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Early marathon running metrics
from inertial measurement units
predict significant pace
reduction
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Marathon runners occasionally experience significant pace reduction in the
latter stages of races, a phenomenon known as "hitting the wall”. This study
aimed to develop an interpretable model to predict this performance decline
using biomechanical variables collected during the early stages of marathons.
We analyzed data from 1,437 runners collected during official marathon
events held in Japan from August 2022 to May 2025. Biomechanical variables
were measured using inertial measurement unit attached to the runners’
lower back. "Hitting the wall” was defined as maintaining a pace exceeding
125% of the average pace from 5 to 20 km continuously for more than 5 km
after the 25 km point. Conversely, runners were classified as “NOT hitting the
wall” if their pace remained less than 110% of the average pace for more than
10 km. Cases not meeting either criterion were excluded from analysis,
resulting in 306 positive cases and 359 negative cases. We applied functional
principal component analysis to efficiently handle time-series data and
developed a functional logistic regression model using data from the first half
of marathons to predict the severe pace reduction. Our model achieved
73.9% accuracy, 75.8% recall, and 70.1% precision. Analysis of coefficient
functions in the functional logistic regression model revealed that step length,
ground contact time, and vertical stiffness were the strongest predictors of
subsequent performance decline. The identified biomechanical signatures
could inform personalized training strategies aimed at preventing the “hitting
the wall” phenomenon during marathon races.

KEYWORDS

hitting the wall, inertial measurement unit, marathon, pacing strategy, functional data
analysis

1 Introduction

Recent advancements in wearable sensing technologies have enabled the acquisition
of valuable data for performance evaluation and conditioning monitoring across various
sports. In marathon running, for example, many participants now routinely employ
running-watches and mobile applications to track pace and vital metrics including
heart rate during both training and competition. These data allow runners to
objectively assess their performance metrics over time. While several approaches to
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running data utilization have been proposed and investigated (1,
2), there is still room for practical use of data so that runners
can achieve their goals more effectively.

To optimize marathon performance, pacing strategy is one of
the most critical factors. Even pace and negative split, where speed
increases in the latter half of the race, are commonly
recommended to maximize performance (3). Even experienced
runners who fail to maintain consistent pacing tend to record
finishing times that fall short of their personal bests (4).
Furthermore, approximately two in five recreational runners
experience severe pace reduction and it results in more than
30 min of performance loss compared to their personal records
(5, 6). This significant slowing down in pace, which is
commonly known as “hitting the wall”, typically occurs around
30 km/20 mile from the start line. Marathon runners thus face a
fundamental dilemma between the ambition of achieving
personal goals and the risk of “hitting the wall”. To overcome
this dilemma, runners need reliable methods to predict potential
performance decline based on their physical condition early in
the race.

Some studies have investigated changes during or pre- and
post-marathon races or prolonged running through blood
(7, 8) and (9-11).
physiological cause of the severe pace reduction is thought to be

markers respiratory gases The main
glycogen depletion (12-14). In particular, the glycogen depletion
occurs faster at higher intensity during submaximal exercise
(15). It is well known that the relative contribution of energy
substrates is dependent on exercise intensity, and thus some
metrics of exercise intensity during the first half of races likely
affect performance deterioration in the latter half. However,
measuring blood markers and respiratory gases during races is
not easy for most runners. Wearable devices offer a more
alternative, real-world data without

accessible providing

interfering with natural running conditions. In running
analytics, two common wearable technologies have emerged:
running-watches that primarily collect cardiovascular metrics
(e.g., heart rate, heart rate variability), and Inertial Measurement
Units (IMUs)

Although many of the physiological metrics cannot be directly

that can measure biomechanical variables.

measured by either running-watches or IMUs, IMU-derived
metrics can correlate with oxygen uptake, as demonstrated by
Linkis et al. (16). During prolonged running, neuromuscular
fatigue and altered motor patterns emerge (17, 18). As fatigue
accumulates, runners often modify their running mechanics to
compensate for reduced force production capability, leading to
changes in stride characteristics and joint kinematics (19). These
compensatory movement while

patterns, initially allowing

maintained performance, may lead to decreased running
economy and eventually contribute to more rapid onset of
exhaustion (20). Such fatigue-induced alterations in running
patterns have been quantitatively assessed using wearable sensor
data, with one study reporting that composite indices reflecting
atypical running patterns for variables like cadence, pelvic drop,
and ground contact time became significantly higher starting at
20-22 km during a marathon (21). Furthermore, Prigent et al.
(22) found that biomechanical variables showed significant
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alterations earlier than heart rate dynamics, potentially

“hitting  the
Additionally, biomechanical variables offer the advantage of

providing earlier warning signs of wall”.

translating directly into actionable feedback that runners can
implement through daily trial and error. Although several
researches have levels or

attempted to predict

performance decline using data derived from wearable devices

fatigue

(23-27), existing models suffer from limited sample sizes,
subject-specific parameters, or focus on highly controlled
conditions that may not generalize to real-world marathon
While
increase prediction accuracy for experienced runners with

settings. subject-specific parameters can potentially

sufficient data, many recreational runners may not have
adequate data representing both of fresh and fatigued states in
real-world race conditions. Moreover, few studies have
specifically addressed the prediction of “hitting the wall”
that

underlying

phenomenon using interpretable models provide

meaningful insights into the
biomechanical mechanisms.

Time series data from wearable devices presents unique
analytical challenges, particularly when attempting to capture
temporal characteristics and patterns. Functional Data Analysis
(FDA)

continuous, time-varying data (28). Traditional biomechanical

offers a powerful framework for analyzing such
analyses often focus on discrete features such as peak values or
measurements at specific time points, potentially missing
important information contained in the complete time series
data. In contrast, FDA preserves temporal patterns within the
data while reducing dimensionality and mitigating noise.
A systematic review by Dannenmaier et al. (29) highlighted
FDA’s potential to provide detailed and comprehensive insights
into biomechanical data. Recent applications of FDA in

biomechanical research demonstrate its effectiveness in
capturing complex temporal patterns. For example, Doi et al.
(30) applied FDA to running form data from IMUs to capture
fatigue-related changes as coherent information encompassing
the entire running cycle. Similarly, Son et al. (31) utilized FDA
to comprehensively analyze jump/landing movements as
continuous curves across the complete stance phase.

The primary aim of this study was to develop an interpretable
model to predict significant pace reduction in the latter half of a
full marathon based on biomechanical variables observed during
the first half of the race. By applying FDA techniques to IMU-
derived data collected under real marathon conditions, we
sought to identify early biomechanical signatures that precede
“hitting the wall”. This approach not only addresses the practical
need for predictive tools accessible to recreational runners but
also contributes to the theoretical understanding of how
biomechanical alterations evolve throughout a marathon and

their relationship to performance outcomes.

2 Methods

The dataset of running form consisted of a total of 1,437
runners (1,277 males and 160 females) measured in full
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marathon races held in Japan from August 2022 to May 2025. The
mean age of participants was 50.4 + 8.6 years. The average finishing
time recorded was 256 + 44 min. The data were collected as part of
the regular service provided by Runmetrix”, where runners
voluntarily used a commercially available IMU (CMT-S20R-AS;
CASIO COMPUTER Co., LTD.) device during their marathon
races. All participants provided consent for their data to be used
for research purposes through the service agreement.

The IMU sensor was securely clipped to the back of the
runner’s shorts. This IMU features a body-worn 9-axis sensor
including an accelerometer, gyroscope, magnetometer, and GPS.
The sampling frequency was set at 200 Hz, and the measured
data were transmitted by the Runmetrix® mobile application.
The application contains built-in algorithms that process the
raw IMU signals to calculate various running form variables.
These running form variables include pace [s/km], cadence
[steps/m], step length [% height], pelvic backward lean [deg],
vertical motion [% height], body drop [% height], pelvic drop
[deg], pelvic elevation [deg], pelvic rotation[deg], pelvic rotation
timing, horizontal impact force[m/s?], kicking phase duration
[ms], ground contact time[% gait cycle], landing impact [m/s?],
kicking acceleration, [m/s*] amount of braking [m/s], and
vertical stiffness [kN/m/kg] (32). These variables were calculated
for every step and averaged over distances of 250 m, 500 m or
1,000 m, depending on user’s settings.

For this dataset, we developed an operational definition for
identifying “hitting the wall” (HTW) based on the pace profiles
(Figure 1), drawing upon methodologies from previous studies
(5, 6). This phenomenon was assessed by analyzing the degree
of slowdown during the latter stages of the race. Specifically, we
defined the average pace from 5 to 20 km as the “base pace”,
excluding the initial 5km segment as pacing can be erratic
during the very early stages of a marathon. The “relative pace”
for segments after 25km was calculated as the ratio of the
segment pace to the base pace. A race was then classified as “hit
the wall” if the relative pace profile continuously exceeded 1.25
(indicating a slowdown of more than 25% compared to the base
pace) for more than 5km. This criterion aligns with the
operational definition adopted by Smyth (6), which was
established through a sensitivity analysis on a large-scale dataset
of over 4 million race records. Smyth (6) also notes that these

Pace data
start 5 km 20 km 25km
. S
_ >125% base pace?
average = base pace (<110% base pace?)
tfofafafae]1]-
Continuously exceed 125% for more than 5 km — Hit the wall
(Less than 110% for more than 10 km — NOT hit the wall)
FIGURE 1
Rule of the classification of the pace label

10.3389/fspor.2025.1681444

thresholds are comparable to similar criteria proposed by
Berndsen et al. (5), which included slowdowns of approximately
17% over more than 5km. On the other hand, a race was
labeled as “NOT hit the wall” if the relative pace was
consistently less than 1.10 for more than 10 km, indicating that
the runner largely maintained their pace throughout the race.
This threshold is grounded in the general understanding in
pacing studies that any pace variation within 10% of the mean
race pace is considered to be maintaining pace. A continuous
duration of more than 10 km with such a minimal slowdown
suggests a sustained and controlled effort. Consequently, races
that do not fit either criterion were excluded from the data. For
these labels, we considered constructing the prediction model
that classifies whether the runner hits the wall.

After the pace labels were classified, data preprocessing was
conducted as shown in Figure 2. Data with missing values in

‘ All data (N = 1,437) ‘

Pace label

Hit the wall (N = 306)
NOT hit the wall (N = 359)

Split data

Train data (N = 531; 80%)
same number of basis

Hit the wall (N = 244)
NOT hit the wall (N = 287)
j functions were used

Do not fit either
criterion (N = 769)

Exclude incomplete
data (N=3

Test data (N = 134; 20%)
Hit the wall (N = 62)
NOT hit the wall (N =72)

.

[Decide the number of

basis functions

4
Represent individual
data as a function

— = — — P
same eigenfunctions

were used

Represent individual
data as a function

¢
[

]

Obtain FPC scores
and eigenfunctions

v
(Calculate FPC scores )

)

Prediction model training and evaluation

C

FIGURE 2
Flowchart of the data analysis.
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any running form variables was excluded from further analysis.
The whole dataset was split into training (80%) and test (20%)
sets using stratified random sampling to maintain the same
distribution of gender, finish time, age, and pace labels in both
sets. Before applying the classification model, we utilized
functional principal component analysis (FPCA) on the time
series data, measured in the races. FPCA can represent the time
series data in a low dimensional form. To apply FPCA, the
measured time series data were smoothed by using B-spline
basis functions (28). The number of basis functions was
determined using generalized cross-validation for each variable,
and the data for each individual were subsequently represented
as a function. This functional representation allowed us to
handle data with different sampling intervals in a unified
manner. Before applying FPCA, the functional data were
standardized by subtracting the mean and dividing by the
standard deviation calculated from the training dataset. The
same standardization parameters from the training data were
applied to the test dataset to ensure consistent scaling across
both sets. Then, FPCA was applied to the functional data and
we can obtain functional principal component (FPC) scores that
represent the feature of the function by a low-dimensional
vector. The number of FPCs was determined based on the 99%
variance explained in the training dataset. Using FPCA, x;(t),
which is functional data for the j-th running form variable of
i-th runner at distance t in the domain T, can be expressed by

K
xi(t) = () + gzijkujk(t) = () + ziu(t)

where f;(f) is a sample average function of functional data
x@) (=1, ---,n) K is  the number of  FPC,
zij = (z, ...,z,jK)T is a FPC  scores,
ui(t) = (up(®), ..., qu(t))T is a vector of eigenfunctions, and
superscript T denotes the transpose. The FPCA scores of test

vector  of

data were calculated based on the mean functions and
eigenfunctions derived from the FPCA results of the training data.

Prior to constructing the prediction model, we examined
multicollinearity among the FPC scores in the training dataset
(VIF)
coefficients. Variables with VIF>10 and absolute correlation

using variance inflation factors and correlation
coefficients > 0.7 were considered for removal to maintain model
interpretability while avoiding severe multicollinearity. Based on
these criteria, we removed pace, body drop, pelvic drop, and
kicking phase duration from the predictor variables. After
removing these variables, we confirmed that all remaining
variables showed VIF <7, ensuring both model interpretability
and statistical wvalidity. Using the time series datasets
transformed into functional data as predictors and the class
labels whether the runner hits the wall as a response, we

constructed the following functional logistic regression model.

J
e ;Tx,j(t)ﬁj(t)dt
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where 77; is a probability that the runner hits the wall for the i-th
runner given the functional data for the running form variables,
Bo is an intercept, B;(t) is coefficient function for the j-th
variable, and J is the number of variables. The coefficient
function B;(t) how the
xj(t) (i=1, ...,n) relate to the classification at arbitrary
distance point f. In addition, we suppose that the coefficient

represents functional  data

function B;(f) is represented by basis expansions as

K
B0 = 3 buantt) = ¥ty
=1

. ij)T is a vector of unknown parameters.
- ik (t)
are orthonormal, we can represent the functional logistic

where bj = (b, ..
Then, using the fact that the eigenfunctions u;i (%), ..

regression model as follows.

Ti _ / Tb
1—m _BO+Zzijj

=

log

The unknown parameters by, ..., by in the model were estimated
by the penalized likelihood method with an L2-type penalty, and
cross-validation was performed using fl-score as the evaluation
metric. The importance of each variable for prediction was
assessed using the L2 norms coefficients
bj = (bj, ..

represented

of regression
. B]-K)T, and the coefficient functions were
these
corresponding eigenfunctions as Bj(t) = I;J-Tuj(t).

using regression  coefficients  and

3 Results

The relative pace profiles of runners who experienced
“hitting the wall” during the race and those who did not are
shown in Figure 3. The total number of runners who hit the
wall was 306 (46.0%), while 359 (54.0%) runners did not. The
slowing down of pace began at approximately 20 km, and the
disparity between the two groups continued to widen until
around 38 km.

When evaluated on the test dataset, the prediction model
achieved a performance of 73.9% in accuracy, 75.8% in recall,
70.1% in precision, and 72.9% in Fl-score. In other words, the
model correctly identified about 7 out of every 10 runners,
successfully retrieved 3 out of every 4 runners who actually
classified as “hit the wall”, and delivered precise predictions for
about 7 out of every 10 runners who predicted as “hit the wall”.

Figure 4 shows the coefficient functions of the functional
logistic regression model. In these coefficient functions, positive
values indicate that runners are more likely to hit the wall when
the corresponding running form variable is above its mean
value at that point in the race, while negative values indicate a
higher probability of hitting the wall when the variable is below
its mean. The three variables presented in the upper graph
correspond to those with the largest L2 norms, while those in
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the lower graph represent those with the smallest L2 norms. For
step length, the coefficient function started with positive values
at the beginning of the race but turned negative after
approximately 10 km
thereafter. Ground contact time and vertical stiffness exhibited

and continued a decreasing trend
positive values at the start, approached zero during the 5-10 km
segment, and then showed an increasing trend again. These

trends were associated with a higher likelihood of hitting the wall.

25 [slower

m— Hit the wall
messss NOT hit the wall

b
(=)
T

Relative pace
o

—_
(e)
T

10 20 30 40
Race progress [km]

o
9

FIGURE 3

Comparison of relative pace profiles during marathon races
between runners who experienced "hitting the wall” and those
who did not. The thick blue and orange curves represent mean
relative paces of runners who experienced and did not experience
"hitting the wall", respectively. Light-colored curves show
individual runner data. Relative pace is expressed as a ratio to
each runner's base pace (1.0 = average pace from 5 to 20 km);
higher values indicate slower pace.

10.3389/fspor.2025.1681444

4 Discussion

The primary aim of this study was to predict significant pace
reduction in the latter half of a full marathon based on
biomechanical parameters observed during the first half of the
race. Based on the information of running form in the first half
of a full marathon, our functional logistic regression model
successfully predicted the occurrence of significant slowing
down in pace in the latter half of the race with the accuracy of
more than 70%.

Our classification model revealed that severe pace reduction in
the latter half of a full marathon can be predicted based on
first half of the
A previous study (23) constructed binary classification models

biomechanical parameters in the race.
to distinguish between pre- and post-fatigue states using IMU
data during 400 m running at each participant’s 5 km race pace.
Their subject-independent model achieved 75% accuracy. While
our model demonstrates similar classification performance, our
approach offers a significant advancement in ecological validity
by addressing several key differences in study design and
population. Buckley et al. utilized a controlled fatiguing protocol
(Beep Test) to induce fatigue. As Buckley et al. themselves
acknowledged, this induced fatigue may be considered an
unnatural way of fatiguing compared to the progressive decline
in running economy over extended time and distance in an
actual race. In contrast, our research examined biomechanical
patterns during actual marathon races where “hitting the wall”
naturally occurs in the real-world settings. Furthermore, our
data collection in a natural marathon environment allowed for
greater variety in race conditions and participant demographics
than their sample of 21 recreational runners in a controlled
track setting. These factors enhance the potential for practical

Top 3 variables by L2 norm

Qahilr ‘4.\ step length (L2 norm = 1.36)

= "t’ === ground contact time (L2 norm = 0.80)
& 02F Ny e vertical stiffness (L2 norm = 0.79) et it
£

£ 00f

a ---------------------------

=

%}

2 02F

b=

%]

S

—-04r
1 1 1
0 5 10 15
Race progress [km]
FIGURE 4

Coefficient functions of the 3 variables with the largest L2 norms in the functional logistic regression model
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application of our model across broader populations of runners
and diverse race conditions.

Examination of coefficient functions revealed biomechanical
parameters that significantly contribute to predicting pace
reduction during marathons. Among these, step length, ground
contact time, and vertical stiffness emerged as the most
influential predictors. While running speed is fundamentally the
product of step length and cadence, our analysis showed that
step length patterns were more predictive of pace reduction than
found that height-
normalized step length showed stronger correlations with

cadence. A recent meta-analysis (33)

running economy (r=0.27) compared to absolute stride length
(r=0.12) or cadence (r=-0.20). This suggests that height-
normalized step length may better reflect individual running
mechanics and fatigue states than absolute measurements. As
fatigue progresses, runners experience reduced leg stiffness (19),
compromising efficient elastic energy storage and increasing
metabolic cost. This fatigue-induced reduction in leg stiffness
likely manifests as shortened height-normalized step length,
indicating impaired propulsive mechanics. Our findings suggest
that these changes in height-normalized step length may more
significantly impact running economy and pace than cadence
alterations. While previous reviews have associated greater leg
stiffness with improved running economy (19, 33), interpreting
vertical stiffness derived from IMU data requires careful
consideration. Higher calculated vertical stiffness might result
from reduced knee flexion during ground contact. Tartaruga
et al. (34) reported that less knee flexion at initial contact
correlates with poorer running economy (r=—0.41). Therefore,
elevated wvertical stiffness in fatigued states might indicate
inefficient force management rather than optimal elastic energy
utilization, consequently affecting ground contact time.

The generalizability of our prediction model may be
influenced by several confounding factors. Environmental
conditions, such as ambient temperature and terrain gradient,
are known to significantly impact running performance and
biomechanics (35-38). Our current model does not explicitly
account for these external variables, which could modulate how
biomechanical parameters change under fatigue in different race
environments. Furthermore, runner experience levels could be a
critical factor. Highly trained athletes might exhibit different
fatigue-induced biomechanical alterations and maintain their
self-optimized stride patterns more effectively than recreational
runners (19). Similarly, variations in race pacing strategies (e.g.,
even pacing vs. positive splits) can influence the onset of fatigue,
potentially affecting the predictive power of biomechanical
parameters captured in the first half of the race. Future models
incorporating these contextual factors could enhance predictive
accuracy and generalizability, though this would introduce
increased data complexity.

The present study’s approach—utilizing  primarily
biomechanical parameters and employing FPCA for efficient
time-series data reduction, combined with interpretable logistic
regression modeling—offers practical advantages for real-world
applications in coaching contexts. For instance, runners can use
this approach to analyze their half-marathon data so as to
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predict if they can maintain their pace during a full marathon,
providing valuable insights for pre-race strategy development.
Additionally, the biomechanical parameters identified through
the model can help runners identify specific form improvements
to mitigate their risk of “hitting the wall”. From a practical
standpoint, a prediction improvement of even 5%-10% in
classifying severe pace reduction could be meaningful for
runners and coaches. Such an improvement could lead to more
informed pacing decisions, targeted biomechanical interventions
in daily training, and ultimately, a higher success rate in
achieving marathon goals while potentially reducing injury risk.
Even not perfect predictive capability can provide an objective
assessment, allowing for adjustments in training load or race
strategy that were previously based on subjective feeling alone.
This shift from subjective perception to objective and data-
driven insights represents a crucial step towards optimized
marathon performance.

This that should be
acknowledged. Firstly, our participants primarily consisted of

study has several limitations
Japanese runners. This may limit the generalizability of our
findings to runners of different customs, body shapes, or
training cultures. Secondly, the study might be subject to
selection bias, as participants spontaneously purchased the IMU
device, potentially leading to a sample that does not fully
the broader

instance, highly motivated or experienced runners might be

represent marathon runner population. For
represented, which could explain the lower proportion of
runners who classified as “hit the wall” in our study compared
to some previous research (5, 6). Moreover, while our prediction
model successfully identified predictors of severe pace reduction,
it did not categorize different magnitudes of slowing down in
should

enhance the external validity and applicability of the model

pace. Future research address these limitations to
across diverse running populations and race contexts. Besides,
our current modelling approach does not allow for the
identification of specific time windows within the first half of
the race where predictive signals for pace reduction become
more apparent.

Building upon the current findings, several opportunities for
future research are recommended to enhance the model’s
predictive accuracy and practical utility. First, validation of the
model in diverse populations from various regions and across
different runner experience levels is essential to confirm its
generalizability. Second, integrating additional physiological
markers, such as heart rate data, and considering individual
metabolic profiles or demographic factors like gender and
personal best times may significantly improve predictive
accuracy (6) and provide a more comprehensive understanding

of the “hitting the wall” phenomenon. Furthermore,
incorporating  environmental conditions (e.g., ambient
temperature, humidity) and course-specific factors (e.g.,

elevation changes) into the prediction model could account for

external influences on biomechanical changes and pace

reduction (35-38). Third, while this study utilized L2 norms to
quantify the importance of coefficient functions for practical

comparison, future methodological advancements should
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explore more nuanced quantitative measures of variable
importance that could offer deeper practical interpretations for
runners and coaches. Finally, future studies should explore the
real-time implementation of such prediction models using
wearable technology to provide immediate feedback to runners
during training or races, potentially through smartphone
applications. This would facilitate proactive adjustments to
running strategy or form, enabling runners to mitigate the risk
of severe reduction and achieve consistent

pace more

performance in endurance events.
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