning models (16–19).

Traditional synthetic data approaches emphasize fidelity,

ensuring that synthetic data statistically resembles real-world data

through distribution matching. Nevertheless, this singular focus

might be insufficient for biomechanical applications because

synthetic data with specific quality deficiencies can reduce

predictive performance and distort model selection processes,

compromising research integrity (20–24). Despite these

challenges, there remains limited research on applying synthetic

data generation to gait stability-related parameters, particularly

those captured using computer vision-based methods. This

research gap is significant given the SDGs’ potential benefits for

augmenting gait datasets, improving model generalization across

diverse populations and walking conditions, enabling more

prediction-based stability assessment tools, and uncovering

valuable information hidden within biomechanical data.

Based on the identified research gaps in applying SDG to gait

stability, this study addresses three research questions: (1) Can

synthetic data accurately replicate the statistical properties of gait

parameters in older adults? (2) How effectively do synthetic data-

trained models predict MoS when tested on real-world data? (3)

What specific biomechanical features contribute most

significantly to the MoS predictions in older adults? We

hypothesise that synthetic data generated with biomechanical

constraints will enhance machine learning model performance

for MoS prediction in older adults beyond that achievable with

real-world data alone.

We adopt a dual-evaluation approach, assessing both statistical

resemblance and utility, which represents a necessary shift beyond

conventional statistical metrics (such as Maximum Mean

Discrepancy or Kullback-Leibler divergence) towards a

comprehensive data-centric approach (20). In this context, data

utility measures how effectively synthetic data enhances

downstream applications when validated against real-world data,

particularly regarding model generalization and predictive

accuracy. This dual-metric evaluation framework ensures that

synthetic data serves two important functions: (1) representing

the statistical properties of original data, and (2) providing

practical utility through comparative performance metrics when

models trained on synthetic data are evaluated against real-world

data (TSTR paradigm). By adopting a data-centric perspective,

our SDG process aims to maintain biomechanical validity while

addressing challenges in gait analysis, including limited sample

sizes, inter-subject variability, and requirements for model

generalization across the older adult population. Thereby, the

synthesizer aims to generate sequential data (Centre of Mass

position, CoM velocity, Margin of Stability) and static attributes

(Age, Body Mass Index, Fall incidence history), with all synthetic

samples undergoing comprehensive quality assessment to ensure

biomechanical plausibility and effective dataset augmentation.

In summary, this paper assesses gait stability using metrics

calculated from body landmark tracking via computer vision

(25). We apply this approach to frontal plane video footage of

healthy older adults (aged >65 years) during self-paced walking,

employing synthetic data generation to enhance model training.

For prediction, we employ Extreme Gradient Boosting (XGBoost)

(26), selected for its capability to handle biomechanical data with
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complex, non-linear relationships. Model interpretability is

enhanced through Shapley Additive Explanations (SHAP) values,

which elucidate the contribution of each feature to the MoS

predictions (27).

2 Methods

2.1 Data source and participants

In data collection, we used a publicly available dataset (28) that

was subsequently processed using the MediaPipe algorithm (see

Figure 1). The dataset comprised 14 healthy older adults residing

in a retirement home (11 female, 3 male participants). The

participants’ mean (±standard deviation) age, height, and mass

were 86.7 ± 6.2 years, 165.6 ± 9.9 cm, and 64.0 ± 12.5 kg,

respectively. Each participant performed a standardized walking

protocol, moving back and forth for one minute along a flat,

13 m pathway within a large room.

The walking sessions were recorded using two Motorola Moto

G5 Play cell phones (Motorola, Chicago, IL), each with a

13-megapixel rear camera capturing high-definition 1080p video

at 30 frames per second. Frontal plane recordings (positioned at

111 centimeters height, designated as “bottom” in the file

naming convention) were used for gait analysis.

Accompanying the frontal plane video recordings, the dataset

included participant metadata with demographic information and

clinical test scores. Based on that, we acknowledge that gait

analysis commonly requires multi-view perspectives or 3D

motion capture systems. However, we selected frontal plane

analysis as it enables assessment of medio-lateral stability

parameters relevant for this specific evaluation in older adults

and aligns with our focus on low-cost computer vision methods

in resource-constrained clinical settings.

Despite the limited sample size (n = 14), this dataset is suitable

for our research because it provides standardized gait data from a

homogeneous population of older adults collected using a

smartphone camera in a controlled setting. This smartphone-

based recording facilitates reliable biomechanical measurements

whilst addressing realistic challenges of data scarcity and

equipment limitations commonly encountered in clinical practice.

2.1.1 Computer vision and the MediaPipe pose

approach
With the advancement of computer vision techniques,

markerless gait analysis has become possible through video

footage using pose estimation models such as BlazePose (29).

These techniques involve using computer vision and machine

learning (ML) algorithms to extract human poses and track the

movement of the body’s anatomical landmarks in 2D or 3D

spaces over time.

MediaPipe Pose (MPP), an open-source, cross-platform

framework provided by Google, captures 2D human joint

coordinates in each image frame, consisting of three pre-trained

detection models: EfficientDet-Lite0, EfficientDet-Lite2, and the

Single Shot Detector (SSD) MobileNetV2 Model trained on the

COCO image dataset (30). MPP uses BlazePose (29), a

lightweight ML architecture that performs quickly on mobile

phones and PCs with CPU inference, extracting thirty-three 2D

landmarks on the human body, as shown in Figure 2. Moreover,

studies have demonstrated MediaPipe’s feasibility against gold-

standard motion capture systems for the measurement of angular

variation for biomechanical evaluation (31), and for tracking gait

FIGURE 1

The flowchart of our methodology.
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parameters in the frontal plane with low mean absolute error

(0.04–0.18 s) (32). Figure 2 illustrates the full set of MediaPipe

Pose landmarks available for analysis. We used specific subsets of

these landmarks for our gait stability calculations, as detailed

in Table 1.

Several metrics were derived from the integration of MPP and the

dataset itself, as outlined in Table 2. However, before that, to

accurately calculate stability metrics such as the MoS, we included

each participant’s height and weight directly within the MediaPipe

processing code for each video sequence, allowing the algorithm to

generate stability metrics that account for individual anthropometric

differences in COM displacement calculations across participants.

As described in (13), one limitation in the estimation of MoS is

the assumption of instantaneous adjustments in the center of

pressure (CoP). CoP adjustments are constrained by the finite

reaction time required for muscle activation. While this

limitation has been explored in standing balance, it still needs to

be investigated for walking dynamics. Although our Mediapipe’s

pose extraction works to capture gait dynamics, it has not fully

addressed this previous limitation.

These are the formulas used to calculate these metrics. First, to

calculate the COM for body segments, we used Equation 1:

COMsegment ¼
1

n

X

n

i¼1

pi (1)

Where pi represented the position vector of the i -th landmark

within the segment (with x and y coordinates from the 2D video

FIGURE 2

Mediapipe pose landmarks (59).

TABLE 1 Landmark coordinates required for kinematic measurements.

Calculation
purpose

Landmarks used Landmark
numbers

Center of Mass

(CoM)

Nose, Left/Right eyes (inner &

outer), Shoulders, Hips, Elbows,

Wrists, Knees, Ankles

0, 1, 2, 3, 4, 11, 12, 13,

14, 15, 16, 23, 24, 25, 26,

27, 28

Extrapolated Center

of Mass (XCoM)

Left and Right Hips 23, 24

Step Width Left and Right Ankles 27, 28

TABLE 2 Gait metrics and their origin and application.

Metric Origin and application

COMa We calculated the COM for each frame based on key body

landmarks. Segmental COM values were weighted according to

their proportional contribution to the total body weight, and a

combined COM was computed.

Velocity of

COM

By analyzing the COM’s movement between frames, we calculated

the velocity based on the frame acquisition rate, a crucial input for

stability-related measures.

XCoMa We computed using COM velocity and position data to provide

an adjusted measure of stability for each frame.

MoSa We determined it by calculating the distance between XCoM and

the base of support, formed by the left and right ankles, for each

frame. This quantifies stability dynamically as the participant

moves.

Step Width By analyzing ankle positions, we calculated the step width for each

frame, which provides information about gait stability and

variability.

aCOM, center of mass; XCoM, extrapolated center of mass; MoS, margin of stability.
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plane), and n is the total number of landmarks in the segment.

While MediaPipe provided estimated z-coordinates, our analysis

used the frontal plane (x,y) coordinates for consistency with our

2D video capture methodology.

The COM for the entire body is then calculated as a weighted

sum of each segment’s COM using anthropometric segment

weight coefficients that represent each body segment’s

proportional mass relative to total body weight (Equation 2).

These coefficients were: head (8.1%), torso (49.7%), arms

(2.65% each), and legs (16.1% each), based on established

anthropometry (33).

COMbody ¼
Pm

j¼1 wj � COMj
Pm

j¼1 wj
(2)

Where COMj is the COM of the j -th body segment, wj is the

weight coefficient of that segment as a proportion of total

body weight, and m is the total number of body

segments considered.

The velocity of the CoM is derived from the difference between

successive CoM positions over time (Equation 3):

vCOM(t) ¼ f � [COMbody(t)� COMbody(t � 1)] (3)

Where f is the sampling frequency in frames per second and t

represents the frame index.

Additionally, the XCoM is calculated as an extrapolation of the

CoM based on its velocity, helping to determine stability

(Equation 4):

XCoM ¼ COMbody þ
vCOM
v0

(4)

Where v0 ¼
ffiffi

g
l

q

is the eigenfrequency of the inverted pendulum,

with g ¼ 9:81 m=s2 as gravitational acceleration and l l as the leg

length. In our implementation, the leg length is computed as a

fraction of the distance between the CoM and the midpoint of

the ankles.

Moreover, we measured the MoS by evaluating the distances of

the XCoM and CoM from the edge of the support base formed by

the feet (Equation 5):

MoS ¼ min (dXCoM, dCOM) (5)

Where dXCoM and dCOM represent the perpendicular distances from

XCoM and CoM to the boundary of the base of support, calculated

using Equations 6, 7:

dXCoM ¼ kvXCoM � vboundaryk
kvboundaryk

(6)

dCOM ¼ kvCOM � vboundaryk
kvboundaryk

(7)

Finally, the step width between the left and right ankles is

computed (Equation 8):

StepWidth ¼ krlef txy � rrightxyk (8)

Where rlef txy and rrightxy represent the left and right ankle joint

centers’ two-dimensional projections onto the frontal (xy) plane.

Based on these tools, integrating datasets with MediaPipe’s data

extraction capabilities enabled us to capture metrics across the

individuals’ walking sequences.

2.2 Data preprocessing

Data preprocessing is the subsequent step to ensure the quality

and reliability of the analysis. This was conducted using Python’s

Pandas (version 2.2) (34) and Scipy (version 1.13.1) (35) libraries

following a structured sequence of operations as detailed below.

To reduce the noise and variability in the raw data, a fourth-

order Butterworth low-pass filter was applied (36). The filter’s

cutoff frequency was set to 4 Hz, commonly used in gait analysis

to retain relevant gait dynamics while attenuating high-frequency

noise (36). This filtering step smoothed the data and aimed to

improve the accuracy of subsequent calculations.

We applied this filter independently to each landmark’s x and y

coordinates, ensuring zero-phase distortion and minimal signal delay.

After filtering, the gait parameters (CoM, Step Width, MoS) were

recalculated using the filtered landmark positions. This ensured that

all subsequent analysis was based on refined trajectory data.

During video processing, the pose estimation algorithm can

occasionally lose track of participants, particularly during rapid

movements. These occasions result in missing data points for

specific frames. To address this challenge, a mean imputation

technique was employed using information from the previous

and subsequent frames within the same walking sequence,

maintaining the continuity of the movement trajectory. Also, we

ensured that the data collection did not provide a number of

missing values extremely high, i.e., greater than 20% of the total

number of frames in one gait cycle, as suggested by (37).

We detected and removed outliers to maintain the integrity of

the dataset. We implemented a statistical approach based on each

variable’s mean and standard deviation. First, the mean (μ) and

standard deviation (σ) were calculated for each sequential

parameter. A data point was classified as an outlier if it fell

outside the interval μ ± k·σ, where k is a threshold factor. We

selected k = 2 for our analysis, identifying values more than two

standard deviations from the mean as outliers. This approach is

a standard data preprocessing technique widely used in signal

processing and anomaly detection (38). The two-standard-

deviation threshold retains approximately 95% of the data,

preserving the majority of valid observations and eliminating

extreme values that could distort subsequent analyses.

The final preprocessing step involved normalizing the input

variables introduced into the machine learning model on the

TRTR (Training on real data, testing on real data) process. On
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TSTR (Training on synthetic data, testing on real data), we had one

more of the same normalization approach after the SDG

implementation, focusing on applying the normalized data to the

Machine Learning (ML) model. Thereby, we applied Min–Max

scaling, transforming each feature to a range between 0 and

1. This normalization ensures that features with different units

and ranges contribute equally to the model without bias toward

variables with larger numerical scales (39).

2.3 Synthetic data generation (SDG)

This research employed a data-centric approach to SDG for

biomechanically-based time series data. The methodology

centered on preserving specific biomechanical relationships while

generating statistically representative synthetic samples. We

employed YData’s TimeSeriesSynthesizer [v2.0.0, ydata-sdk

Python package (40)] to generate biomechanically constrained

synthetic time-series data, configured via hierarchical metadata

and correlation-preserving constraints (Table 3).

In the generation process, we incorporated a hierarchical

architecture that respected temporal dependencies (stride-to-

stride transitions) and entity-specific patterns (participant-level

characteristics). Timestamp values were designated as the

sequential sorting key, whilst participant identifiers were

established as entity boundaries, enabling the synthesizer to

capture both within-subject variability and between-subject

differences in gait parameters.

We integrated domain-specific biomechanical constraints

derived from established principles of locomotor stability. These

constraints were designed to maintain relationships between gait

parameters, particularly the positive correlation between step

width and margin of stability (reflecting increased base of

support) (41) and the inverse relationship between the center of

mass velocity and margin of stability (reflecting reduced control

at higher speeds) (42, 43).

2.3.1 SDG technique

We used the TimeSeriesSynthesizer framework and

implemented additional rank correlation-based dependency

constraints to enforce biomechanical relationships in the

generated data. The model architecture incorporated the

following key components.

2.3.1.1 Metadata configuration

The synthesizer was initialized with time series metadata

specifying Timestamp as the temporal sorting key and ID as the

entity identifier. This configuration established appropriate

boundaries for learning temporal dynamics whilst preserving

participant-specific characteristics.

2.3.1.2 Rank correlation-based constraint implementation

We developed custom constraint functions that evaluated

relationships between biomechanical variables through rank

statistics. Specifically, we utilized Spearman rank correlations to

enforce relationships between key biomechanical parameters

whilst maintaining their individual distributional properties. This

approach enabled us to:

(1) Enforce a positive correlation between step width and margin

of stability (ρ > 0.7, reflecting the observed value of 0.768 in

the real data correlation matrix).

(2) Maintain the inverse relationship between the center of mass

velocity and margin of stability (ρ <−0.3, capturing the

observed value of −0.487 in the real data correlation matrix).

These correlation thresholds were implemented via custom

validation functions that verified whether generated data

maintained the specified biomechanical relationships. The

functions calculated Spearman rank correlations between the

relevant variables and validated that they met the predetermined

thresholds derived from established biomechanical principles.

2.3.1.3 Variables boundary preservation

The synthesizer maintained the derived domains for

biomechanical variables, including each variable’s minimum and

maximum values, such as step width (0.002–0.266 m) and

margin of stability (0.004–0.054 m).

2.3.1.4 Model training and data generation

Finally, we trained the synthesizer using 1,878 timesteps of

original data from 14 participants. This constrained model

TABLE 3 Metadata configuration for biomechanical-based time
series data.

Metadata
component

Information
provided to
synthesizer

Utilization in
synthesis process

Temporal structure The sequential organization

of biomechanical

parameters across time

points (Timestamp range:

0.0–7.2594)

Time-series architectures

that preserve

autocorrelation structure

and temporal contingencies

Feature correlations Multivariate relationship

matrix (e.g., Step Width-

MoS correlation: 0.768)

Multivariate sampling with

covariance preservation;

rank correlation-based

approaches for maintaining

interdependencies

Distributional

parameters

Statistical moments of

features, including skewness

values

Normalizing flows;

transformation functions

that accurately model tail

behaviors and central

tendencies

Categorical

frequencies

Cardinality and class

distributions (14 unique

participant IDs)

Stratified generation

processes; conditional

sampling with proper class

balancing mechanisms

Variables boundaries Domain constraints for

biomechanical variables

(e.g., Step Width: 0.002–

0.266 m)

Constrained optimization;

bounded generative

functions with domain-

appropriate activation

mechanisms

Rank correlation-

based biomechanical

constraint

Rank-based correlation

thresholds (Step Width-

MoS: ρ > 0.7, Velocity-MoS:

ρ < −0.3) derived from

empirical biomechanical

relationships

Distribution-invariant

enforcement of

biomechanical principles

through rank correlation

validation; preservation of

stability-support

relationships whilst

accommodating individual

variability
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subsequently generated the synthetic dataset with equivalent

dimensionality, preserving distributional characteristics and

variable relationships.

2.4 SDG quality process and its assessment

To evaluate the quality of the synthetic data, we implemented

an assessment framework addressing data fidelity and utility.

This process comprised two components: (1) synthetic data

fidelity evaluation and (2) predictive performance assessment

through a supervised machine learning model.

2.4.1 Synthetic data fidelity metrics

Synthetic data fidelity was assessed through complementary

statistical approaches. The Python packages used are SDV

(version 1.18.0) (44), SDMetrics (version 0.17.0) (45), and Scipy

(version 1.13.1) (35).

2.4.1.1 Univariate distribution similarity

We employed the Kolmogorov–Smirnov (46) complement

(KSComplement) for continuous variables and the Total

Variation complement (TVComplement) for categorical variables.

These metrics quantified distribution similarity on a scale from 0

to 1, with higher values indicating greater fidelity (45). Column

shapes were evaluated with an aggregate score across all variables.

2.4.1.2 Bivariate relationship preservation

We assessed pairwise variable relationships through correlation

pattern analysis, quantifying the degree to which the synthetic data

maintained the interrelationships in the original dataset (45).

2.4.1.3 Hellinger distance calculation

We computed Hellinger distances between original and

synthetic distributions for each variable and overall. This

probabilistic divergence measure (scaled between 0 and 1, with

lower values indicating greater similarity) assessed distribution

similarity sensitive to location and shape differences (47).

2.4.2 Machine learning approach
To evaluate the practical utility of the synthetic data, we

implemented a supervised machine learning framework using a

gradient-boosting regression model trained to predict the margin

of stability from gait parameters and participants’ characteristics.

2.4.2.1 Model architecture

We employed XGBoost regression models, a decision tree-

based ensemble ML technique, selected for their capacity to

capture non-linear relationships in biomechanical data across

various studies (48–50). The XGBoost minimizes the models’

residuals and increases the predictive power by combining weak

learners (51). Using XGBoost, we aimed to identify the

relationships between biomechanical parameters and the Margin

of Stability, thereby establishing a model capable of accurately

estimating stability from gait variables.

2.4.2.2 Hyperparameter optimization

To maximize predictive performance, we implemented a

comprehensive grid search strategy using sci-kit-learn’s

GridSearchCV combined with 5-fold cross-validation. This approach

evaluated all possible combinations of the following hyperparameter

values for the XGBoost model (Table 4). The grid search process

evaluated 135 different hyperparameter combinations

(3 × 3 × 3 × 2 × 2), with each combination subjected to 5-fold cross-

validation. The optimal configuration was selected to minimize the

Mean Absolute Error (MAE) across validation folds.

2.4.2.3 Comparative evaluation

Our machine learning implementation followed a two-phase

approach to evaluate predictive performance and the utility of

our SDG.

(1) Phase 1 — We trained the model on real-world gait data using

a 70:30 train-test split of the original dataset, so we tested it on

the held-out real data. We called it the TRTR (Training on

Real, Testing on Real) approach.

(2) Phase 2 — We trained the model exclusively on synthetic data

and then evaluated its performance by testing on the complete

real-world dataset. We called it the TSTR (Training on

Synthetic, Testing it on Real) approach.

This design allowed us to directly assess whether models trained on

synthetic data could generalize effectively to real-world observations.

We employed XGBoost for both phases to predict the Margin of

Stability variable using the input variables listed in Table 5.

TABLE 4 Hyperparameter optimization.

Classifier Hyperparameter Optimized
parameter values

Extreme gradient

boosting (XGBoost)

n_estimators [100, 200, 300]

max_depth [3, 5, 7]

learning_rate [0.01, 0.1, 0.2]

subsample [0.8, 1.0]

colsample_bytree [0.8, 1.0]

TABLE 5 Input and output variables for MoS prediction.

Metric Units Type Description

X Coordinate CoMa Meters

(m)

Input

(Numeric)

X-coordinate of the Center

of Mass

Y Coordinate CoMa Meters

(m)

Input

(Numeric)

Y-coordinate of the Center

of Mass

Step width Meters

(m)

Input

(Numeric)

Width of the step during

gait

CoM_Velocity m/s Input

(Numeric)

Velocity of the Center of

Mass

Age Category Input

(Categorical)

0: Middle-old (75–84), 1:

Oldest-old (≥85)

BMIa Category Input

(Categorical)

0: Underweight (<23), 1:

Healthy weight (23–30)

Fall incidence in the last

6 months (Fall History)

Category Input

(Categorical)

No Falls (0), At Least One

Fall (1)

MoS Meters

(m)

Output

(Numeric)

Margin of Stability

aCOM, center of mass; BMI, body mass index.
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In terms of performance assessment, we evaluated model

performance using a comprehensive set of metrics to assess

prediction accuracy for the MoS output variable (Table 5).

Mean Absolute Error (MAE). Measures the average absolute

difference between predicted values (ŷi) and actual values (yi)

across all n observations, often used to deal with the problem of

differentiability (see Equation 9). The lower the value, the better

the result. A value of zero indicates a perfect fit.

MAE ¼ 1

n

X

n

i¼1

jyi � ŷij (9)

Mean Squared Error (MSE). Quantifies prediction error by

calculating the average squared differences between predicted

values and actual observations (see Equation 10). It is used to

overcome the problem of differentiability in MAE. The lower the

value, the better the result. A value of zero indicates a perfect fit.

MSE ¼ 1

n

X

n

i¼1

(yi � ŷi)
2

(10)

Root Mean Squared Error (RMSE). Provides a measure of the

average magnitude of prediction errors in the same units as the

target variable, facilitating interpretation (see Equation 11).

RMSE is more sensitive to outliers than MAE, but its expression

in the original unit of measurement makes it important for this

biomechanical application.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

(yi � ŷi)
2

s

¼
ffiffiffiffiffiffiffiffiffiffi

MSE
p

(11)

Coefficient of Determination (R² score). Indicates the proportion of

variance in the target variable that is predictable from the

independent variables. Its values range from 0 to 1, indicating no

fit and fit. The higher the value, the better the result, which

means the closer the R2 value is to 1, the better the model is

fitted. R2 is calculated as 1 minus the ratio of the sum of squared

errors (SSE) to the total sum of squares (SST), where �y

represents the mean of the observed values (see Equation 12).

R2 ¼ 1�
Pn

i¼1 (yi � ŷi)
2

Pn
i¼1 (yi � �y)2

¼ 1� SSE

SST
(12)

These metrics allowed for a thorough comparison between our two

phases, providing insight into the utility of synthetic data for MoS

prediction. Additionally, they are widely recognized as reliable

measures for evaluating gait parameter predictions (52, 53).

2.4.2.4 Model interpretability

To understand feature contributions and enhance model

transparency, we implemented Shapley Additive Explanations

(SHAP) (27). For our XGBoost model, we used the SHAP Tree

Explainer, which efficiently calculates contribution values for

each feature input.

The SHAP analysis identified the biomechanical variables with

the greatest influence on MoS predictions and enabled

comparisons of feature importance patterns between models

trained on real or synthetic data. This interpretability framework

was essential for validating that synthetic data preserved the

relationships present in the original dataset and respected well-

established gait parameters principles, especially for older adults’

gait. However, this model interpretability tool can face

challenges, including computational intensity for large datasets

and sensitivity to noise (54).

3 Results

The following subsections detail the results of the

experiments conducted.

3.1 Synthetic data fidelity analysis

3.1.1 Overall fidelity metrics
The synthetic data demonstrated exceptional fidelity across

multiple evaluation dimensions.

These metrics indicate that the metadata parameters used in

this approach produced synthetic data that closely mirrors the

statistical properties of the original dataset while maintaining

these variables’ relationships (Table 6).

3.1.2 Distribution similarity analysis

The Kolmogorov–Smirnov complement (KSComplement) and

Total Variation complement (TVComplement) scores for

individual variables demonstrated exceptional preservation of

univariate distributions (Table 7).

TABLE 6 Overall synthetic data fidelity assessment.

Evaluation
metric

Score Interpretation

Column shapes 98.51% Near-perfect preservation of univariate

distributions

Column pair trends 95.67% Excellent maintenance of bivariate

relationships

Overall fidelity 97.09% Very high overall synthetic data quality

TABLE 7 Distribution similarity metrics by variable.

Variable Metric Score

CoM X coordinate KSComplement 0.978

CoM Y coordinate KSComplement 0.977

Step Width KSComplement 0.978

Margin of stability KSComplement 0.979

Timestamp KSComplement 1.00

Age TVComplement 0.990

Fall history TVComplement 1.00

BMI TVComplement 0.986

CoM velocity KSComplement 0.974
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All variables exhibited scores above 0.97, with categorical

variables (e.g., Fall History) achieving perfect preservation (1.0).

This demonstrates that the synthetic data maintained the

distributional characteristics of all gait parameters, which is

visually confirmed in Figure 3, with a high degree of overlap

between the real and synthetic distributions.

3.1.3 Probabilistic divergence assessment
The overall Hellinger Distance (HD) = 0.0193 indicated excellent

alignment between the original and synthetic distributions.

Specifically, the biomechanical variables at the core of our rank

correlation-based constraints — Step Width (HD= 0.0333), MoS

(HD= 0.0332), and CoM Velocity (HD= 0.0447), retained low

divergence despite the constraint enforcement.

3.2 Performance metrics comparison

The synthetic data-based model (TSTR) demonstrated superior

predictive performance compared to the real-data-only approach,

with error metrics reduced by 56%–81% and variance

explanation (R2) improved by 31.2% (Table 8). This finding

suggested that this approach may attenuate random variability

and preserve its variable relationships, enhancing the model’s

ability to capture patterns in these gait parameters.

Figure 4 displays the TRTR and TSTR models’ actual vs.

predicted MoS values. For the TRTR model [Figure 4A], while the

model captured the general trend (R2 = 0.7321), variance is evident

through the widespread scatter around the regression line.

Prediction accuracy appeared limited at higher MoS values (>30),

with a dispersion of predictions. In contrast, the TSTR model

[Figure 4B] improved the prediction accuracy. The tighter clustering

of points around the regression line visually confirmed the superior

performance metrics (R2 = 0.9603). Prediction accuracy remained

consistent across the entire range of MoS values, including at higher

magnitudes where the TRTR model showed limitations.

3.3 Feature attribution analysis

The SHAP (Shapley Additive Explanations) value analysis

revealed redistributions of feature influence when using synthetic

FIGURE 3

Distribution comparison between original and synthetic data. Each subplot shows its data distribution, synthetic data (blue color), and real data (gray

color). Additionally, the KS Complement is introduced at the top right of each subplot to demonstrate each variable’s fidelity performance.

Cordeiro et al. 10.3389/fspor.2025.1646146

Frontiers in Sports and Active Living 09 frontiersin.org

https://doi.org/10.3389/fspor.2025.1646146
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


data. SHAP values quantified the contribution of each feature to

model predictions, with higher values indicating a greater impact

on the outcome. For example, as shown in Table 9, the Step

Width Mean SHAP value increased by 128.3%, better reflecting

its established role in stability control. The “Fall History”

increased the mean SHAP value (1789.3%), suggesting enhanced

sensitivity to this risk factor. The BMI increased the mean SHAP

value (175.7%). Finally, the CoM_Velocity decreased mean SHAP

value (37.6%), consistent with the inverse relationship with

stability. This last one potentially happened because of the rank

correlation-based constraint enforcement.

These shifts in SHAP values indicated that this synthetic data

approach realigned model feature attribution to better reflect

established gait principles, especially for the older adult population.

Figure 5 demonstrates the feature attribution patterns for the

TRTR and TSTR models. For TRTR [Figure 5A], the horizontal

distribution of points represented the SHAP value impact on

model output, while color indicated feature value magnitude

(blue for lower values, red for higher values). The

Y_Coordinate_CoM showed the most influence on predictions,

with positive and negative contributions depending on the value.

Step_Width demonstrated a modest impact, particularly

compared to the CoM-coordinates-based parameters. In contrast,

Figure 5B reveals the altered feature attribution pattern in the

TSTR model. Step_Width gained greater impact in the

predictions, rising to second position in importance. As

mentioned before, this realignment better reflected established

biomechanical principles regarding the role of step width in

stability control. Fall History also showed enhanced contribution

compared to the TRTR model, indicating improved sensitivity to

risk factors.

4 Discussion

This study investigated the application of SDG to gait stability

prediction in older adults, addressing three research questions

about data fidelity and utility, predictive performance, and model

interpretability. Our findings demonstrated that this synthetic

data approach accurately replicates data properties of gait

parameters and can also enhance predictive modeling capabilities

beyond what is achievable with real-world data alone in

older adults.

The high fidelity metrics, column shapes at 98.51%, column

pair trends at 95.67%, and overall fidelity at 97.09%, and

subsequently preservation of variable distributions (above 0.97 in

TABLE 8 Performance comparison between the model performance on
“TRTR and TSTR-based” approaches.

Performance metric TRTRa TSTRa
Δ—

improvement

Mean Absolute Error (MAE) 3.4672 1.4479 −2.0193 (58.2%)

Mean Squared Error (MSE) 18.7308 3.5790 −15.1518 (80.9%)

Root Mean Squared Error (RMSE) 4.3279 1.8918 −2.4361 (56.3%)

R2 Score 0.7321 0.9603 +0.2282 (31.2%)

aTRTR, training on real data and testing on real data; TSTR, training on synthetic data and

testing on real data.

FIGURE 4

Comparison of predicted vs. actual Margin of Stability (MoS) values. (A) Model trained on real data and tested on real data (TRTR), with an R2 score of

0.7321, indicating the proportion of variance in the actual MoS values explained by the model predictions. (B) Model trained on synthetic data and

tested on real data (TSTR), with an R
2 score of 0.9603.

TABLE 9 Mean SHAP values comparison between models.

Feature TRTR TSTR Directional change

Y_Coordinate_CoM 5.720624 5.469393 ↓ (4.4%)

X_Coordinate_CoM 0.733808 0.673718 ↓ (8.2%)

Step_Width 0.719645 1.642897 ↑ (128.3%)

BMI 0.587171 1.618933 ↑ (175.7%)

Age 0.479669 0.724091 ↑ (50.9%)

CoM_Velocity 0.289063 0.180252 ↓ (37.6%)

Fall history 0.026910 0.508422 ↑ (1,789.3%)
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KSComplement and TVComplement scores) addressed an

important challenge in movement science, maintaining

biomechanical data validity whilst augmenting a limited dataset.

For example, preserving categorical variables related to fall

history (TVComplement = 1.00) is essential for clinical risk

assessment applications. The low Hellinger distance (0.019)

further confirmed the similarity between the original and

synthetic distributions. Therefore, these findings demonstrated

that our data-centric approach successfully captured univariate

distributions and bivariate relationships. These fidelity metrics

align with similar methodological approaches using evaluation

metrics proposed by the Synthetic Data Vault (SDV) framework

and/or Hellinger distance across all variables (15, 55).

Importantly (15), used SDV-based metrics, such as

KSComplement, to assess the data fidelity of synthetic gait data

generated for multiple sclerosis patients and demonstrated strong

performance results with most metrics over 0.75. These findings

advance beyond traditional statistical distribution matching

approaches by demonstrating that constraint-based synthetic data

can effectively embody relationships between domain-specific

biomechanical variables. The implementation of rank correlation-

based constraints to maintain established relationships between

step width and margin of stability (ρ > 0.7) and between CoM

velocity and stability margins (ρ <−0.3) represents a

methodological solution in biomechanically-based SDG,

depending on each research goal.

Regarding the data utility, the most significant finding is that

models trained exclusively on synthetic data (TSTR)

FIGURE 5

SHAP summary plot for TRTR (A) and TSTR (B) models. The color gradient reflects feature values, where red indicates higher feature values and blue

indicates lower feature values.
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demonstrated superior predictive performance compared to

models trained on real data alone (TRTR). The reductions in

error metrics (MAE by 58.2%, MSE by 80.9%, and RMSE by

56.3%) and improved variance explanation (R2 increase of

31.2%) highlight the potential of the metadata configuration

process used in this SDG application. These results align with

the guidance from (19) for an SDG data-centric framework,

emphasizing that high-quality synthetic data should achieve

statistical fidelity and enhance utility in downstream tasks.

The predictive performance in Figure 4 further supports this

interpretation, showing that while the TRTR model struggles

with prediction accuracy at higher MoS values (>30 mm), the

TSTR model maintains consistent accuracy across the entire

range. This suggests that our SDG approach improved prediction

accuracy at the boundaries of stability values, thus enhancing,

with caution, reliability in assessing marginal dynamic stability

profiles. For instance, an 85-year-old patient recovering from a

mobility-constrained procedure with MoS values around 25–

35 mm (where the TRTR model showed poor accuracy) could

support a decision-making process that led to an unnecessarily

prolonged rehabilitation procedure. The TSTR model’s enhanced

performance in this MoS range enables better identification of

patients at the threshold of safe mobility, supporting responsible

decision-making for this healthcare example.

The SHAP analysis revealed redistributions of feature influence

in the TSTR model, with notable increases in the importance of

Step Width (128.3%), BMI (175.7%), and Fall History (1,789.3%).

These changes suggest that the synthetic data generation process

influenced the model’s feature attribution patterns. Our findings

relate to (56) research that, via a VICON motion capture system

in 105 healthy individuals (52.87 ± 19.09 years), demonstrated

that step width (part of a ‘base of support’ domain, as identified

by the factor analysis, which included step width and step time)

was a significant predictor of medio-lateral margin of stability,

explaining 26% of the variance (p < 0.0001). Their equipment

setup differs from our low-cost computer vision footage-

capturing approach, which makes our application emerge as an

alternative for a wider clinical accessibility solution.

Therefore, this SHAP analysis reinforces two biomechanical

principles: (1) step width serves as an active control mechanism

for lateral stability, and (2) clinical history (previous falls) and

anthropometric factors (BMI) influence gait stability strategies.

Regarding a predictive-based perspective, CoM velocity

demonstrated relatively low importance in both models (TRTR

and TSTR), which appears contrary to established biomechanical

theory regarding the inverse relationship between velocity and

stability margins, which (8, 57) demonstrated their relations that

higher velocities can reduce the time available for corrective

responses. This contrary relation to our findings can be explained

by the experimental context of self-selected speeds. When

participants walk at their preferred speed, they could optimize

their gait pattern for stability and comfort, effectively minimizing

the destabilizing effects of velocity that would be more apparent

under imposed speed conditions. At self-selected speeds, older

adults could adopt conservative velocity strategies that maintain

their stability within comfortable margins, reducing the variance

in velocity-stability relationships that machine learning models

potentially rely on to detect feature importance. Therefore, this

underscores the importance of considering the experimental

context when interpreting SHAP values in gait modeling.

Our findings have significant implications for gait assessment in

similar older adult populations. The SDG addresses persistent

challenges, including limited sample sizes and constraints in

extensive data collection from vulnerable populations. The

improved predictive performance of the TSTR model suggests that

synthetic data augmentation could enhance the accuracy of fall

risk assessment tools based on stability metrics, particularly for

the oldest-old population (≥85 years), where fall risk assessment

carries the highest urgency (58), which aligns with the data that

one-third of 70-year-olds and most 80-year-olds report mobility

restrictions, which involves physical losses, including decreases in

limb maximum muscle force and power (10, 12).

4.1 Limitations

Despite the promising results, some limitations exist: First, the

sample size of 14 older adults we used, while comparable to many

gait studies, remains relatively small for comprehensive synthetic

data validation for this population. Future research should assess

the scalability of a similar approach with more diverse cohorts

representing different age groups, pathological conditions, and

environmental contexts. Following this future perspective, for

pathological populations (e.g., Parkinson’s disease, stroke

survivors), this SDG approach would require condition-specific

constraint development. For instance, Parkinson’s patients would

potentially exhibit reduced step width variability and altered

center of mass control, which would necessitate modified gait

parameters correlation thresholds and potentially additional

constraints reflecting disease-specific compensatory strategies.

The SDG would need to preserve these pathological gait patterns

whilst maintaining biomechanical plausibility.

Additionally, the dataset’s composition (11 female, 3 male

participants) reflects a gender imbalance that may limit the

generalizability of our synthetic data generation approach. Future

investigations should examine whether synthetic data generation

maintains gender-specific biomechanical relationships and consider

implementing gender-balanced original datasets for synthesis, or

alternatively, generate synthetic data specifically for minority gender

classes to address representation gaps. In other words, implement

gender as a stratification variable in the metadata configuration,

enabling the synthesizer to generate synthetic samples that maintain

gender-specific proportions and biomechanical characteristics for

synthetic data quality across gender groups.

Second, our SDG focused on frontal plane stability parameters

derived from a single walking condition (level walking at self-paced

speed). Thus, future work should extend this methodology to

sagittal plane stability and responses to perturbations, which

represent important aspects of stability control not captured in the

current analysis. The SDG metadata configuration framework could

accommodate frontal and sagittal plane parameters simultaneously,

enabling the generation of synthetic data that preserves
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biomechanical relationships in both planes (e.g., coordination

between medio-lateral and anterior-posterior stability strategies).

Third, while the MediaPipe algorithm provided acceptable pose

tracking, advanced pose estimation algorithms optimized for

biomechanical gait analysis could improve stability metrics’ precision

and data quality. Advanced algorithms with improved joint tracking

precision and enhanced robustness to occlusion could reduce

measurement noise in center of mass calculations and step width

detection, directly improving the accuracy of margin of

stability computations.

4.2 Future clinical validation process

Our study demonstrates predictive-based SDG implementation in

gait stability assessment, but comprehensive clinical validation is

essential before widespread decision-making implementation. Critical

validation steps include multi-site clinical trials across diverse

healthcare settings to ensure methodology robustness, systematic

testing in pathological populations (e.g., stroke survivors, Parkinson’s

disease patients, balance disorder patients) to validate synthetic data

accuracy for clinical gait patterns, and longitudinal studies tracking

patients over time to assess balance disorders prediction accuracy

and rehabilitation monitoring capabilities. Additionally, clinical

workflow integration requires practitioner usability studies, clinical

decision support validation, and environmental robustness testing

across different lighting conditions, clothes, and clinical

environments to ensure smartphone-based pose tracking maintains

accuracy in real-world settings.

Moreover, cost-effectiveness analysis comparing the

methodology against current standard-of-care approaches, along

with clinical outcome studies demonstrating improved patient

outcomes, reduced falls, and enhanced quality of life, will be

essential for healthcare adoption. Our current findings, relevant

for stability assessment, provide an initial exploration for these

validation efforts and position this methodology as a promising

tool for low-cost gait stability assessment in clinical practice.

5 Conclusion

This study demonstrates that SDG with specific biomechanically

based constraints can accurately replicate gait stability parameters in

older adults, addressing our three research questions regarding data

fidelity, utility, and interpretability. First, our approach replicated

gait parameter statistical properties with exceptional fidelity:

column shapes (98.51%), column pair trends (95.67%), and overall

fidelity (97.09%), with variable distributions exceeding 0.97 in

KSComplement and TVComplement scores and low Hellinger

distance (0.019) confirming excellent alignment between original

and synthetic distributions. Second, synthetic data-trained models

(TSTR) demonstrated superior predictive performance compared to

real data-trained models (TRTR), achieving substantial error

reductions (MAE by 58.2%, MSE by 80.9%, RMSE by 56.3%) and

improved variance explanation (R2 increase of 31.2%), whilst

maintaining consistent accuracy across the entire MoS range,

including at boundary stability values (>30 mm) where TRTR

models showed limitations. Third, SHAP analysis revealed step

width, BMI, and fall history as the most significant MoS predictors,

with the synthetic data approach enhancing feature attribution

alignment with established biomechanical principles through

increased importance of step width (128.3%), fall history

(1,789.3%), and BMI (175.7%). The redistribution of feature

importance in the TSTR model revealed this approach’s strength:

amplifying signals aligned with established gait stability principles,

creating a more interpretable predictive framework. This approach,

combined with accessible computer vision methodology,

contributed to advancing gait stability assessment with implications

for fall risk monitoring. By enabling accurate stability assessment

through smartphone cameras rather than expensive motion capture

systems, this methodology could help in scenarios where resources

and mobility are limited for fall risk screening, enabling earlier

interventions that improve decision-making from clinicians and

physiotherapists, especially through similar explainable machine

learning implementation. Moreover, the improved accuracy at

boundary stability values supports precision-based gait stability

assessment for the most vulnerable patients regarding the margin of

stability. Future work should extend these SDG-data-driven

methods to diverse populations and stability conditions, potentially

developing new predictive-based stability assessment solutions with

varied goals, including clinical settings.
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