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Introduction

Stroke is a broad term encompassing arterial ischemic stroke, cerebral venous

thromboembolism and infarction, and non-traumatic brain hemorrhage. Pediatric stroke is

further divided into perinatal stroke when occurring in the first 28 days of life, and childhood

stroke for patients 29 days to 18 years. While there are challenges across all subtypes of

pediatric stroke, this discussion will focus on arterial ischemic stroke (AIS).

Pediatric AIS is less common than stroke in adults, occurring at a rate of 1.6–4.4 per

100,000 per year in children (Agrawal et al., 2009; deVeber et al., 2017; Lehman et al., 2018;

Ferriero et al., 2019; Mallick et al., n.d.). This number is higher among newborns with a

rate of about 10–37 per 100,000 per year (Agrawal et al., 2009; deVeber et al., 2017; Dunbar

et al., 2020). Despite its relative infrequency, pediatric stroke is a significant cause of lifelong

morbidity (Greenham et al., 2016). Outcomes vary on infarct location and size, but up to 80%

of children who have suffered a stroke develop hemiparesis or other motor impairments

(deVeber et al., 2000; Ganesan et al., 2000). Many have cognitive deficits including lower

intelligence quotient scores, issues with attention, processing speed, memory, and executive

function (Westmacott et al., 2010; Hajek et al., 2014; O’Keeffe et al., 2014; Studer et al., 2014).

Epilepsy occurs in about 15% of children who have suffered a stroke (deVeber et al., 2000).

All of these sequela result in lower quality of life and lower rates of financial independence

and independent living among childhood stroke survivors (Smith et al., 2015) many who

have a normal life expectancy, so will live with these deficits for an average of 70 years. The

most common risk factors for childhood AIS (CAIS) are focal cerebral arteriopathy (50%),

cardiac disease (30%), arterial dissection (25%), and prothrombotic states (13%) (Mackay

et al., 2011). The leading hypothesis on perinatal AIS is that it is the result of placental

thromboembolism, though other theories exist (Bernson-Leung et al., 2018; Dunbar and

Kirton, 2019).

Part 1: acute arterial ischemic stroke diagnosis and
treatment

Diagnosing stroke

Stroke is the most common cause of focal neurologic deficits in adults, resulting in the

development of well-oiled pathways for emergent assessment and imaging. Stroke alerts

and similar protocols have been implemented in most large pediatric centers (Bernard

et al., 2014; Tabone et al., 2017). However, not all children who are eligible for hyperacute

interventions receive them due to delays in diagnosis and in transfer to pediatric stroke

centers. Interestingly, the majority of children present to care within 4.5 h of symptom onset

(Hutchinson et al., 2021), indicating a need for improvement among healthcare providers
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in early recognition of stroke symptoms and acquisition of

rapid neuroimaging (Grand Challenge 1). The current delays

are likely due in part to the relative infrequency of stroke in

children, and higher frequency of stroke mimics such as migraine,

seizure, functional neurologic disorder, and demyelinating diseases

(Shellhaas et al., 2006; Hutchinson et al., 2021). However, the

availability of interventions that could prevent death or a lifetime

of disability necessitates that stroke be ruled out in any child

presenting with focal neurologic deficits.

Acute interventions

The Thrombolysis in Pediatric Stroke (TIPS) study was

designed to determine safety, dose, and feasibility of intravenous

tPA in children, but was closed for lack of accrual (Rivkin et al.,

2015). Despite this, it resulted in the development of a network

of pediatric stroke centers, through which the use of tPA in

children was retrospectively assessed, and found to be safe but

with questionable efficacy (Amlie-Lefond et al., 2020). While there

are no pediatric trials demonstrating efficacy, tPA is considered

in children meeting the adult criteria and present within 4.5 h,

using the adult dose of 0.9 mg/kg, with the first 10% given as a

bolus (Rivkin et al., 2016). Despite its widespread use in pediatric

patients, there have been no studies evaluating optimal tPA dose in

children, and some data suggest that higher doses may be needed

due to developmental differences in plasminogen levels (Parmar

et al., 2006). Tenecteplase (TNK) is rapidly replacing tPA in most

adult centers due to numerous studies showing non-inferiority to

tPA, a similar safety profile, and increased ease of administration

(Kobeissi et al., 2023; Wang et al., 2023). Some studies even suggest

higher reperfusion rates with TNK (Singh et al., 2023). However,

there are no studies assessing use of TNK in children with AIS. In

fact, there is no FDA-approved use for TNK in pediatrics, meaning

pediatric hospitals would have to stock it specifically for stroke,

which is an infrequent occurrence.

Thrombectomy has also proven to be safe and effective through

numerous large randomized controlled trials (RCT) in adults

within 6–12 h from time of last known normal (Fransen et al.,

2014; Campbell et al., 2015; Goyal et al., 2015; Jovin et al., 2015;

Saver et al., 2015; Bracard et al., 2016). The DEFUSE 3 and

DAWN studies further expanded this window to 16 and 24 h,

respectively, when selecting patients with favorable penumbra size

using rapid perfusion imaging (Albers et al., 2018; Nogueira et al.,

2018). Thrombectomy is considered standard of care for adults

with large vessel occlusion, presenting within 24 h from last known

normal, and with imaging showing salvageable brain tissue (Powers

et al., 2019). Like adults, the natural history of children with

large vessel occlusion is poor, with most experiencing lifelong

disability or death (Bhatia et al., 2022), but comparable RCT data

for thrombectomy in pediatrics does not exist. Case reports and

a few larger cohort studies have demonstrated thrombectomy in

children to be feasible and safe, with good neurologic outcomes

in properly-selected patients (Tabone et al., 2017; Bigi et al., 2018;

Bhatia et al., 2019; Sporns et al., 2020). The largest report by

Bhatia et al., in 2019 was a systematic review of the literature from

1999 to 2019 and meta-analysis which included 113 mechanical

thrombectomies in 110 children. They found 90.6% had good

long-term neurologic outcomes. Death occurred in 2 patients and

symptomatic hemorrhage in 1 patient. Importantly, the authors

raise concern for publication bias and emphasize the need for

prospective registries in pediatrics (Bhatia et al., 2019). The Save

ChildS study was a multi-center retrospective cohort study that

included 73 patients who underwent thrombectomy. They also

found that the majority of patients had good neurologic outcomes,

and there were similar rates of symptomatic hemorrhage to those

reported in adult studies (Sporns et al., 2020). Save ChildS Pro

is an ongoing multicenter prospective registry for thrombectomy

in pediatrics (Sporns et al., 2021). The current American Heart

Association guidelines suggest thrombectomy be considered in

patients with disabling neurologic deficits, confirmed LVO on

imaging, and of larger size (although not specified) (Ferriero et al.,

2019), but is not yet considered standard of care. Limitations for

the use of thrombectomy include patient size (weight limiting

the amount of contrast available for use) and vessel size (distal

branch clots).

Although TIPS closed due to lack of enrollment (Rivkin et al.,

2015), a RCT for an acute intervention in pediatrics may be possible

in the future with improved diagnosis and timely transport to

pediatric stroke centers. However, for tPA and thrombectomy, a

RCT in pediatrics will never be possible as the stroke community

has lost equipoise. Due to compelling data in adults and success

in pediatric cases, not offering these therapies would be unethical.

It remains unknown how much and what type of data is required

in pediatric stroke to make an intervention standard of care in the

absence of a large RCT. Incorporating TNK into pediatric stroke

care is also going to be a challenge. Replacement of tPA with

TNK in adult centers will necessitate its use in pediatric patients

treated in those settings or in combined adult-pediatric institutions.

Pediatric hospitals will have to decide whether or not to switch

their protocols in the absence of data from large RCT in pediatrics,

but also with lack of strong evidence supporting continual use of

tPA. At this time, the safety and optimal dose of TKN in children

is not known. There are many ongoing trials in adults examining

use of TNK in extended time windows, for minor stroke, and with

thrombectomy, which are all questions that will also need to be

addressed in pediatric patients as well.

Neuroimaging

It is not known if the well-established adult time windows for

reperfusion interventions are applicable to children. Preliminary

data in mice (Faber et al., 2011) and looking at collaterals in

aneurysmal subarachnoid hemorrhage (Moftakhar et al., 2015)

suggest that younger patients may have more robust collaterals.

If true, one would expect slower infarct growth rate allowing

for longer time to reperfusion in children compared to adults.

However, there is limited data on collateral status in pediatric

ischemic stroke patients. A secondary analysis of 33 patients from

Save ChildS study found over half of their cohort (19 patients)

to have poor collaterals. The patients with good collaterals had

smaller final stroke burden and slower early infarct growth, but

there was no difference in clinical outcomes between the groups
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(Lee et al., 2021).More data is needed to understand if differences in

vascular health and collateral blood flow in pediatric patients may

result in differences in time to stroke completion. Rapid perfusion

imaging is not readily available at many pediatric centers, and the

protocols used in adult stroke have not been validated in children

(Grand Challenge 2). Further research is needed to determine

best perfusion imaging methods, reperfusion time windows in

children, if there are patient/age-specific differences, and if there

are different ranges for certain patient populations such as children

with congenital heart disease.

It is also important to point out that for many pediatric

patients, acute interventions are not accessible due to numerous

barriers. These include few pediatric stroke centers and long travel

times to care, lack of access to rapid neuroimaging, and lack of

interventional neuroradiologists. Another important challenge is

expanding access to these life-saving interventions to all eligible

children, both within the US and globally. Training adult stroke

practitioners to provide services for pediatric stroke patients could

greatly improve this problem.

Part 2: special populations in pediatric
stroke

Congenital heart disease

Cardiac disease is a significant cause of AIS, identified as a risk

factor in about 30% of CAIS, with the majority of those patients

having congenital heart disease (Mackay et al., 2011; Dowling et al.,

2013). Congenital heart disease (CHD) occurs in 4–10 per 1,000

live births (Go et al., 2014). Within the last 50 years, surgical

advancements have made it possible for patients with congenital

heart disease to survive into adulthood, and it is estimated that in

North America, ∼1 in 150 adults are expected to have some form

of CHD (Warnes et al., 2008).

CHD is a heterogenous term that includes both cyanotic and

acyanotic structural heart defects. The risk of stroke in CHD is

due to many factors that vary across the lifespan such as cardiac

anatomies that predispose to clot formation and those that allow for

paradoxical emboli. Certain cardiac procedures increase the risk for

stroke, as does the need for mechanical circulatory support devices

(Sinclair et al., 2015). Some data suggest that children with cyanotic

CHD and single ventricle physiology are at highest risk for stroke

(Asakai et al., 2015; Sinclair et al., 2015). However, prior studies

have been limited by small numbers of patients with different

CHD diagnoses.

We know that this stroke risk continues through adulthood.

One large Swedish study found that adults with CHD had a

6 times higher risk of AIS than controls, despite having fewer

traditional stroke risk factors of hypertension, diabetes mellitus,

and hypercholesterolemia (Giang et al., 2020). A large Danish

cohort study found CHD patients to have increased stroke risk as

well as increased post-stroke mortality compared to the general

population (Pedersen et al., 2019). Preliminary studies suggests

that AIS risk may be higher in adult CHD patients with heart

failure, recent MI, and co-morbid diabetes mellitus (Lanz et al.,

2015). Atrial fibrillation is also common in adult CHD patients

(Abiodun et al., 2016). More research is needed to understand

which patients are at greatest risk and how this risk changes

over time to guide screening and stroke prevention interventions

(GrandChallenge 3). Further, it must be recognized that life-saving

surgeries for certain CHD have only been available for 30–40 years,

so the numbers of adult survivors are few, but the numbers are

growing, and will continue to grow.

The time of greatest stroke risk in children with CHD is after

cardiac procedures (Asakai et al., 2015). Despite many children

with CHD having strokes while hospitalized, delays in diagnosis are

common. Cardiac patients are often on anticoagulation, especially

post-operatively, precluding the use of thrombolysis, but many

would be thrombectomy candidates if a stroke was identified

within the time window. However, the use of prolonged sedation

and pharmacologic paralysis can mask seizures and hemiparesis.

Furthermore, patients are often unable to undergo MRI due to

medical devices such as pacing wires, or inability to travel off the

cardiac unit. While HUS and portable HCT can be obtained at

the bedside, these can miss up to 80% of acute strokes (Sinclair

et al., 2015). This necessitates development of more sensitive

bedside neuroimaging studies. Neuromonitoring with continuous

electroencephalography (cEEG), near infrared spectroscopy, and

transcranial Doppler is used inmany cardiac units to detect changes

in cerebral blood flow and guide neuroimaging. However, more

research is needed to better understand which patients should be

monitored, for how long, and if this impacts neurologic outcomes

(Sinclair et al., 2015).

There is also some evidence that patients with CHD are more

likely to have coexisting thrombophilia (Sträter et al., 1999). The

mechanism for this is not understood, and currently routine

thrombophilia screening is part of routine care for patients with

CHD. More research is needed to understand if this is another

factor contributing to stroke risk in this population, and should be

screened for and mitigated if identified.

Finally, there remains an unanswered question about the

clinical significance of a patent foramen ovale (PFO). One large

study found PFO to be significantly more prevalent among patients

with cryptogenic AIS compared to patients with known stroke

etiology and healthy controls (Shih et al., 2021). However, we do

not know whether, if the PFO is left unclosed, these patients are

at increased risk for subsequent AIS. It is also not known whether

PFO closure increases risk for developing atrial fibrillation later in

life, which is well-known to be associated with AIS.

Sickle cell anemia

Patients with sickle cell anemia (SCA) are another population

with increased stroke risk throughout the lifespan. SCA is most

common in sub-Saharan Africa where it is estimated that 230,000

affected children are born each year, which accounts for about 80%

of all SCA cases globally. In comparison, about 2,600 and 1,300

children with SCA are born per year in North America and Europe,

respectively (Rees et al., 2010).

The incidence of first stroke (hemorrhagic or ischemic) in

patients with SCA is 0.61–0.761 per 100 patient years (Powars et al.,

1978; Ohene-Frempong et al., 1998). A large cohort study in the

US demonstrated that about 25% of patients with SCA will have
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had a stroke by age 45 (Ohene-Frempong et al., 1998). Notably,

the risk for different types of stroke changes over the lifespan, with

the risk of ischemic stroke being greatest during childhood and

older adulthood, and risk for hemorrhagic stroke greatest during

the second decade of life (Powars et al., 1978; Ohene-Frempong

et al., 1998; Njamnshi et al., 2006; Kirkham and Lagunju, 2021).

Furthermore, it is estimated that approximately 50% of patients

with SCA experience “silent” cerebral infarcts (SCI) (DeBaun et al.,

2020; Houwing et al., 2020), which are ischemic lesions identified

on MRI that were not associated with an acute neurologic deficit.

One small study reported a prevalence of SCI in up to 80%

of patients when using a 7T MRI (van der Land et al., 2015).

Although these are considered “silent” or subclinical, many studies

have shown that SCI burden correlates with cognitive deficits

(Houwing et al., 2020) and, along with stroke, may significantly

alter educational attainment, employment status, and quality of life

(DeBaun et al., 2020).

Studies have also shown that cerebral blood flow (CBF) and

oxygen extraction fraction (OEF) are elevated in both children and

adults with SCA (Prohovnik et al., 1989; Jordan et al., 2016; Fields

et al., 2022). This is thought to be compensatory for the reduced

arterial oxygen content due to chronic anemia. However, one study

found that patients with SCA have increased CBF even compared

to patients with chronic anemia, suggesting there may be other

pathophysiologic mechanisms impacting cerebral autoregulation

and stroke risk in patients with SCA that are not yet understood

(Fields et al., 2022). It has also been shown that regions in the

brain with high SCI burden correlate with regional increases inOEF

(Fields et al., 2015).

Chronic transfusions aimed to lower hemoglobin S fraction

to under 30% decrease stroke risk in SCA by 92% in patients

identified to be at increased stroke risk by elevated velocities on

transcranial doppler (TCD) (Adams et al., 1998). A subsequent

study, demonstrated that discontinuation of chronic transfusions

raised the stroke risk back to pre-treatment levels (Adams and

Brambilla, 2005). Chronic transfusion therapy has also been shown

to prevent accumulation of new SCI in patients with prior silent

infarcts (DeBaun et al., 2014), and to reduce elevated to CBF and

OEF (Guilliams et al., 2018). While effective, chronic transfusion

therapy is not available in low-resource settings and many parts of

the world with high rates of SCA. The SPRING trial conducted in

Nigeria showed that low-dose hydroxyurea also decreases stroke

risk in patients with SCA (Abdullahi et al., 2022), although is

less effective than chronic transfusions (Ware and Helms, 2012).

Furthermore, hydroxyurea therapy requires routine TCD screening

and a life-long medication, which is still challenging in low-

resource settings. Although interventions to decrease stroke in SCA

exist, they are much less or not at all available to patients in sub-

Saharan Africa where SCA burden is highest. It has also been shown

that even within the United States, there are significant inequities

among patients with SCA that limit access to care (Lee et al., 2019).

Another option for managing stroke risk in SCA is to cure

SCA altogether. Allogenic hematopoietic stem cell transplant and

gene therapy have recently entered the scene as curative therapies

(Chakravarthy and Friedman, 2022). However, these are not

without significant risks. It also requires access to a center that

offers these treatments, and the ability to attend frequent medical

appointments and prolonged hospitalizations. It is likely to be

many decades before these options are accessible to the majority

of patients with SCA. Further research should focus on not only

preventing AIS in SCA, but on neuroprotective strategies to prevent

subclinical or silent infarcts, with a focus on therapies that are

accessible to all patients with SCA (Grand Challenge 4).

Part 3: rehabilitation

It is generally thought that rehabilitation plays an important

role in achieving optimal post-stroke recovery. However, current

guidelines only recommend that patients undergo rehabilitation,

without specification on techniques or duration (Hart et al., 2022).

This is due to a general dearth of evidence on optimal rehabilitation

strategies in pediatrics (Malone and Felling, 2020; Hart et al., 2022).

Small studies have shown constraint-induced movement

therapy (CMIT) to improve upper limb function after perinatal

stroke (Taub et al., 2011), although it is unknown whether

these effects are sustained long-term (Mirkowski et al., 2019).

I-ACQUIRE is a large RCT currently enrolling patients and

examining the use of moderate dose (3 h per day) or high dose (6 h

per day) of CIMT to usual treatment and will. Of note, I-ACQUIRE

is enrolling patients with perinatal stroke, and a comparable large

RCT does not exist for childhood AIS.

Transcranial direct current stimulation (tDCS) is a non-

invasive brain stimulation technique that alters cortical excitability

and may improve neuroplasticity after stroke (Stagg and Nitsche,

2011; Fleming et al., 2018). Initial pediatric studies have suggested

that tDCS may be effective in improving lower limb function after

perinatal stroke (Fleming et al., 2018). These results have not been

replicated for upper limb function in pediatric patients (Fleming

et al., 2018; Mirkowski et al., 2019), but there have been some

studies suggesting efficacy in adult patients (Chhatbar et al., 2016).

Repetitive transcranial magnetic stimulation (rTMS) is another

non-invasive technique that works by inhibiting regional brain

activity and increasing contralateral cortical excitability. A small

trial of 10 patients demonstrated rTMS to be safe and suggested

improvement in hand function in perinatal stroke patients (Kirton

et al., 2008). The PLASTIC CHAMPS was a blinded randomized

trial in which 154 patients with perinatal stroke received daily

rTMS, CIMT, both, or neither in additional to motor learning

therapy. The addition of rTMS, CIMT, or both doubled the chances

of clinically significant improvement (Kirton et al., 2016). Similarly,

tDCS can also be used with other forms of therapy, including

CMIT or robotic-assisted therapy (Raess et al., 2022). Data from

these small studies suggest tCDS and rTMS are safe, feasible, and

potentially helpful in recovery after perinatal stroke. However, no

studies have tested these interventions in childhood AIS. It also

remains unknown if the improvement is long-lasting, how to best

use in conjunction with other therapies (Mirkowski et al., 2019),

whether the same parameters used in adults are applicable to

children, and if patient-specific parameters should be considered

(Gillick et al., 2014). TCDS and rTMS may be useful for non-

motor realms of stroke recovery too. Both have been shown to be

potentially effective in treating aphasia in adults (Fridriksson et al.,

2018; Low et al., 2022; Stockbridge et al., 2023), but has not yet been

explored for non-motor uses in pediatrics.
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Robotic-assisted therapy and brain computer interfaces (BCI)

are also being used more and more in rehabilitation post-stroke.

The use of an exoskeleton has been shown to improve arm

and hand function post-stroke (Biffi et al., 2018; Butzer et al.,

2019). Other studies have shown promise in use of robotics or

video-game-guided therapy in motor recovery (Fasoli et al., 2008;

Valdés et al., 2018). For patients with severe motor deficits, brain

computer interface-based interventions have the potential to be

life-changing. These devices translate intention-driven electrical

brain activity to control external devices (Jadavji et al., 2022).

Small studies have shown that children are able to use BCI devices

to operate power mobility devices (Floreani et al., 2022). This

not only provides much needed independence, but also affords

more opportunities for other areas of recovery through improved

social participation. Currently these devices are not universally

available and few providers are trained on using them, but

they represent promise for patients with severe neurologic injury

after stroke.

In summary, there is a wide range of rehabilitation techniques,

interventions, and devices that are potentially helpful for stroke

recovery. Like other areas of pediatric stroke, much of this

has been extrapolated from adult stroke data and optimal

regimens in children are not well-established. More research

is needed to understand the type, timing, and duration of

rehabilitation post-stroke, as well as how to individualize these

interventions to the heterogenous pediatric stroke population

(Grand Challenge 5).

Summary of grand challenges in
pediatric stroke

1. Improvement in healthcare provider recognition of stroke

symptoms allowing for acquisition of rapid neuroimaging and

increased eligibility for acute interventions.

2. Validation of rapid perfusion imaging protocols in children

or identification of alternative imaging techniques to identify

patients who will benefit from reperfusion therapies.

3. Establish an understanding of the unique stroke risk

associated with each type of congenital heart disease and how

this risk changes across the lifespan.

4. Development of neuroprotective strategies that prevent AIS

and silent infarction in patients with sickle cell anemia that

are accessible to all patients with SCA, including those in

Sub-Saharan Africa.

5. Determination of optimal type, timing, and duration of

rehabilitation post-stroke.
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