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Marathon runners occasionally experience significant pace reduction in the 

latter stages of races, a phenomenon known as “hitting the wall”. This study 

aimed to develop an interpretable model to predict this performance decline 

using biomechanical variables collected during the early stages of marathons. 

We analyzed data from 1,437 runners collected during official marathon 

events held in Japan from August 2022 to May 2025. Biomechanical variables 

were measured using inertial measurement unit attached to the runners’ 

lower back. “Hitting the wall” was defined as maintaining a pace exceeding 

125% of the average pace from 5 to 20 km continuously for more than 5 km 

after the 25 km point. Conversely, runners were classified as “NOT hitting the 

wall” if their pace remained less than 110% of the average pace for more than 

10 km. Cases not meeting either criterion were excluded from analysis, 

resulting in 306 positive cases and 359 negative cases. We applied functional 

principal component analysis to efficiently handle time-series data and 

developed a functional logistic regression model using data from the first half 

of marathons to predict the severe pace reduction. Our model achieved 

73.9% accuracy, 75.8% recall, and 70.1% precision. Analysis of coefficient 

functions in the functional logistic regression model revealed that step length, 

ground contact time, and vertical stiffness were the strongest predictors of 

subsequent performance decline. The identified biomechanical signatures 

could inform personalized training strategies aimed at preventing the “hitting 

the wall” phenomenon during marathon races.

KEYWORDS

hitting the wall, inertial measurement unit, marathon, pacing strategy, functional data 

analysis

1 Introduction

Recent advancements in wearable sensing technologies have enabled the acquisition 

of valuable data for performance evaluation and conditioning monitoring across various 

sports. In marathon running, for example, many participants now routinely employ 

running-watches and mobile applications to track pace and vital metrics including 

heart rate during both training and competition. These data allow runners to 

objectively assess their performance metrics over time. While several approaches to 
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running data utilization have been proposed and investigated (1, 

2), there is still room for practical use of data so that runners 

can achieve their goals more effectively.

To optimize marathon performance, pacing strategy is one of 

the most critical factors. Even pace and negative split, where speed 

increases in the latter half of the race, are commonly 

recommended to maximize performance (3). Even experienced 

runners who fail to maintain consistent pacing tend to record 

finishing times that fall short of their personal bests (4). 

Furthermore, approximately two in five recreational runners 

experience severe pace reduction and it results in more than 

30 min of performance loss compared to their personal records 

(5, 6). This significant slowing down in pace, which is 

commonly known as “hitting the wall”, typically occurs around 

30 km/20 mile from the start line. Marathon runners thus face a 

fundamental dilemma between the ambition of achieving 

personal goals and the risk of “hitting the wall”. To overcome 

this dilemma, runners need reliable methods to predict potential 

performance decline based on their physical condition early in 

the race.

Some studies have investigated changes during or pre- and 

post-marathon races or prolonged running through blood 

markers (7, 8) and respiratory gases (9–11). The main 

physiological cause of the severe pace reduction is thought to be 

glycogen depletion (12–14). In particular, the glycogen depletion 

occurs faster at higher intensity during submaximal exercise 

(15). It is well known that the relative contribution of energy 

substrates is dependent on exercise intensity, and thus some 

metrics of exercise intensity during the first half of races likely 

affect performance deterioration in the latter half. However, 

measuring blood markers and respiratory gases during races is 

not easy for most runners. Wearable devices offer a more 

accessible alternative, providing real-world data without 

interfering with natural running conditions. In running 

analytics, two common wearable technologies have emerged: 

running-watches that primarily collect cardiovascular metrics 

(e.g., heart rate, heart rate variability), and Inertial Measurement 

Units (IMUs) that can measure biomechanical variables. 

Although many of the physiological metrics cannot be directly 

measured by either running-watches or IMUs, IMU-derived 

metrics can correlate with oxygen uptake, as demonstrated by 

Linkis et al. (16). During prolonged running, neuromuscular 

fatigue and altered motor patterns emerge (17, 18). As fatigue 

accumulates, runners often modify their running mechanics to 

compensate for reduced force production capability, leading to 

changes in stride characteristics and joint kinematics (19). These 

compensatory movement patterns, while initially allowing 

maintained performance, may lead to decreased running 

economy and eventually contribute to more rapid onset of 

exhaustion (20). Such fatigue-induced alterations in running 

patterns have been quantitatively assessed using wearable sensor 

data, with one study reporting that composite indices re>ecting 

atypical running patterns for variables like cadence, pelvic drop, 

and ground contact time became significantly higher starting at 

20–22 km during a marathon (21). Furthermore, Prigent et al. 

(22) found that biomechanical variables showed significant 

alterations earlier than heart rate dynamics, potentially 

providing earlier warning signs of “hitting the wall”. 

Additionally, biomechanical variables offer the advantage of 

translating directly into actionable feedback that runners can 

implement through daily trial and error. Although several 

researches have attempted to predict fatigue levels or 

performance decline using data derived from wearable devices 

(23–27), existing models suffer from limited sample sizes, 

subject-specific parameters, or focus on highly controlled 

conditions that may not generalize to real-world marathon 

settings. While subject-specific parameters can potentially 

increase prediction accuracy for experienced runners with 

sufficient data, many recreational runners may not have 

adequate data representing both of fresh and fatigued states in 

real-world race conditions. Moreover, few studies have 

specifically addressed the prediction of “hitting the wall” 

phenomenon using interpretable models that provide 

meaningful insights into the underlying 

biomechanical mechanisms.

Time series data from wearable devices presents unique 

analytical challenges, particularly when attempting to capture 

temporal characteristics and patterns. Functional Data Analysis 

(FDA) offers a powerful framework for analyzing such 

continuous, time-varying data (28). Traditional biomechanical 

analyses often focus on discrete features such as peak values or 

measurements at specific time points, potentially missing 

important information contained in the complete time series 

data. In contrast, FDA preserves temporal patterns within the 

data while reducing dimensionality and mitigating noise. 

A systematic review by Dannenmaier et al. (29) highlighted 

FDA’s potential to provide detailed and comprehensive insights 

into biomechanical data. Recent applications of FDA in 

biomechanical research demonstrate its effectiveness in 

capturing complex temporal patterns. For example, Doi et al. 

(30) applied FDA to running form data from IMUs to capture 

fatigue-related changes as coherent information encompassing 

the entire running cycle. Similarly, Son et al. (31) utilized FDA 

to comprehensively analyze jump/landing movements as 

continuous curves across the complete stance phase.

The primary aim of this study was to develop an interpretable 

model to predict significant pace reduction in the latter half of a 

full marathon based on biomechanical variables observed during 

the first half of the race. By applying FDA techniques to IMU- 

derived data collected under real marathon conditions, we 

sought to identify early biomechanical signatures that precede 

“hitting the wall”. This approach not only addresses the practical 

need for predictive tools accessible to recreational runners but 

also contributes to the theoretical understanding of how 

biomechanical alterations evolve throughout a marathon and 

their relationship to performance outcomes.

2 Methods

The dataset of running form consisted of a total of 1,437 

runners (1,277 males and 160 females) measured in full 
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marathon races held in Japan from August 2022 to May 2025. The 

mean age of participants was 50.4 ± 8.6 years. The average finishing 

time recorded was 256 ± 44 min. The data were collected as part of 

the regular service provided by Runmetrix®, where runners 

voluntarily used a commercially available IMU (CMT-S20R-AS; 

CASIO COMPUTER Co., LTD.) device during their marathon 

races. All participants provided consent for their data to be used 

for research purposes through the service agreement.

The IMU sensor was securely clipped to the back of the 

runner’s shorts. This IMU features a body-worn 9-axis sensor 

including an accelerometer, gyroscope, magnetometer, and GPS. 

The sampling frequency was set at 200 Hz, and the measured 

data were transmitted by the Runmetrix® mobile application. 

The application contains built-in algorithms that process the 

raw IMU signals to calculate various running form variables. 

These running form variables include pace [s/km], cadence 

[steps/m], step length [% height], pelvic backward lean [deg], 

vertical motion [% height], body drop [% height], pelvic drop 

[deg], pelvic elevation [deg], pelvic rotation[deg], pelvic rotation 

timing, horizontal impact force[m/s2], kicking phase duration 

[ms], ground contact time[% gait cycle], landing impact [m/s2], 

kicking acceleration, [m/s2] amount of braking [m/s], and 

vertical stiffness [kN/m/kg] (32). These variables were calculated 

for every step and averaged over distances of 250 m, 500 m or 

1,000 m, depending on user’s settings.

For this dataset, we developed an operational definition for 

identifying “hitting the wall” (HTW) based on the pace profiles 

(Figure 1), drawing upon methodologies from previous studies 

(5, 6). This phenomenon was assessed by analyzing the degree 

of slowdown during the latter stages of the race. Specifically, we 

defined the average pace from 5 to 20 km as the “base pace”, 

excluding the initial 5 km segment as pacing can be erratic 

during the very early stages of a marathon. The “relative pace” 

for segments after 25 km was calculated as the ratio of the 

segment pace to the base pace. A race was then classified as “hit 

the wall” if the relative pace profile continuously exceeded 1.25 

(indicating a slowdown of more than 25% compared to the base 

pace) for more than 5 km. This criterion aligns with the 

operational definition adopted by Smyth (6), which was 

established through a sensitivity analysis on a large-scale dataset 

of over 4 million race records. Smyth (6) also notes that these 

thresholds are comparable to similar criteria proposed by 

Berndsen et al. (5), which included slowdowns of approximately 

17% over more than 5 km. On the other hand, a race was 

labeled as “NOT hit the wall” if the relative pace was 

consistently less than 1.10 for more than 10 km, indicating that 

the runner largely maintained their pace throughout the race. 

This threshold is grounded in the general understanding in 

pacing studies that any pace variation within 10% of the mean 

race pace is considered to be maintaining pace. A continuous 

duration of more than 10 km with such a minimal slowdown 

suggests a sustained and controlled effort. Consequently, races 

that do not fit either criterion were excluded from the data. For 

these labels, we considered constructing the prediction model 

that classifies whether the runner hits the wall.

After the pace labels were classified, data preprocessing was 

conducted as shown in Figure 2. Data with missing values in 

FIGURE 1 

Rule of the classification of the pace label.

FIGURE 2 

Flowchart of the data analysis.
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any running form variables was excluded from further analysis. 

The whole dataset was split into training (80%) and test (20%) 

sets using stratified random sampling to maintain the same 

distribution of gender, finish time, age, and pace labels in both 

sets. Before applying the classification model, we utilized 

functional principal component analysis (FPCA) on the time 

series data, measured in the races. FPCA can represent the time 

series data in a low dimensional form. To apply FPCA, the 

measured time series data were smoothed by using B-spline 

basis functions (28). The number of basis functions was 

determined using generalized cross-validation for each variable, 

and the data for each individual were subsequently represented 

as a function. This functional representation allowed us to 

handle data with different sampling intervals in a unified 

manner. Before applying FPCA, the functional data were 

standardized by subtracting the mean and dividing by the 

standard deviation calculated from the training dataset. The 

same standardization parameters from the training data were 

applied to the test dataset to ensure consistent scaling across 

both sets. Then, FPCA was applied to the functional data and 

we can obtain functional principal component (FPC) scores that 

represent the feature of the function by a low-dimensional 

vector. The number of FPCs was determined based on the 99% 

variance explained in the training dataset. Using FPCA, xij(t), 

which is functional data for the j-th running form variable of 

i-th runner at distance t in the domain T, can be expressed by

xij(t) ¼ m̂j(t) þ
PK
k¼1

zijkujk(t) ¼ m̂j(t) þ z
T
ij uj(t) 

where m̂j(t) is a sample average function of functional data 

xij(t) (i ¼ 1, � � � , n), K is the number of FPC, 

zij ¼ (zij1, . . . , zijK)T is a vector of FPC scores, 

uj(t) ¼ (u j1(t), . . . , ujK(t))T is a vector of eigenfunctions, and 

superscript T denotes the transpose. The FPCA scores of test 

data were calculated based on the mean functions and 

eigenfunctions derived from the FPCA results of the training data.

Prior to constructing the prediction model, we examined 

multicollinearity among the FPC scores in the training dataset 

using variance in>ation factors (VIF) and correlation 

coefficients. Variables with VIF > 10 and absolute correlation 

coefficients > 0.7 were considered for removal to maintain model 

interpretability while avoiding severe multicollinearity. Based on 

these criteria, we removed pace, body drop, pelvic drop, and 

kicking phase duration from the predictor variables. After 

removing these variables, we confirmed that all remaining 

variables showed VIF < 7, ensuring both model interpretability 

and statistical validity. Using the time series datasets 

transformed into functional data as predictors and the class 

labels whether the runner hits the wall as a response, we 

constructed the following functional logistic regression model.

log
pi

1 � pi
¼ b0 þ

XJ

j¼1

ð

T

xij(t)bj(t)dt 

where pi is a probability that the runner hits the wall for the i-th 

runner given the functional data for the running form variables, 

b0 is an intercept, bj(t) is coefficient function for the j-th 

variable, and J is the number of variables. The coefficient 

function bj(t) represents how the functional data 

xij(t) (i ¼ 1, . . . , n) relate to the classification at arbitrary 

distance point t. In addition, we suppose that the coefficient 

function bj(t) is represented by basis expansions as

bj(t) ¼
PK
k¼1

bjkujk(t) ¼ bT
j uj(t) 

where bj ¼ (b j1, . . . , bjK)T is a vector of unknown parameters. 

Then, using the fact that the eigenfunctions u j1(t), . . . , ujK(t) 

are orthonormal, we can represent the functional logistic 

regression model as follows.

log
pi

1 � pi
¼ b0 þ

XJ

j¼1

zT
ij bj 

The unknown parameters b1, . . . , bJ in the model were estimated 

by the penalized likelihood method with an L2-type penalty, and 

cross-validation was performed using f1-score as the evaluation 

metric. The importance of each variable for prediction was 

assessed using the L2 norms of regression coefficients 

b̂j ¼ (b̂ j1, . . . , b̂jK)T , and the coefficient functions were 

represented using these regression coefficients and 

corresponding eigenfunctions as b̂j(t) ¼ b̂T
j uj(t).

3 Results

The relative pace profiles of runners who experienced 

“hitting the wall” during the race and those who did not are 

shown in Figure 3. The total number of runners who hit the 

wall was 306 (46.0%), while 359 (54.0%) runners did not. The 

slowing down of pace began at approximately 20 km, and the 

disparity between the two groups continued to widen until 

around 38 km.

When evaluated on the test dataset, the prediction model 

achieved a performance of 73.9% in accuracy, 75.8% in recall, 

70.1% in precision, and 72.9% in F1-score. In other words, the 

model correctly identified about 7 out of every 10 runners, 

successfully retrieved 3 out of every 4 runners who actually 

classified as “hit the wall”, and delivered precise predictions for 

about 7 out of every 10 runners who predicted as “hit the wall”.

Figure 4 shows the coefficient functions of the functional 

logistic regression model. In these coefficient functions, positive 

values indicate that runners are more likely to hit the wall when 

the corresponding running form variable is above its mean 

value at that point in the race, while negative values indicate a 

higher probability of hitting the wall when the variable is below 

its mean. The three variables presented in the upper graph 

correspond to those with the largest L2 norms, while those in 
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the lower graph represent those with the smallest L2 norms. For 

step length, the coefficient function started with positive values 

at the beginning of the race but turned negative after 

approximately 10 km and continued a decreasing trend 

thereafter. Ground contact time and vertical stiffness exhibited 

positive values at the start, approached zero during the 5–10 km 

segment, and then showed an increasing trend again. These 

trends were associated with a higher likelihood of hitting the wall.

4 Discussion

The primary aim of this study was to predict significant pace 

reduction in the latter half of a full marathon based on 

biomechanical parameters observed during the first half of the 

race. Based on the information of running form in the first half 

of a full marathon, our functional logistic regression model 

successfully predicted the occurrence of significant slowing 

down in pace in the latter half of the race with the accuracy of 

more than 70%.

Our classification model revealed that severe pace reduction in 

the latter half of a full marathon can be predicted based on 

biomechanical parameters in the first half of the race. 

A previous study (23) constructed binary classification models 

to distinguish between pre- and post-fatigue states using IMU 

data during 400 m running at each participant’s 5 km race pace. 

Their subject-independent model achieved 75% accuracy. While 

our model demonstrates similar classification performance, our 

approach offers a significant advancement in ecological validity 

by addressing several key differences in study design and 

population. Buckley et al. utilized a controlled fatiguing protocol 

(Beep Test) to induce fatigue. As Buckley et al. themselves 

acknowledged, this induced fatigue may be considered an 

unnatural way of fatiguing compared to the progressive decline 

in running economy over extended time and distance in an 

actual race. In contrast, our research examined biomechanical 

patterns during actual marathon races where “hitting the wall” 

naturally occurs in the real-world settings. Furthermore, our 

data collection in a natural marathon environment allowed for 

greater variety in race conditions and participant demographics 

than their sample of 21 recreational runners in a controlled 

track setting. These factors enhance the potential for practical 

FIGURE 4 

Coefficient functions of the 3 variables with the largest L2 norms in the functional logistic regression model.

FIGURE 3 

Comparison of relative pace profiles during marathon races 

between runners who experienced “hitting the wall” and those 

who did not. The thick blue and orange curves represent mean 

relative paces of runners who experienced and did not experience 

“hitting the wall”, respectively. Light-colored curves show 

individual runner data. Relative pace is expressed as a ratio to 

each runner’s base pace (1.0 = average pace from 5 to 20 km); 

higher values indicate slower pace.
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application of our model across broader populations of runners 

and diverse race conditions.

Examination of coefficient functions revealed biomechanical 

parameters that significantly contribute to predicting pace 

reduction during marathons. Among these, step length, ground 

contact time, and vertical stiffness emerged as the most 

in>uential predictors. While running speed is fundamentally the 

product of step length and cadence, our analysis showed that 

step length patterns were more predictive of pace reduction than 

cadence. A recent meta-analysis (33) found that height- 

normalized step length showed stronger correlations with 

running economy (r = 0.27) compared to absolute stride length 

(r = 0.12) or cadence (r = −0.20). This suggests that height- 

normalized step length may better re>ect individual running 

mechanics and fatigue states than absolute measurements. As 

fatigue progresses, runners experience reduced leg stiffness (19), 

compromising efficient elastic energy storage and increasing 

metabolic cost. This fatigue-induced reduction in leg stiffness 

likely manifests as shortened height-normalized step length, 

indicating impaired propulsive mechanics. Our findings suggest 

that these changes in height-normalized step length may more 

significantly impact running economy and pace than cadence 

alterations. While previous reviews have associated greater leg 

stiffness with improved running economy (19, 33), interpreting 

vertical stiffness derived from IMU data requires careful 

consideration. Higher calculated vertical stiffness might result 

from reduced knee >exion during ground contact. Tartaruga 

et al. (34) reported that less knee >exion at initial contact 

correlates with poorer running economy (r = −0.41). Therefore, 

elevated vertical stiffness in fatigued states might indicate 

inefficient force management rather than optimal elastic energy 

utilization, consequently affecting ground contact time.

The generalizability of our prediction model may be 

in>uenced by several confounding factors. Environmental 

conditions, such as ambient temperature and terrain gradient, 

are known to significantly impact running performance and 

biomechanics (35–38). Our current model does not explicitly 

account for these external variables, which could modulate how 

biomechanical parameters change under fatigue in different race 

environments. Furthermore, runner experience levels could be a 

critical factor. Highly trained athletes might exhibit different 

fatigue-induced biomechanical alterations and maintain their 

self-optimized stride patterns more effectively than recreational 

runners (19). Similarly, variations in race pacing strategies (e.g., 

even pacing vs. positive splits) can in>uence the onset of fatigue, 

potentially affecting the predictive power of biomechanical 

parameters captured in the first half of the race. Future models 

incorporating these contextual factors could enhance predictive 

accuracy and generalizability, though this would introduce 

increased data complexity.

The present study’s approach—utilizing primarily 

biomechanical parameters and employing FPCA for efficient 

time-series data reduction, combined with interpretable logistic 

regression modeling—offers practical advantages for real-world 

applications in coaching contexts. For instance, runners can use 

this approach to analyze their half-marathon data so as to 

predict if they can maintain their pace during a full marathon, 

providing valuable insights for pre-race strategy development. 

Additionally, the biomechanical parameters identified through 

the model can help runners identify specific form improvements 

to mitigate their risk of “hitting the wall”. From a practical 

standpoint, a prediction improvement of even 5%–10% in 

classifying severe pace reduction could be meaningful for 

runners and coaches. Such an improvement could lead to more 

informed pacing decisions, targeted biomechanical interventions 

in daily training, and ultimately, a higher success rate in 

achieving marathon goals while potentially reducing injury risk. 

Even not perfect predictive capability can provide an objective 

assessment, allowing for adjustments in training load or race 

strategy that were previously based on subjective feeling alone. 

This shift from subjective perception to objective and data- 

driven insights represents a crucial step towards optimized 

marathon performance.

This study has several limitations that should be 

acknowledged. Firstly, our participants primarily consisted of 

Japanese runners. This may limit the generalizability of our 

findings to runners of different customs, body shapes, or 

training cultures. Secondly, the study might be subject to 

selection bias, as participants spontaneously purchased the IMU 

device, potentially leading to a sample that does not fully 

represent the broader marathon runner population. For 

instance, highly motivated or experienced runners might be 

represented, which could explain the lower proportion of 

runners who classified as “hit the wall” in our study compared 

to some previous research (5, 6). Moreover, while our prediction 

model successfully identified predictors of severe pace reduction, 

it did not categorize different magnitudes of slowing down in 

pace. Future research should address these limitations to 

enhance the external validity and applicability of the model 

across diverse running populations and race contexts. Besides, 

our current modelling approach does not allow for the 

identification of specific time windows within the first half of 

the race where predictive signals for pace reduction become 

more apparent.

Building upon the current findings, several opportunities for 

future research are recommended to enhance the model’s 

predictive accuracy and practical utility. First, validation of the 

model in diverse populations from various regions and across 

different runner experience levels is essential to confirm its 

generalizability. Second, integrating additional physiological 

markers, such as heart rate data, and considering individual 

metabolic profiles or demographic factors like gender and 

personal best times may significantly improve predictive 

accuracy (6) and provide a more comprehensive understanding 

of the “hitting the wall” phenomenon. Furthermore, 

incorporating environmental conditions (e.g., ambient 

temperature, humidity) and course-specific factors (e.g., 

elevation changes) into the prediction model could account for 

external in>uences on biomechanical changes and pace 

reduction (35–38). Third, while this study utilized L2 norms to 

quantify the importance of coefficient functions for practical 

comparison, future methodological advancements should 
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explore more nuanced quantitative measures of variable 

importance that could offer deeper practical interpretations for 

runners and coaches. Finally, future studies should explore the 

real-time implementation of such prediction models using 

wearable technology to provide immediate feedback to runners 

during training or races, potentially through smartphone 

applications. This would facilitate proactive adjustments to 

running strategy or form, enabling runners to mitigate the risk 

of severe pace reduction and achieve more consistent 

performance in endurance events.
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