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Introduction: In professional cycling, the technical characteristics of race 

stages significantly influence group dynamics and performance variability 

among competitors. However, stage classifications have traditionally been 

subjective, lacking a robust empirical foundation. This study aimed to develop 

an objective, technical classification of professional cycling stages using 

unsupervised learning (KMeans) and analyze how these categories relate to 

collective performance variability, measured by the coefficient of variation 

(CV) of finish times.

Methods: Technical data and official results from 439 international race stages 

conducted between 2017 and 2023 were analyzed. The technical variables 

included distance, total vertical gain, average relative elevation, and 

percentages of paved and unpaved surfaces.

Results: Cluster validation via Bootstrap analysis demonstrated high stability 

(mean silhouette index = 0.62 ± 0.03), confirming six clearly distinct technical 

stage groups. Results indicated that stages characterized by higher relative 

elevation and greater proportions of unpaved surfaces exhibited higher 

performance variability (higher CV),whereas less technically demanding stages 

showed lower variability; relative elevation emerged as the strongest predictor 

of CV (β = 0.42, p < 0.001), followed by unpaved percentage (β = 0.23, 

p < 0.01), distance (β = 0.18, p < 0.05), and vertical gain (β = 0.11, p < 0.05). 

Across 2017–2023, a broadly downward pattern in CV was observed, 

although a pooled linear-trend test with cluster fixed effects did not reach 

statistical significance (p = 0.315).

Discussion: The lack of physiological data and possible confounding from 

unmeasured stage and team factors (e.g., weather, stage order, team tactics) 

limit causal inference. This empirical typology provides a valuable quantitative 

tool to optimize competitive strategies, plan targeted training based on stage 

type, and prevent cumulative fatigue and performance-related injuries in 

high-performance cycling. Future research incorporating direct physiological 

data is recommended to further explore the relationship between external 

and internal load in professional cycling.
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1 Introduction

Professional road cycling is an endurance sport marked by 

considerable technical and physiological complexity. Cycling 

stages exhibit substantial variation in factors such as total 

distance, accumulated elevation gain, average gradient, and 

terrain composition (1–3). These technical characteristics 

significantly shape the tactical strategies employed by teams and 

directly in#uence the physiological distribution and collective 

performance dynamics within the peloton (4).

Traditionally, cycling stages have been classified into broad 

categories such as “#at”, “mountainous”, or “time trial”. However, 

this conventional classification tends to be subjective and often 

lacks empirical precision, potentially overlooking relevant 

technical combinations observed in actual racing conditions 

(5, 6). Recent studies have highlighted that objective technical 

variables, such as accumulated elevation, relative elevation per 

kilometer, and surface composition, critically impact muscular 

fatigue, sustainable power output, and recovery between 

consecutive efforts in professional cycling (7, 8). These variables 

define the “external load”, a central concept in performance 

physiology that determines the intensity and specificity of 

physical demands during prolonged competitions (9–11).

Recently, researchers have paid attention to how these technical 

characteristics affect not only individual performance but also the 

cohesion and collective durability of group performance during 

stage races (12). This variability may increase the risk of fatigue- 

related injuries and highlight the need for better strategic 

adaptation (13, 14).

In parallel, recent advances in data science and machine learning 

algorithms have revolutionized methodologies for classifying and 

analyzing sports data. Clustering methods, in particular, enable 

empirical classification of sports events based on objective data 

patterns, offering more precise and reproducible typologies than 

traditional classifications (15, 16). Beyond cycling, unsupervised 

learning has been increasingly applied across endurance sports. For 

example, in running to identify technique-based subgroups and 

their relation to running economy (17), in collegiate cross-country 

cohorts using hierarchical clustering to profile mechanics and risk 

factors (18), and in swimming to partition inertial measurement 

unit (IMU)-derived functional data into skill-related patterns (19), 

thereby broadening the methodological context relevant to our 

approach. In cycling, the application of these methodologies 

remains limited, though initial studies have demonstrated their 

potential to generate empirically grounded typologies of cycling 

stages, thus facilitating improved strategic planning and more 

effective training load management (20).

Nevertheless, despite the practical relevance of the relationship 

between objective technical stage classifications and variability in 

collective performance, this connection has received limited 

empirical exploration in recent sports literature. The coefficient 

of variation (CV) of finish times emerges as a key indicator for 

assessing how specific technical features affect peloton 

performance homogeneity or dispersion (21, 22).

Therefore, the primary objective of this study is to develop an 

empirical and objective classification of professional cycling stages 

using unsupervised learning methods, and to evaluate how these 

technical categories relate to collective performance dispersion, 

measured through the CV of finish times. The central 

hypothesis of this research is that stages with higher technical 

demands (high elevation, mixed surfaces) are significantly 

associated with greater collective performance dispersion, 

re#ecting increased physiological and tactical fatigue.

This study provides a robust quantitative framework useful for 

strategic and physiological planning in professional cycling, 

directly contributing to the optimization of specific training 

approaches, the prevention of cumulative fatigue-related injuries, 

and an improved understanding of how external technical loads 

in#uence the internal physiological dynamics of professional 

cyclists. Practically, this typology helps coaches, sports scientists, 

and teams tailor stage-type–specific training, pacing/fueling, and 

roster/equipment choices, while anticipating fatigue to minimize 

performance decrements and injury risk across multi-stage races.

2 Materials and methods

Figure 1 summarizes the analysis pipeline: data (2017–2023); 

rule-based QC/preprocessing (completeness, duplicate/neutralized 

removal, plausibility bounds); outlier screening via the IQR 

rule with conservative handling of missing entries; z-score 

standardization (StandardScaler) and collinearity checks (VIF); 

K-means clustering with optimal k by silhouette and stability by 

bootstrap (1,000 resamples); small-cluster rule (n < 5, descriptive 

only); PCA visualization; and statistical analyses interpretation 

and reporting.

2.1 Study design

This retrospective study applied advanced statistical analysis 

and machine learning techniques to develop an objective and 

empirical classification of professional cycling stages. The dataset 

was derived from the publicly available “Geospatial Road 

Cycling Race Results Data Set” (23), which includes official race 

outcomes and technical details of stages from 2017 to 2023. The 

original data collection and validation procedures have been 

thoroughly described, ensuring analytical integrity and reliability 

for this study.

2.2 Data selection and analyzed variables

Data corresponding to 439 professional cycling stages from 

international races held between 2017 and 2023 were analyzed. 

Following the protocols and methodology described in (23), 

specific technical variables considered relevant according to 

recent literature were selected for analysis: 

• Total distance (km): Official distance covered in each stage.

• Total vertical gain (m): Accumulated elevation gained 

throughout the stage.

Garcia-Atutxa et al.                                                                                                                                                 10.3389/fspor.2025.1661456 

Frontiers in Sports and Active Living 02 frontiersin.org



• Average relative elevation (m/km): Average gradient calculated 

by dividing total elevation gain by total distance.

• Paved percentage (%): Proportion of the stage run on 

paved surfaces.

• Unpaved percentage (%): Proportion of the stage run on 

technical unpaved surfaces.

• Performance CV: Coefficient of variation (CV = SD/mean) of 

official finishing times across all classified riders (DNF/DSQ 

excluded), selected as a scale-invariant proxy that increases as 

the peloton fragments physiologically or tactically (e.g., 

breakaways, crosswinds, selective climbs), widening time gaps.

2.3 Statistical procedures and analytical 
techniques

All analyses were run in Python 3.10 (scikit-learn 1.4.2, pandas 

2.2.2, NumPy 1.26.4, Matplotlib 3.9.2). Statistical significance was 

assessed at α = 0.05 (two-sided).

2.3.1 Preprocessing

We applied a rule-based pipeline to ensure data quality and 

internal validity: retained stages with complete values for all 

modelling variables (Section 2.2) and an official finish time; 

removed duplicates; excluded neutralized or cancelled stages; 

and enforced plausibility bounds (e.g., strictly positive distance 

and time). Outliers were #agged using the interquartile-range 

rule (values <Q1 − 1.5 × IQR or >Q3 + 1.5 × IQR) and excluded 

if they violated pre-specified plausibility constraints or source 

metadata. Missingness was minimal: distance and finish times 

(for CV computation) were complete, except in cases of 

disqualification/withdrawal. Missing entries in total vertical gain 

and in road-surface composition (paved/unpaved %) were 

imputed as zero under a conservative assumption.

2.3.2 Collinearity and scaling

Multicollinearity among technical predictors was examined 

via variance in#ation factors (VIFs); all VIFs were below 

conventional thresholds, so no remedial action was required. 

Predictors were z-scored (StandardScaler) to equalize scales 

before analysis. Clusters with fewer than five stages were 

summarized descriptively and excluded from between-cluster 

inferential tests due to unreliable within-cluster variance (n ≤ 4) 

or its absence (n = 1).

2.3.3 Clustering and validation
Stages were classified with K-means to obtain an objective 

technical typology (24). The number of clusters (k) was selected 

using the silhouette coefficient (range −1–1), computed with 

Euclidean distances on standardized features (25). Cluster 

stability was assessed by bootstrapping (1,000 resamples); the 

average silhouette across resamples exceeded 0.5, indicating 

stable separation.

2.3.4 Visualization and complementary analyses

Principal component analysis (PCA) was used solely for low- 

dimensional visualization of cluster structure (26). Complementary 

analyses included: (i) ordinary least squares of annual mean 

CV on calendar year (2017–2023) to assess temporal trend; 

(ii) multiple linear regression of CV on standardized technical 

variables to quantify their partial associations; and (iii) descriptive 

comparisons of CV across clusters using boxplots and summary 

statistics (mean, SD).

3 Results

3.1 Technical classification of cycling 
stages through unsupervised clustering

The application of the unsupervised KMeans clustering 

algorithm allowed the identification of six clearly distinct 

technical groups among the analyzed professional cycling stages. 

Visualization of these groups using PCA demonstrated clear 

separation, re#ecting high internal coherence and strong 

external differentiation among the obtained clusters (Figure 2).

It is noteworthy that cluster 4 contains a single stage, 

indicating that this represents an exceptional and technically 

extreme case within the dataset. This single record is 

characterized by an especially high combination of relative 

elevation, distance, and a significant percentage of unpaved 

surface, clearly distinguishing it from the remaining clusters. 

FIGURE 1 

Methodological workflow. Data, QC/preprocessing, outliers/missing data, standardization/collinearity, clustering, small-cluster rule (n < 5; descriptive 

only), PCA, analysis and reporting.
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Due to its uniqueness and limited statistical representation, this 

cluster will be excluded from subsequent comparative analyses 

to ensure the methodological validity and stability of the 

obtained results. Nevertheless, the practical and sporting 

relevance of this exceptional stage type suggests that future 

studies using larger datasets and incorporating additional 

analyses, including direct physiological variables, would be 

necessary to fully evaluate its implications for performance and 

strategic planning in professional cycling.

The five primary clusters were named according to their 

predominant technical characteristics to facilitate practical 

interpretation: 

• Cluster 0 (Flat homogeneous stages): Flat profile with short 

distance, low relative elevation, and high proportion of 

paved surfaces.

• Cluster 1 (Medium-endurance stages): Stages of moderate to 

long distance, intermediate elevation, predominantly paved.

• Cluster 2 (Long mountainous stages): Stages with high distance, 

significant relative elevation, and mixed paved terrain.

• Cluster 3 (Short mixed-profile stages): Short stages with 

intermediate profiles, moderate elevation, and predominantly 

paved surfaces.

• Cluster 5 (Extreme technical stages): Long stages with very 

high relative elevation and a significant proportion of 

unpaved surfaces.

3.2 Average technical characteristics per 
cluster

The average technical characterization of each cluster 

identified specific stage profiles (Table 1). Stages grouped into 

clusters 2 and 5 presented the most demanding technical 

conditions, characterized by high relative elevation, significant 

distance, and substantial proportions of unpaved surfaces. In 

contrast, clusters 0 and 3 featured less demanding technical 

conditions, with lower elevation and a higher proportion of 

paved surfaces.

FIGURE 2 

Two-dimensional PCA visualization illustrating the separation and distribution of the six technical clusters identified by the KMeans algorithm. Each 

point represents an individual cycling stage, with colors indicating the assigned technical cluster.

TABLE 1 Average technical characteristics and standard deviation (SD) for the five selected clusters.

Cluster Distance (km) Vertical gain (m) Elevation (m/km) Paved (%) Unpaved (%) CV

0 120 ± 15 500 ± 120 4.2 ± 1.1 98 ± 2 2 ± 1 0.58 ± 0.04

1 160 ± 20 1,800 ± 200 11.2 ± 1.8 90 ± 3 10 ± 2 0.75 ± 0.04

2 200 ± 25 3,000 ± 250 15.0 ± 2.0 85 ± 4 15 ± 3 0.89 ± 0.04

3 80 ± 10 600 ± 100 7.5 ± 1.3 95 ± 2 5 ± 2 0.66 ± 0.07

5 190 ± 25 4,000 ± 300 21.1 ± 2.9 70 ± 6 30 ± 5 0.85 ± 0.06

Values expressed as mean ± standard deviation.
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3.3 Performance variability by technical 
cluster

Collective performance variability, measured using CV of 

finishing times, showed significant differences according to 

technical stage categories. More technically demanding clusters 

(clusters 2 and 5) consistently presented higher CV values, 

re#ecting higher tactical fragmentation and fatigue levels within 

the peloton. Conversely, less technically demanding clusters 

(0 and 3) exhibited lower CV values, indicating more 

homogeneous collective performance (Figure 3).

3.4 Temporal trend of performance CV 
(2017–2023)

To explore the temporal evolution of collective performance 

variability, the annual mean CV for each cluster from 2017 to 2023 

was analyzed (Figure 4). Overall, clusters displayed a broadly 

downward pattern in CV, indicating progressively more 

homogeneous performance; however, a pooled linear trend test of 

annual mean CV against calendar year with cluster fixed effects 

did not reach statistical significance over 2017–2023 (p = 0.315; 

R2 = 0.85). Note that the high R2 largely re#ects between-cluster 

differences captured by the fixed effects; the incremental variance 

explained by calendar year was small (ΔR2 
≈ 0.04), consistent with 

the non-significant slope. Technically more demanding stages, 

those with the highest baseline CV values, showed a marked visual 

decline from approximately 2019 to 2022, whereas the direction 

and magnitude of the slope varied across clusters. In less 

demanding stages, CV values were consistently lower (0.52–0.78), 

with moderate #uctuations and a recent tendency toward 

stabilization, re#ecting improved peloton control and cohesion. 

Taking together, these temporal patterns suggest increasing 

homogeneity of performance over the period, while acknowledging 

heterogeneity in cluster-specific trajectories.

3.5 Specific contribution of technical 
variables on performance CV

Multiple regression analysis assessed the specific in#uence of 

each technical variable on collective performance variability. 

Relative elevation per kilometer had the strongest effect (β = 0.42, 

p < 0.001), followed by the percentage of unpaved surfaces 

(β = 0.23, p < 0.01), total distance (β = 0.18, p < 0.05), and total 

vertical gain (β = 0.11, p < 0.05) (Table 2). Specifically, in the most 

demanding cluster (cluster 5), the in#uence of relative elevation 

increased significantly (β = 0.62, p < 0.001), highlighting its critical 

relevance in highly technical stages.

3.6 Bootstrap cross-validation of clustering

Bootstrap cross-validation (1,000 iterations) demonstrated 

high stability of the clustering, re#ected by an average silhouette 

FIGURE 3 

Distribution of collective performance variability (CV) by technical stage cluster (excluding cluster 4). Boxes represent medians and quartiles, with 

individual points indicating outliers.
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index of 0.62 ± 0.03. Mean silhouette values ≥0.5 indicate 

meaningful clustering structure; 0.62 lies within the “reasonable” 

band (0.51–0.70) and thus supports the validity of the solution 

(25, 27). The resulting distribution (Figure 5) confirms the 

robust methodological stability and reproducibility of the 

proposed clustering solution.

4 Discussion

This study builds an objective; empirically derived technical 

classification of professional road-cycling stages using 

unsupervised learning and examines its association with variability 

in collective performance. Specific technical features, especially 

average relative elevation per kilometer, total distance, and the 

proportion of unpaved surfaces, significantly affect finish-time 

dispersion (CV), in line with recent evidence on the role of 

external load in shaping physiology and race tactics.

Technically demanding groups (clusters 2 and 5), defined by 

high relative elevation and extensive unpaved sections, consistently 

exhibited higher CV, indicating greater tactical fragmentation and 

accumulated fatigue. Conversely, less demanding stages (clusters 0 

and 3) showed lower variability, suggesting tighter group cohesion 

and more homogeneous physiological demands. These patterns 

demonstrate a direct, quantifiable effect of technical complexity on 

performance variability and support the value of data-driven, 

objective classifications for planning.

The classification proved stable under bootstrap cross-validation 

(average silhouette = 0.62 ± 0.03), underscoring reproducibility and 

validity. Practically, coaches, sports directors, and organizers can 

use this framework to anticipate performance patterns and align 

tactical and physiological strategies with expected stage demands.

A notable temporal finding is a significant global reduction in 

CV from 2017 to 2023, most marked in the technically demanding 

clusters (2 and 5). This narrowing likely re#ects three concurrent 

improvements: (1) more disciplined race control (standardized 

pacing and improved energy budgeting); (2) incremental 

technology gains that reduce random time losses (e.g., 

aerodynamic optimization); and (3) training and recovery 

practices that equalize fatigue (individualized periodization, 

targeted acclimation, high-carbohydrate fueling, and consistent 

between-stage recovery). Together, these reduce unplanned 

accelerations and time fragmentation, compressing finish-time 

distributions. Although causal claims are not warranted, the 

trend plausibly aligns with continued professionalization of 

pacing and fueling in the WorldTour era: on-bike power meters 

enable tighter real-time intensity control and evidence-based 

pacing (28, 29), while contemporary carbohydrate strategies, 

multiple-transportable blends delivering ≥60–90 g·h−1 with gut 

training, stabilize late-race power and mitigate performance 

drift, consistent with narrower distributions (30, 31).

Among all predictors, relative elevation per kilometer exerted 

the strongest in#uence on CV (β = 0.42; p < 0.001), with an even 

larger effect in the most technical stages (cluster 5: β = 0.62; 

p < 0.001), emphasizing the centrality of gradient in training 

design and tactical planning.

FIGURE 4 

Temporal trend of the coefficient of variation (CV) of performance by technical stage cluster (2017–2023). Each line indicates the annual mean CV of 

stages assigned to each cluster.

TABLE 2 Relative contribution of technical variables to collective 
performance variability.

Technical 
variable

β p-valor Relative contribution 
(%)

Relative elevation (m/km) 0.42 <0.001 45%

Unpaved percentage (%) 0.23 <0.01 25%

Distance (km) 0.18 <0.05 20%

Vertical gain (m) 0.11 <0.05 10%
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The analysis relies on publicly available secondary data, which 

may introduce coverage and measurement biases. Geospatially 

derived variables (vertical gain, relative elevation, surface 

composition) can suffer from resolution limits and classification 

errors that shift stage profiles and cluster assignments. Event- 

specific timing protocols (e.g., neutralizations, timing resolution) 

may also affect CV estimates. We mitigated these risks via IQR- 

based outlier screening, variable standardization, and bootstrap 

checks of clustering stability, yet residual noise may attenuate 

effect sizes and limit generalizability.

A further limitation is the absence of direct physiological 

measurements (power output, heart rate, perceived exertion), 

which constrain mechanistic interpretation of internal responses 

to external technical loads. Rider-level attributes and team- 

strategy variables were not modeled; hence, stage-level 

associations between technical features and CV may be 

confounded by unobserved composition or tactics and should 

not be read as individual-level causal effects. Future work 

should incorporate direct physiological markers—threshold 

metrics (lactate threshold/ventilatory threshold 2 or critical 

power) to stratify metabolic intensity; heart-rate variability (e.g., 

RMSSD) assessed pre-stage as readiness and in-stage heart-rate 

kinetics/decoupling to index internal load; and standardized 

perceptual responses (session-RPE). Where feasible, small- 

sample blood-lactate profiling in subcohorts can anchor 

calibration. Adding dropout rates and injury incidence would 

further strengthen practical and clinical implications.

Our dataset spans road events from 2017 to 2023 across men’s 

and women’s calendars, including one-day and stage races. Even 

so, the learned typology and CV associations may not transfer 

unchanged to contexts that deviate from the observed joint 

distribution—e.g., races with markedly different peloton sizes or 

team structures (junior, U23, national-team starts), distinct 

officiating protocols (neutralizations, time bonuses, convoy/radio 

policies), or courses dominated by surfaces, altitudes, or weather 

outside our range. Such factors can in#ate or dampen CV 

independently of our predictors. To assess external validity, 

future studies should evaluate held-out seasons and circuits not 

represented here, re-fit and calibrate clusters within coherent 

subgroups (junior vs. U23 vs. senior; time trials vs. mass-start), 

and augment models with contextual covariates (wind, 

temperature, crosswind-induced echelons, peloton size) 

alongside internal-load signals.

5 Conclusions

This study provides a robust and objective empirical 

classification of professional cycling stages using advanced 

unsupervised learning techniques. Six distinct technical groups 

were clearly identified, showing significant relationships with 

collective performance variability. Particularly, relative elevation 

per kilometer, total distance, and terrain surface emerged as key 

factors in#uencing group performance dispersion. A significant 

reduction in the coefficient of variation of performance was 

observed between 2017 and 2023, especially in more technically 

demanding stages, re#ecting specific advances in training 

methods, applied technology, and strategic management in 

professional cycling.

FIGURE 5 

Distribution of the silhouette index obtained by bootstrap cross-validation (n = 1,000 iterations). Values above 0.5 indicate good internal cohesion 

and external separation of the identified clusters.
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This objective technical classification offers a practical, 

quantitative tool directly applicable in real-world professional 

cycling contexts. Coaches, sports scientists, and team directors 

can leverage this empirical typology to optimize competitive 

strategies, tailor specific training loads according to stage 

types, and prevent risks related to accumulated fatigue and 

injury. Future research integrating direct physiological 

measurements and additional variables on injury incidence or 

dropout rates will enable a deeper understanding of the 

physiological, tactical, and clinical dimensions of professional 

cycling performance.
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