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VALIDATE—Utilization of the
Viz.ai mobile stroke care
coordination platform to limit
delays in LVO stroke diagnosis
and endovascular treatment

Thomas Devlin1*, Lan Gao2, Oleg Collins2, Gregory W. Heath3,
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Health Science Center Chattanooga, Department of Medicine, Chattanooga, TN, United States,
4TeleSpecialists, LLC, Fort Myers, FL, United States

Background: Thousands of hospitals worldwide have adopted mobile artificial

intelligence (AI)-based stroke care coordination platforms. Studies exploring the

benefit of these platforms have been scrutinized due to small sample size, serial

cohort design, and measurement of metrics with multiple determinants. In this

large multi-center study, we evaluated the ability of an AI-based stroke care

coordination platform to expedite contact with the interventionalist (NIR) for

potential thrombectomy.

Methods: Acute stroke consultations seen by TeleSpecialists, LLC physicians at

166 facilities (17 states) utilizing Viz.ai software (AI) vs. no AI software (non-AI)

were extracted from the TeleCare by TeleSpecialistsTM database from December

1, 2021, through March 31, 2022. The primary outcome was time from patient

arrival to first contact with the interventionalist to discuss need for potential

thrombectomy (Arrival-to-NIR notification).

Results: A total of 14,116 cases were analyzed. Compared to the non-AI cohort,

Arrival-to-NIR notification in the AI cohort was: (1) 39.5min faster (44.13%

reduction, p < 0.001) in the overall analysis; (2) 33.0min faster (34.0% reduction,

p < 0.001) in the non-thrombectomy (non-TC) facility subgroup analysis;

and (3) 34.0min faster (43.59% reduction, p < 0.001) in the thrombectomy

capable (TC) facility subgroup analysis. IQR range comparison demonstrated a

significant improvement in uniformity of stroke workflow across all AI subgroups.

Significant, albeit small, confounding biases were revealed in the data. The

presence of AI within the non-TC subgroup correlated with a lower acceptance

rate for thrombectomy by the NIR (delta=−10.79% absolute and 23.17% relative

reduction, p < 0.0001).

Conclusions: While this study was limited by our inability to capture detailed

neuroimaging timelines and patient outcomes, it suggests a potential significant

benefit of AI-based stroke care coordination platforms and underscores the

critical need to development robust “big data” systems to study the e�ects of

AI, and other emerging technologies, on stroke systems of care.
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Introduction

The rapid treatment of large vessel occlusion (LVO) stroke

has been validated in short- and long- treatment window

clinical trials and meta-analyses as a critical determinant of

mechanical thrombectomy eligibility and good patient outcomes

(Sun et al., 2013; Goyal et al., 2015, 2016; Jovin et al., 2015;

Saver et al., 2015; Albers et al., 2018; Mulder et al., 2018;

Nogueira et al., 2018; Carrion-Penagos et al., 2022). Previous

reports indicate that factors delaying mechanical thrombectomy

(MT) are complex and often driven by delay in LVO-stroke

diagnosis and contact with neurointerventionalists (NIR; Sun

et al., 2013; McTaggart et al., 2017; Lachkhem et al., 2018;

Danziger et al., 2021; Aroor et al., 2022; Carrion-Penagos et al.,

2022). In hopes of minimizing such delays, artificial intelligence

(AI)-based mobile stroke platforms are now being promulgated

worldwide. By combining AI-based automated LVO detection,

real-time mobile high-resolution neuroimage file sharing, and

multi-user communication capabilities, these platforms have been

touted to accelerate stroke workflow (Murray et al., 2020; Lotan,

2021). The most utilized of these platforms are Viz.ai (VIZ)

and RapidAI. Several hospitals have reported improvement in

stroke workflow after implementation of such systems (Table 1;

Devlin et al., 2020; Morey et al., 2021; Elijovich et al., 2022;

Hassan et al., 2022a,b; Figurelle et al., 2023). Conclusions based

on these past reports must be approached cautiously for three

reasons. First, these studies have been primarily smaller single

center studies raising concern for reproducibility. Secondly, the

metrics analyzed in past studies have been complex and heavily

influenced by amultitude of variables not directly under the control

of the AI platform (e.g., spoke hospital door-in door-out times,

time to groin puncture, length of stay, and patient outcome).

Lastly, most studies have been serial cohort studies in which

metrics were assessed before and after AI-based stroke platform

implementation (often with years between cohorts) during which

time numerous other changes in stroke workflow likely transpired.

A large-scale multicenter parallel cohort study focused on stroke

workflow is now warranted to assess the potential benefits of a

mobile AI-based care coordination platform, better understand

potential biases in the data, and assist in the design of future “big

data” studies.

Abbreviations: AI, Artificial intelligence-enabled hospital cohort; Arrival-to-

NIR notification, Patient arrival time to first call by the teleneurologist

to the NIR to discuss potential MT in patient with suspected LVO; CT,

Computerized tomography; CTA, Computerized tomography angiography;

CTP, Computerized tomography perfusion; ED, Emergency department;

Login-to-NIR contact, Teleneurologist first camera login time to time to first

contact with NIR to discuss need for possible thrombectomy; MIP, Maximum

intensity projection images on CT; MT, Mechanical thrombectomy; NIR,

Neurointerventionalist; Non-AI, Non-artificial intelligence-enabled enabled

hospital cohort; Non-TC, Non-thrombectomy capable hospital subgroup;

NS, Not statistically significant; PACS, Picture archiving and communication

system; TC, Thrombectomy capable hospital subgroup; VIZ, Viz. ai

automated LVO detection platform.

Methods

Acute stroke consultations seen by TeleSpecialists, LLC

physicians in the emergency departments of 166 facilities (17 states)

that utilized the Viz.ai platform (AI) and non-AI facilities (non-

AI) were extracted from the TeleCare by TeleSpecialistsTM database

from December 1, 2021, through March 31, 2022. Facilities using

another non-VIZ AI-based platform or with protocols in which

the teleneurologist did not initiate direct contact with the NIR

were excluded. The same group of teleneurologists, all working

remotely, evaluated patients at AI and non-AI facilities. Per the

teleneurology company protocol, a 100% data entry into the web-

based telemedicine database is required by all teleneurologists,

including first confirmed contact time with the NIR either by

phone or confirmed messaging in app, and all data must be entered

before closing a case and all cases must be closed by end of shift.

The two standardized workflows within both the AI and non-AI

facilities are detailed in Figure 1. Figure 1A depicts the standard

workflow at AI and non-AI facilities in which the stroke code

involved EMS prenotification (pre-alert) and Figure 1B depicts

the workflow in which no EMS prenotification occurred. The

workflow at all facilities involved a series of highly standardized

steps, the order of which being dependent on whether an EMS

pre-alert occurred. These steps involved patient arrival and triage

team evaluation in the emergency department (ED), teleneurology

stroke alert activation (SAA) by the ED, immediate web-based

text activation of the teleneurologist, emergent video camera login

by the teleneurologist, emergent neuro imaging acquisition in

radiology and viewed by the teleneurologist, and first call to

the NIR to discuss possible MT in the event of suspicion for

LVO on the part of the teleneurologist. In the case of EMS

prenotification to the hospital, early teleneurology stroke alert

activation often occurred such that the teleneurologist would

arrive on camera prior to patient ED arrival. In the case of no

prenotification, EMS arrival patients would be assessed by ED

facility team just prior to teleneurology stroke alert activation.

A similar workflow pertained to walk in patients presenting

to triage. In all cases, the focus of the teleneurologist was to

facilitate administration of IV thrombolysis and ensure rapid

execution of advanced neuroimaging (CTA+CTP) if indicated.

The primary difference in workflow between the AI and non-AI

cohorts occurred with the teleneurologist and NIR viewing of

the CT/CTA/CTP (see Figure 1). In the non-AI cohort, images

were manually reconfigured by the CT technician and pushed to

their hospital-based image reviewing platform (typically PACS)

for review by the teleneurologist. In the AI cohort, neuroimaging

was automatically pushed to the AI cloud-based server and

made available for viewing on the teleneurologist’s phone-based

mobile AI platform typically within 4min of image acquisition. By

protocol, the teleneurologist reviewed all neuroimaging emergently

and had the option to review imaging with a radiologist prior to

emergent contact with the NIR to discuss possible MT in patients

where LVO was suspected.

Our primary outcome compared the AI vs. non-AI cohorts’

median value and data dispersion (IQR) for patient arrival

time to teleneurologist first contact with NIR to discuss

potential MT (Arrival-to-NIR notification). “NIR notification”

was defined as either: (1) first direct phone contact between
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TABLE 1 Utilization of an AI-based system to improve acute stroke workflow summary of previous studies.∗

Hospital Authors Title Study design Study period Sample size Main results References

1 Mount Sinai, New

York, NY.

Morey J, Zhang X,

Yaeger K, et al.

Real-World

Experience with

Artificial

Intelligence-Based

Triage in

Transferred Large

Vessel Occlusion

Stroke Patients.

Restrospectie

analysis of a single

center hub and

spoke model

comparing metrics

before and after

VIZ

implementation.

July 2018 to March

2020.

Stroke workflow

was analyzed for 55

patients divided

between pre-VIZ

and post VIZ

cohorts.

The median initial

door-to-

neurointerventional

notification time

interval was

statistically faster

(25.0min vs.

40.0min; p= 0.01)

with less variation

(p < 0.05) following

VIZ

implementation.

The median initial

door-to-puncture

time interval was

25min shorter in

the post-VIZ

cohort, although

this did not reach

statistical

significance (p=

0.15).

Cerebrovasc Dis

2021;50(4):450-455.

2 University of

California, San

Diego., CA.

Figurelle M, Meyer

D, Perrinez E, et al.

Viz.ai

Implementation of

Stroke Augmented

Intelligence and

Communication

Platform to

Improve Indicators

and Outcomes for a

Comprehensive

Stroke Center and

Network.

Retrospective single

center Hub—Spoke

model comparing

metrics including

door to groin

puncture (DTG)

before and after

VIZ

implementation.

Assessed effect of

day vs. night shift

arrival.

June 2020 to June

2021

Stroke workflow

was analyzed for 82

patients divided

between pre-VIZ

and post-VIZ

cohorts.

Post-VIZ

implementation: (1)

faster door to groin

times for patients

presenting to the

Spoke and Hub

(HUB-DTG-24 h:

32% reduction,

127min vs. 86min

(delta= 41); p=

0.006;

SPOKE-DTG-24 h:

33% reduction, 42

vs. 28min; (delta=

14), p= 0.036).

AJNR Am J

Neuroradiol

2023;44(1):47-53.

3 Erlanger Health

System—Univ. of

Tennessee,

Chattanooga, TN.

Devlin T, Shah R,

Patterson J, et al.

(DISTINCTION):

Utilization of

Applied Artificial

intelligence to

Facilitate LVO

Detection and

Synchronizing

Workflow to

Improve Time to

Treatment in

High-Volume Hub

and Stroke

Networks.

Retrospective single

center Hub—Spoke

model comparing

metrics before and

after VIZ

implementation.

Nov, 2017—Jul,

2019

Stroke workflow

was analyzed for 15

patients divided

between pre-VIZ

and post VIZ

cohorts.

Post-Viz LVO

implementation,

significant

improvement in

Spoke door-in to

hub groin puncture

(mean= 218 vs.

141, p= 0.02); and

in Spoke CT to

groin puncture time

(mean= 200 vs.

132, p= 0.04).

World Stroke

Organization, 2020,

Abstract

#3069—AS38.
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TABLE 1 (Continued)

Hospital Authors Title Study design Study period Sample size Main results References

4 Semmes-Nurphey

Clinic, University of

Tennessee,

Memphis, TN.

Elijovich L,

Dornbos D, Nickele

C, et al.

Automated

Emergent Large

Vessel Occlusion

Detection by

Artificial

Intelligence

Improves Stroke

Workflow in Hub

and Spoke Stroke

System of Care.

Retroscpective

single center

Hub—Spoke model

comparing metrics

before and after

VIZ LVO

implementation.

Dec, 2018—Dec,

2019

Stroke workflow

was analyzed for

104 patients divided

between pre-VIZ

and post-VIZ

cohorts.

Post-VIZ:

Significant

improvement in

median time form

CTA completion to

NIR contact (delta

= 19min (26min

vs. 7), p < 0.001)

and Spoke door in

to arterial puncture

for patients

transferred from

Spoke to Hub for

EVT (delta 44min,

185 vs. 141, p=

0.027).

J Neurointerv Surg.

2022

Jul;14(7):704-708.

https://doi.org/10.

1136/neurintsurg-

2021-017714

5 Valley Baptist

Medical Center,

Harlingen, Texas

Hassan A,

Ringheanu V, Tekle

W.

The

Implementation of

Artificial

Intelligence

Significantly

Reduces

Door-in-Door-out

Times in a Primary

Care Center Prior

to Transfer.

Retrospective single

center Hub—Spoke

model comparing

metrics before and

after VIZ

implementation.

Feb 2017 to June

2020

Stroke workflow

was analyzed for 63

patients divided

between pre-VIZ

and post-VIZ

cohorts.

Post-VIZ median

CTA time at PSC to

door-in at CSC was

significantly

reduced by an

average of 22.5min

(132.5min vs.

110min; p=

0.0470).

Interv.

Neuroradiol.-

−2022 Aug

25;15910199221122848.

https://doi.org/10.

1177/

15910199221122848

6 Valley Baptist

Medical Center,

Harlingen, Texas

Hassan A,

Ringheanu V,

Preston L, et al.

Artificial

Intelligence–

Parallel Stroke

Workflow Tool

Improves

Reperfusion Rates

and Door-In to

Puncture Interval

Retrospective single

center Hub—Spoke

model comparing

metrics before and

after VIZ

implementation.

Nov 2016—May

2020

Stroke workflow

was analyzed for

188 patients divided

between pre-VIZ

and post-VIZ

cohorts.

Post-VIZ, mean

door-in to puncture

time at the Hub

improved (delta=

86.7min; 206.6 vs.

119.9min; p <

0.001) with

significant

improvement in

rate of reperfusion

TICI 2b-3 (p=

0.036).

Stroke Vasc Interv

Neurol.

2022;2:e000224.

https://doi.org/10.

1161/SVIN.121.

000224

∗The studies summarized here all investigated facilities utilizing Viz.ai (VIZ).
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FIGURE 1

The two di�erent stroke patient work flows within both AI and non-AI facilities. (A) Depicts workflow for patients in which EMS prenotification did

occur and (B) depicts workflow for patients in which EMS prenotification did not occur.

the teleneurologist and the NIR; or (2) the time of confirmed

messaging response by the NIR and discussion on mobile

AI platform. All first contract NIR notification times were

entered into the telemedicine web-based database directly by

the teleneurologist. We hypothesized that the metric of Arrival-

to-NIR notification was less likely to be confounded by the

myriad of other non-AI-platform related variables, such as referral

hospital door in-door out times, thrombectomy start time or

duration, length of stay, or neurological outcome. The time

of first contact with NIR is typically not collected at most

centers, however, an accurate timestamp was mandated by our

teleneurologists per company quality protocol. Furthermore, while

the retrospective analysis of this large dataset allowed us to

compare certain metrics across a vast number of hospitals, the

limitations of the database precluded our ability to analyze other

metrics of potential interest including CT/CTA/CTP start times,

thrombectomy start time, length of stay or patient outcome.

We performed two prespecified subgroup analyses to control

for potential influence of other variables on the results. We

subgroup analyzed metrics for thrombectomy-capable vs. non-

thrombectomy-capable facilities and for EMS pre-alerted vs. no

EMS pre-alert cohorts.

Descriptive data analysis and inferential tests were conducted

in this study. Continuous variables were summarized using means,

medians, and Interquartile ranges [IQR], while categorical variables

were presented as frequencies and percentages. The normality

of the data was assessed using the Shapiro test. To compare

continuous variables between groups, the student’s t-test was used

for normally distributed data, and the Mann–Whitney test was

used for non-normally distributed data. Pearson’s Chi-square test

was employed for comparisons involving categorical variables.

Data analytics were performed on multiple cohorts of data.

Statistical significance was determined at a p-value of < 0.05,

and all statistical analyses were conducted using the statistical

package R 4.0.2. Trial design oversight and complete statistical

analysis were performed according to rigorous scientific standards

and best practices by faculty from the University of Tennessee

Chattanooga (LG) and the University of Tennessee Health

Science Center (GH) funded independently by the NeuroScience

Innovation Foundation.

Results

Data were extracted retrospectively from a total of 14,116

stroke alerts across 17 states including 8,557 alerts performed at

76 different AI facilities and 5,559 alerts performed at 90 different

non-AI facilities.
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Overall analysis—AI vs. non-AI cohorts

Table 2A shows a detailed comparison between AI and non-

AI patient populations. The primary finding of this study was

a 39.5min (44.13%) faster time from patient Arrival-to-NIR

notification at AI [AI: 50.0min (40.00, 82.00) vs. non-AI: 89.50min

(59.25, 122.00), p < 0.001]. Importantly, a statistically significant

reduction was seen in the IQR in the Arrival-to-NIR in AI vs.

non-AI (p = 0.0116; Table 2, footnote line 3). When assessing for

potential biases in the Arrival-to-NIR notification times for AI vs.

non-AI, a significantly faster time (2.24min) was observed at AI

facilities for patient arrival to teleneurology stroke alert activation

[“Bias1,” AI: 10.32min (4.75, 20.94) vs. non-AI: 12.56min (6.15,

26.28), p < 0.001]. A small but significantly faster time (1.00min)

was also observed at AI facilities for teleneurologist stroke alert

activation to first teleneurologist video login [“Bias2,” AI: 2min

(1.00, 4.00) vs. non-AI: 3min (2.00, 5.00), p < 0.001]. When

Bias1 and Bias2 were totaled (3.24min), they accounted for 8.20%

of the overall 39.50min reduction in Arrival-to-NIR notification.

Table 2A shows that the percentage of patients arriving by EMS

vs. private vehicle was higher in AI group (55.74 vs. 51.09%, p

< 0.001). A higher percentage of EMS pre-alerts occurred in AI

cohort (AI: 24.94 vs. non-AI: 17.93%, p < 0.001). Of the pre-

alerts, no significant difference was seen in the median time from

EMS pre-alert to facility arrival between the two cohorts. While the

overall percentage of patients receiving IV thrombolytics in the two

cohorts was not significantly different (AI: 6.37 vs. non-AI: 6.46%,

p = 0.86), a 4min faster door to needle time was observed at AI

facilities [AI: 40.0min (30.00, 52.00) vs. non-AI: 44.0min (32.00,

57.50), p= 0.0184].

Subgroup analysis: AI vs. non-AI by
thrombectomy capability

Table 3 summarizes the results of the subgroup analyses. The

predominant finding was a shorter Arrival-to-NIR notification

duration in AI group regardless of whether the patient presented to

a non-thrombectomy capable facility (non-TC) or a thrombectomy

capable facility (TC; Table 3A). Within the non-TC subgroup, the

presence of AI platform was associated with a 33min (34.02%)

median faster time in Arrival-to-NIR notification [AI: 64min

(46.00, 91.00) vs. non-AI: 97min (62.00, 126.50), p < 0.001].

Within the TC subgroup the presence of AI platformwas associated

with a 34.0min (43.59%) median faster time in Arrival-to-NIR

notification [AI: 44.0min (33.75, 59.00) vs. non-AI: 78min (55.00,

95.00), p < 0.001]. As seen in the overall analysis, a statistically

significant reduction was seen in the IQR in Arrival-to-NIR in

AI vs. non-AI in both the non-TC and TC subgroups (non-TC:

p = 0.0181, TC: p = 0.0148; Table 3 footnotes, line 3 and 4). A

statistically faster time for Bias1 was seen for AI in both non-TC and

TC subgroups; (non-TC: median delta = 1.41min, p < 0.001; TC:

median delta = 6.09min, p < 0.001). Similarly, a statistically faster

time for Bias2 was seen for AI in both non-TC and TC subgroups;

(non-TC: median delta = 1min, p < 0.001; TC: median delta =

1min, p < 0.001). Bias1 + Bias2 accounted for 7.30% (non-TC)

and 20.85% (TC) of the overall faster Arrival-to-NIR notification

times in the AI cohorts (Table 3, footnotes lines 5 and 6).

There was no difference in the percentage of patients treated

with IV thrombolytics between AI vs. non-AI in either the TC

or non-TC subgroups. While there was no difference between AI

vs. non-AI median door to needle time (DTN) in the non-TC

subgroup (Table 3A), a significantly faster DTN (delta=−6.5min)

was observed in AI group within the TC subgroup [37.50min

(27.00, 48.75) vs. 44.00min (33.00, 54.00), p= 0.0125].

E�ect of EMS pre-alert stroke notification

Due to 7.01% more EMS pre-alert patients in the AI

group (which could theoretically lead to shorter Arrival-to-NIR

notification times by having the teleneurologist on camera faster

thereby expediting CTA acquisition), we next performed additional

sub analyses first with all pre-alert patients excluded, then with only

pre-alert patients included.

With pre-alerts excluded (Table 2B), there was a 30.53min

(31.83%) reduction in Arrival-to-NIR notification at AI facilities

[AI: 65.40min (45.72, 92.15) vs. non-AI: 95.93min (66.97, 124.77),

p< 0.0001]. The pre-alert excluded analysis also demonstrated only

a small, albeit significant, difference for AI vs. non-AI for Bias1

and Bias2 (Table 2B). The pre-alert excluded subgroup analysis

(Table 3B) showed a significant, 34.52min (32.98%) faster Arrival-

to-NIR notification in the non-TC AI subgroup [AI: 70.15min

(47.31, 94.13) vs. non-AI: 104.67min (74.24, 133.52), p < 0.0001]

and a 27.08min (33.50%) faster Arrival-to-NIR notification in

the TC AI subgroup [AI: 53.77min (43.25, 86.95) vs. non-AI:

80.85min (60.62, 101.17), p = 0.0144]. Importantly, in the pre-

alert excluded analysis exact times from teleneurologist first video

login attempt to first NIR notification could be calculated (“Login-

to-NIR notification”), effectively removing Bias1 and Bias2 entirely

(calculation of this metric for the all-patients-included analysis was

not possible due to imbalance in the percent of pre-alerts in AI

vs. non-AI with teleneurologists typically being on camera prior to

patient arrival in the pre-alerted patients thus skewing the data).

This analysis demonstrated a 28.5min (38.38%) faster time in the

teleneurologist Login-to-NIR notification for AI [AI: 45.75min

(32.64, 69.45) vs. non-AI: 74.25min (51.60, 101.22), p < 0.0001].

Similarly, the subgroup analysis (Table 3B) demonstrated the non-

TC Login-to-NIR notification time to be 35.77min (43.56%) faster

at AI [AI: 46.34min (32.76, 71.83) vs. non-AI: 82.11min (51.76,

110.44), p< 0.0001] and for TC, the Login-to-NIR notification time

was 23.59min (37.18%) faster at AI [AI: 39.86min (32.26, 60.49) vs.

non-AI: 63.45min (42.44, 76.47), p= 0.0187].

Table 2C shows the results of the overall analysis with EMS

pre-alert patients included only. This analysis revealed a large

60.14min (57.42%) faster time in Arrival-to-NIR notification (p

= 0.0002) and a 58.3min (57.44%) faster time in Login-to-NIR

notification (p = 0.0011) in favor of the AI cohort. In the non-TC

subgroup analysis (Table 3C) highly significant faster times in the

AI cohort were maintained for both time metrics, however, in the

TC subgroup a significant difference was not seen in the setting of

low subject number.
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TABLE 2 Overall analyses: AI vs. non-AI comparison for various cohorts.

Total Non-AI
cohort

AI cohort P-value Di�erence %
change∗

(A) All patients included

Study enrollment, n (%)

Patients 14,116 (100%) 5,559 (39.38%) 8,557 (60.62%)

Hospitals 166 90 (54.22%) 76 (45.78%)

States 17

Stroke designation, n (%)

Comprehensive stroke center 0 (0.00%) 1,737 (20.30%) <0.001†

Thrombectomy capable 369 (6.64%) 989 (11.56%)

Primary stroke center 3,678 (66.16%) 4,260 (49.78%)

Acute stroke ready 482 (8.67%) 280 (3.27%)

No designation 1,030 (18.53%) 1,291 (15.09%)

Baseline characteristics

Gender, female, n (%) 2,961 (53.26%) 4,624 (54.04%) 0.3776 0.78% NS

Pre-mRS median [IQR] 0 [0.00, 1.00] 0.00 [0.00,

1.00]

0.2602 0 NS

Age mean (sd) 65.49± 15.94 66.82± 16.30 <0.001 1.33 2.03%

NIHSS median [IQR] 2 [1.00, 6.00] 2 [0.00, 6.00] <0.001 0% 0%

Time Intervals (min), median [IQR]

Arrival to TeleNeuro first contact with NIR

(“Arrival-to-NIR notification”)

89.50 [59.25,

122.00]

50.0 [40.00,

82.00]

<0.001‡ −39.5 −44.13%

Arrival to teleneurology stroke alert activation (“Bias1”) 12.56 [6.15,

26.28]

10.32 [4.75,

20.94]

<0.001 −2.24 −17.83%

Teleneurology stroke alert activation to first

teleneurologist video login (“Bias2”)

3 [2.00, 5.00] 2 [1.00, 4.00] <0.001 −1 −0.33%

Bias1+ Bias2 15.56 12.32 −3.24§

(Continued)
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TABLE 2 (Continued)

Total Non-AI
cohort

AI cohort P-value Di�erence %
change∗

Workflow type, n (%)

Arrival by EMS 2,840 (51.09%) 4,770 (55.74%) <0.001 4.65% 9.10%

Triage/walk-in 2,719 (48.91%) 3,787 (44.26%) <0.001 −4.65% −9.51%

Hospital pre-alert by EMS, Yes 997 (17.93%) 2,134 (24.94%) <0.001 7.01% 39.10%

EMS prenotification duration before arrival 5 [2.00, 9.00] 5.00 [2.00,

8.00]

0.4624 0 NS

Thrombolytic

Yes, n (%) 359 (6.46%) 545 (6.37%) 0.8605 −0.09% NS

DTN time, median [IQR] 44.00 [32.00,

57.50]

40.00 [30.00,

52.00]

0.0184 −4 −9.10%

Advanced imaging performed (CTA or CTA/CTP)

Yes, n (%) 2,057 (37.00%) 3,622 (42.33%) < 0.001 5.33% 14.41%

LVO detection rate, n (%)

Out of total patient population, Yes 230 (4.14%) 459 (5.36%) <0.001 1.22% 29.47%

Out of population that received advanced

imaging

230 (11.18%) 459 (12.67%) 0.09226 1.49% NS

NIR rate of acceptance for MT

Accepted out of total population, n (%) 115 (2.1%) 195 (2.3%) <0.0001 0.20% 9.52%

Accepted out of population that received advanced imaging % 5.60% 5.40% <0.001 −0.20% −3.57%

% accepted out of LVO diagnosed by teleneurologist % 50% 42.27% <0.0001 −7.73% −15.46%

(B) EMS pre-alert patients excluded

Study enrollment, n

Subjects without EMS pre-alert (n with complete time data

99.53%)

10,933 (77.45%) 4,539 (41.52%) 6,394 (58.48%)

Subjects without EMS pre-alert with suspected LVO 390 137 (3.02%) 253 (3.96%) 0.0082 0.94% 31.13%

Time Intervals (min), median [IQR]

Arrival to TeleNeuro first contact with NIR (“Arrival-to-NIR

notification”)

95.93 [66.97,

124.77]

65.40 [45.72,

92.15]

<0.0001 −30.53 −31.83%

Arrival to teleneurology stroke alert activation (“Bias1”) 12.55 [6.16,

26.29]

10.30 [4.75,

20.95]

<0.0001 −2.25 −17.93%

(Continued)
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TABLE 2 (Continued)

Total Non-AI
cohort

AI cohort P-value Di�erence %
change∗

Teleneurology stroke alert activation to first teleneurologist video

login (“Bias2”)

3.67 [2.39,

5.45]

2.90 [1.82,

4.42]

<0.0001 −0.77 −20.98%

Teleneurologist first video login attempt to call to NIR to discuss

possible MT for suspected LVO (“Login-to-NIR notification”)

74.25 [51.60,

101.22]

45.75 [32.64,

69.45]

<0.0001♦ −28.5 −38.38%

(C) EMS pre-alert patients only

Study enrollment, n (%)

Subjects with EMS pre-alert 3,131 (22.18%) 997 (31.84%) 2,134 (68.16%)

Subjects with EMS pre-alert with suspected LVO 299 93 (9.33%) 206 (9.65%) 0.8234 0.32% NS

Time intervals (min), median [IQR]

Arrival to TeleNeuro first contact with NIR (“Arrival-to-NIR

notification”)

104.73 [54.17,

132.70]

44.59 [39.07,

59.92]

0.0002 −60.14 −57.42%

Teleneurologist video login to patient arrival 2.07 [1.00,

3.93]

1.89 [0.87,

3.52]

0.0297 −0.18 −8.70%

Teleneurology stroke alert activation (SAA) to first

teleneurologist video login (“Bias2”)

4.43 [2.98,

6.55]

4.16 [2.54,

6.28]

0.053 −0.27 NS

Teleneurologist video login to call to NIR to discuss possible MT

for suspected LVO (“Login-to-NIR notification”)

101.49 [51.80,

130.32]

43.19 [36.86,

59.14]

0.0011 −58.3 −57.44%

∗NS, Not statistically significant.
†Grouped statistical comparison p < 0.001.
‡Arrival-to-NIR IQR range analysis demonstrated a smaller range for AI [non-AI IQR (59.25, 122.00) vs. AI IQR (40.00, 82.00), p= 0.0116].
§ The sum of Bias1 and Bias2 (−3.24min) accounts for 8.20% of the−39.5min reduction in the Arrival-to-NIR notification time of AI over the non-AI cohort.
♦Login-to-NIR IQR range analysis demonstrated a smaller range for AI [non-AI IQR (51.60, 101.22) vs. AI IQR (32.64, 69.45), p= 0.0180].
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TABLE 3 Subgroup analyses: e�ect of AI in thrombectomy capable vs. non-thrombectomy capable facilities.

Non-thrombectomy capable (non-TC) Thrombectomy capable (TC)

Non-AI AI P-value Di�erence %
change∗

Non-AI AI P-value Di�erence %
change∗

(A) All patients included

Study enrollment (total n = 14,116) 4,962 (46.38%) 5,737 (53.62%) 597 (17.47%) 2,820 (82.53%)

Stroke designation, n (%)

Comprehensive

stroke center

0 (0.00%) 0 (0.00%) <0.001† 0 (0.00%) 1,737 (61.60%) <0.001†

Thrombectomy

capable

0 (0.00%) 0 (0.00%) 369 (61.81%) 989 (35.07%)

Primary stroke center 3,450 (69.53%) 4,166 (72.62%) 228 (38.19%) 94 (3.33%)

Acute stroke ready 482 (9.71%) 280 (4.88%) 0 (0.00%) 0 (0.00%)

No designation 1,030 (20.76%) 1,291 (22.50%) 0 (0.00%) 0 (0.00%)

Baseline characteristics

Gender, female n (%) 2,667 (53.75%) 3,131 (54.58%) 0.4027 0.83% NS 294 (49.25%) 1,493 (52.94%) 0.1101 NS

Pre-mRS median

[IQR]

0 [0.00, 1.00] 0 [0.00, 1.00] 0.117 0 NS 0.00 [0.00,

1.00]

0 [0.00, 1.00] 0.2377 NS

Age mean yr (sd) 65.29± 16.00 65.41± 16.64 0.2578 0.12 NS 67.15± 15.38 69.69± 15.17 0.0002

NIHSS median [IQR] 2.00 [1.00,

5.00]

2 [0.00, 5.00] < 0.001 0 0% 3 [1.00, 8.00] 3.00 [0.00,

9.00]

0.7289 NS

Time Intervals (min), median [IQR]

Arrival to TeleNeuro

first contact with NIR

(“Arrival-to-NIR

notification”)

97 [62.00,

126.50]

64 [46.00,

91.00]

<0.001‡ −33.0 −34.02% 78 [55.00,

95.00]

44.0 [33.75,

59.00]

<0.001§ −34.0 −43.59%

Arrival to

teleneurology stroke

alert activation

(“Bias1”)

12.38 [5.97,

25.76]

10.97 [5.23,

21.67]

<0.001 −1.41min −11.38% 14.62 [7.31,

28.80]

8.53 [3.81,

17.54]

<0.001 −6.09 −41.66%

(Continued)
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TABLE 3 (Continued)

Non-thrombectomy capable (non-TC) Thrombectomy capable (TC)

Non-AI AI P-value Di�erence %
change∗

Non-AI AI P-value Di�erence %
change∗

Teleneurology stroke

alert activation to first

teleneurologist video

login attempt

(“Bias2”)

3.00 [2.00,

5.00]

2 [1.00, 4.00] <0.001 −1min −33.33% 3 [2.00, 5.00] 2.00 [1.00,

4.00]

<0.001 −1 −33.33%

Bias1+ Bias2 (min) 2.41♦ 7.09#

Workflow type, n (%)

Arrival by EMS 2,506 (50.50%) 2,811 (49.00%) 0.1249 −1.50% NS 334 (55.95%) 1,959 (69.47%) <0.001 13.52% 24.16%

Triage/walk-in 2,456 (49.50%) 2,926 (51.00%) 1.50% NS 263 (44.05%) 861 (30.53%) −13.52 −30.69%

Hospital pre-alert by

EMS, Yes

864 (17.41%) 966 (16.84%) 0.4467 −0.57% NS 133 (22.28%) 1,168 (41.42%) <0.001 19.14 85.91%

EMS prenotification

duration before

arrival

5.00 [2.00,

8.00]

4.00 [2.00,

7.00]

0.0011 −1.00 −20% 6 [3.00, 9.00] 5.00 [3.00,

9.00]

0.2233

Thrombolytic

Yes, n (%) 310 (6.25%) 347 (6.05%) 0.6986 −37 NS 49 (8.21%) 198 (7.02%) 0.3524 −1.19% NS

DTN time, median

[IQR]

44.00 [32.00,

58.00]

42.00 [32.25,

54.75]

0.6741 −2.00 NS 44.00 [33.00,

54.00]

37.50 [27.00,

48.75]

0.0125 −6.5 −14.77%

Advanced imaging performed (CTA or CTA/CTP)

Yes, n (%) 1,799 (36.26%) 2,182 (38.03%) 0.0604 1.77 NS 258 (43.22%) 1,440 (51.06%) 0.0006 7.84% 18.14%

LVO detection rate, n (%)

Out of total patient

population, Yes

189 (3.81%) 260 (4.53%) 0.064 0.72% NS 41 (6.87%) 199 (7.06%) 0.0016 0.19% 2.77%

Out of population

that received

advanced imaging,

Yes

189 (10.51%) 260 (11.92%) 0.1619 1.41% NS 41 (0.71%) 199 (7.10%) 0.0001 6.39% 100.00%

NIR rate of acceptance for MT

Accepted out of total

population n (%)

88 (1.77%) 93 (1.62%) <0.0001 −0.15% −8.47% 27 (4.52%) 101 (3.58%) 0.3785 −0.94% NS

(Continued)
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TABLE 3 (Continued)

Non-thrombectomy capable (non-TC) Thrombectomy capable (TC)

Non-AI AI P-value Di�erence %
change∗

Non-AI AI P-value Di�erence %
change∗

Accepted out of

patients with

advanced imaging (%)

4.89% 4.26% <0.0001 −0.63% −12.87% 10.47% 7.01% 0.2000 −3.46% NS

Accepted out of LVO

diagnosed by

teleneurologist (%)

46.56% 35.77% <0.0001 −10.79% −23.17% 65.85% 50.75% 0.2000 −15.10% NS

(B) EMS pre-alert patients excluded

Study enrollment

(n = 10,933,

77.45%)

4,077 (82.26%) 4,754 (82.87%) 462 (77.39%) 1,640 (58.16%)

Pre-alert patients

excluded with

suspected LVO, n (%)

111 (2.72%) 186 (3.91%) 0.0024 1.19% 43.75% 24 (5.19%) 66 (4.02%) 0.333 −1.17% NS

Time Intervals (min), median [IQR]

Arrival to TeleNeuro

first contact with NIR

(“Arrival-to-NIR

notification”)

104.67 [74.24,

133.52]

70.15 [47.31,

94.13]

<0.0001 −34.52 −32.98% 80.85 [60.62,

101.17]

53.77 [43.25,

86.95]

0.0144 −27.08 −33.50%

Arrival to

teleneurology stroke

alert activation

(“Bias1”)

12.38 [5.98,

25.83]

10.95 [5.23,

21.66]

<0.0001 −1.43 −11.55% 14.77 [7.34,

28.93]

8.51 [3.85,

17.60]

<0.0001 −6.26 −42.38%

Teleneurology stroke

alert activation to first

teleneurologist video

login attempt

(“Bias2”)

3.67 [2.38,

5.45]

2.97 [1.87,

4.47]

<0.0001 −0.7 −19.07% 3.72 [2.52,

5.47]

2.77 [1.70,

4.27]

<0.0001 −0.95 −25.53%

Teleneurologist video

login to call to NIR to

discuss possible MT

for suspected LVO

(“Login-to-NIR

notification”)

82.11 [51.76,

110.44]

46.34 [32.76,

71.83]

<0.0001♥ −35.77 −43.56% 63.45 [42.44,

76.47]

39.86 [32.26,

60.49]

0.0187♠ −23.59 −37.18%

(Continued)
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TABLE 3 (Continued)

Non-thrombectomy capable (non-TC) Thrombectomy capable (TC)

Non-AI AI P-value Di�erence %
change∗

Non-AI AI P-value Di�erence %
change∗

(C) EMS pre-alert patients only

Study enrollment

(n = 3,131,

22.18%)

864 (47.21%) 966 (52.79%) 133 (10.22%) 1,168 (89.78%)

EMS pre-alert

patients only with

suspected LVO, n (%)

77 (8.91%) 74 (7.43%) 0.2791 −1.48% NS 16 (12.03%) 132 (11.30%) 0.9151 −0.73% NS

Time Intervals (min), median [IQR]

Arrival to TeleNeuro

first contact with NIR

(“Arrival-to-NIR

notification”)

105.45 [56.53,

133.66]

50.08 [41.96,

61.85]

0.0127 −55.37 −52.51% 80.35 [51.43,

112.23]

44.00 [35.37,

59.13]

0.0817 −36.35 NS

Teleneurologist video

login to patient arrival

2.00 [1.00,

3.92]

2.00 [0.98,

3.98]

0.5614 0 NS 2.67 [1.13,

4.23]

1.71 [0.73,

3.05]

0.045 −0.96 −35.96%

Teleneurology stroke

alert activation (SAA)

to first teleneurologist

video login (“Bias2”)

4.40 [2.97,

6.52]

4.11 [2.62,

6.33]

0.1596 −0.29 −6.59% 4.75 [3.46,

6.91]

4.21 [2.50,

6.18]

0.149 −0.54 NS

Teleneurologist video

login to call to NIR to

discuss possible MT

for suspected LVO

(“Login-to-NIR

notification”)

103.03 [54.45,

131.43]

48.88 [39.62,

60.56]

0.0234 −54.15 −52.56% 76.87 [47.46,

109.11]

43.02 [32.86,

57.84]

0.1228 −33.85 NS

∗NS, Not statistically significant.
†Grouped statistical comparison p < 0.001.
‡Arrival-to-NIR IQR range analysis demonstrated a significantly smaller range for non-TC AI [non-AI IQR (62.00, 126.50) vs. AI IQR (46.00, 91.00) p= 0.0181].
§Arrival-to-NIR IQR range analysis demonstrated a significantly smaller range for TC AI [non-AI IQR (55.00, 95.00) vs. AI IQR (33.75, 59.00), p= 0.0148].
♦The sum of Bias1 and Bias2 (−2.41min) accounts for 7.30% of the−33min reduction in the Arrival-to-NIR notification of non-TC-AI over the non-TC-non-AI cohort.
#The sum of Bias1 and Bias2 (−7.09min) accounts for 20.85% of the−34min reduction in the Arrival-to-NIR notification for the TC-AI over the TC-non-AI cohort.
♥Login-to-NIR IQR range analysis demonstrated a smaller range for non-TC AI [non-TC non-AI IQR (51.76, 110.44) vs. non-TC AI IQR (32.76, 71.83), p= 0.0199].
♠Login-to-NIR IQR range analysis demonstrated a smaller range for TC AI [TC non-AI IQR (42.44, 76.47) vs. TC AI IQR (32.26, 60.49), p= 0.0240].
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Rate of LVO detection and NIR acceptance
for MR

A statistically higher rate of advanced imaging was performed

at AI vs. non-AI in the overall analysis (42.33 vs. 37.00%, p< 0.001,

Table 2A). This difference was largely driven by the higher rate

of advanced imaging performed in the TC subgroup (Table 3A).

In the overall analysis (Table 2A), a slightly higher rate of LVO

detection occurred in AI (AI: 5.36% vs. non-AI: 4.14%; p <

0.001). When limited to those that underwent advanced imaging

(CTA or CTA/CTP), no difference in overall LVO detection was

found between AI vs. non-AI. The subgroup analysis, however, did

demonstrate a significantly higher rate of LVO detection among

patients undergoing advanced imaging in the AI cohort within the

TC subgroup (7.10 vs. 0.71%, p = 0.0001) but not the non-TC

subgroup (NS).

Lastly, we assessed the effect of AI platform on the rate of

NIR acceptance for MT. In the overall analysis (Table 2A), the

presence of AI platform had an inverse effect on the rate of

NIR acceptance for thrombectomy on patients with advanced

imaging performed (AI: 5.4% vs. non-AI: 5.6%; p < 0.001) and

a more robust reduction in NIR acceptance for thrombectomy in

the suspected LVO population for which teleneurologists initiated

contact with NIR (AI: 42.27% vs. non-AI: 50.00%; p< 0.0001). This

critical finding was driven by a 10.79% absolute reduction (23.17%

reduction) in the acceptance rate by the NIR for suspected LVO

patients at non-TC (AI: 35.77% vs. non-AI: 46.56%, p < 0.0001,

Table 3A).

Discussion

We compared stroke workflow between a cohort of hospitals

that utilized an AI-based stroke care coordination system vs. a

cohort of hospitals that did not. We analyzed 14,116 stroke alerts

performed over 4 months across 166 facilities in 17 states. We

chose our primary outcome to be the metric of patient arrival

to first contact with NIR to discuss need for thrombectomy

(Arrival-to-NIR notification) as it was this measurable variable,

we hypothesized, that would be most directly under the control

of the AI-based care coordination platform. Ideally, measurement

of CTA start time to NIR contact would have been preferable

however neuro imaging start times were not available within

our telemedicine database. In addition to reduced Arrival-to-

NIR times, we also hypothesized that the presence of AI may

lead to improved consistency of stroke care as represented by

smaller values for IQR across multiple metrics. We analyzed

potential imbalances in AI vs. non-AI cohorts which could skew

our primary outcome measure including cohort differences in

patient arrival time to teleneurology stroke alert activation (Bias1)

and teleneurology stroke alert activation to first teleneurologist

video login (Bias2). Lastly, we addressed the potential confounding

factor of the significant 7.01% higher percentage of EMS pre-

alert activations in the AI cohort (by analyzing EMS pre-alert and

non-alert patients separately. This was performed to mitigate the

concern that a higher percentage of EMS pre-alert patients in AI

could lead to faster times to teleneurologist login, faster time to

CTA acquisition, and thereby faster Arrival-to-NIR notification in

AI. Significant differences did exist between the AI and non-AI

cohorts: (1) 60.62% of patients overall were treated utilizing AI;

(2) 100% of comprehensive centers utilized AI; (3) while an equal

percentage of patients were treated with IV thrombolysis at AI and

non-AI, DTN times were slightly faster at AI (4min); and (4) a

higher percentage of EMS pre-alerts occurred at AI than non-AI (58

vs. 41%).

The primary finding of this study was a 39.5min faster

median time at AI vs. non-AI for Arrival-to-NIR notification to

discuss potential thrombectomy (44.13%, p < 0.001). In evaluating

for potential biases contributing to the faster Arrival-to-NIR

notification results at AI facilities, we did identify a faster arrival

to stroke alert activation time (Bias1) and teleneurology stroke alert

activation to teleneurologist first login attempt time (Bias2). When

combined, these biases together represented 8.20% of the overall

39.50min (44.13%) faster time in Arrival-to-NIR notification in

the AI cohort. The exact magnitude of the combined biases for

individual centers was not calculated but, in some cases, may

have been larger given the broad IQR for Bias1 and Bias2. The

relatively small median size of these biases is consistent with our

conclusion that presence of AI was associated with a significantly

faster time from patient Arrival-to-NIR notification at AI facilities.

Importantly, the potential for a combined Bias1 and Bias2 effect

significantly skewing our results was mitigated by performing a

subgroup analysis in which we excluded the 22.18% of total patients

that underwent EMS pre-alert (non-AI: 17.93% and AI: 24.93%).

Analysis of the data with pre-alert patients removed allowed us

to minimize the potential bias introduced by a higher percentage

of pre-alert patients at AI facilities and permitted calculation

of teleneurologist first Login-to-NIR notification thus effectively

removing the Bias1 and Bias2 effects. With pre-alert patients

removed, we again found a highly significant [30.53min (31.83%), p

< 0.0001] faster overall Arrival-to-NIR notification time in favor of

AI and, importantly, a statistically significant 28.50min (38.38%, p

< 0.0001) faster teleneurologist Login-to-NIR notification favoring

AI (Table 2B). The second major finding of this study was the

fact that significantly faster Arrival-to-NIR notification time at AI

facilities occurred regardless of whether the patient presented to a

non-TC or TC facility [non-TC delta: −33.0min (−34.02%) and

TC delta:−34min (43.59%), p< 0.001 for both]. The magnitude of

the combined Bias1 and Bias2 effect in the subgroup analyses was

again found to be relatively small (albeit subject to the same caveat

regarding potential larger bias effect at some centers due to the

wide Bias1 and Bias2 IQR values). A similar analysis wherein pre-

alert patients were removed to mitigate effect of bias again revealed

significantly faster Arrival-to-NIR notification for both the non-TC

and TC subgroups [non-TC: 34.52min (32.98%), p < 0.0001; TC:

27.08min (33.50%), p= 0.0144] and a significantly reduced time in

teleneurologist Login-to-NIR notification for AI at both the non-

TC [35.77min (43.56%), p < 0.0001] and TC subgroups [23.59min

(37.18%), p= 0.0187%, Table 3B].

The association between AI and consistency of stroke workflow

appeared to be a particularly important finding. We found a highly

significant reduction in the IQR spread at AI facilities in the

global and subgroup analyses for both metrics of patient Arrival-

to-NIR notification and teleneurologist Login-to-NIR notification

(see Table 2 footnotes line 3 and Table 3 lines 3, 4, 7, 8). This

significant reduction in the IQR spread in the AI vs. non-AI
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group further suggests that AI may improve uniformity of stroke

care delivery. As expected, the presence of AI was not associated

with an increase in the rate of thrombolysis over non-AI facilities

and only a 4min faster DTN needle time. As the decision to

initiate thrombolysis is typically based on plain CT and is typically

administered intravenously before CTA/CTP is performed, we

would not expect the presence of AI to affect this metric. The overall

4min faster DTN time (9.1%, p = 0.0184) in AI may be related to

a 20.3% higher volume of comprehensive centers in the AI cohort

which may operate with increased efficiency.

This study investigated potential effects of AI on critical

stroke workflow metrics rather than clinical outcomes due to

the multifaceted determinants of outcome and the challenges of

collecting outcome data on such a large dataset. Nonetheless,

the limitations of this study highlight the critical importance

of developing large scale database systems connecting multi-

healthcare networks in which a wide range of stroke workflow

metrics, full neuroimaging time points, full patient transfer details,

thrombectomy procedure metrics, and both short term and long-

term outcome measures are analyzed. The development of such

big data systems is essential if we are to fully vet the effects of

any new technology on patient outcomes in real world settings.

A significant limitation of this study is our inability to capture

CTA times. This raises the potential bias in which a shorter

time from patient arrival to time of CTA completion (potentially

driven by the higher EMS pre-alert population in the AI cohort)

may have been a driver to faster Arrival-to-NIR notification. It

is however important to consider that each stroke alert at AI

and non-AI facilities was executed under the watchful eye of the

same groups of teleneurologist specifically charged to orchestrate

stroke codes to prevent unnecessary delays in the performance

of CTA. We therefore think it is unlikely that a significant delay

in the performance of the CTA (thereby delaying appearance of

neuroimaging on the teleneurologists’ mobile app) would account

for the large difference in the Arrival-to-NIR times between

AI and non-AI groups. Our results did show that while the

median duration of EMS prenotification prior to arrival for AI

vs. non-AI was not significantly different, a significant 4.65% (p

< 0.001) higher percentage of AI patients arrived by EMS and

of all EMS patients a 7.01% (p < 0.001) higher percentage of

AI cases experienced prehospital alert. The presence of EMS pre-

hospital alert has been reported by multiple investigators to be

associated with faster times for door-to-CT, door-to-needle, and

door-to-mechanical thrombectomy along with improved patient

outcome (Patel et al., 2011; Lin et al., 2012; Hsieh et al., 2016;

Sheng et al., 2018; Fujiwara et al., 2022; Oostema et al., 2023).

Therefore, we cannot exclude these imbalances in EMS metrics

having some effect on our overall faster Arrival-to-NIR time for

AI vs. non-AI. However, a significantly faster Arrival-to-NIR for

AI vs. non-AI in the non-TC subgroup analysis (33.0min, 34.02%,

p < 0.001) was demonstrated despite the fact that this subgroup

exhibited no difference in the percentage of patients arriving

by EMS or the percent of EMS patients undergoing pre-alert.

This finding would tend to argue against a large confounding

effect in our results due to EMS metric imbalance. Interestingly,

we also found that the largest improvement in Arrival-to NIR

times correlated with those patients that exhibited both EMS

pre-alert and the presence of AI (Arrival-to-NIR overall analysis

improvement 57.42% (p = 0.0002) AI vs. non-AI; and Arrival-

to-NIR improvement in non-TC subgroup 52.51% (p = 0.0127)

AI vs. non-AI). The exact cause of this apparent interaction

remains unclear. Future development of big data systems will be

critical to allowing us to calculate CTA time-to-NIR-notification

time, and similar metrics, that will be more recalcitrant to

bias effects.

Given the extreme challenges that hospitals are facing in

stroke care today, the effect that AI demonstrated in our study

on the rate of patient acceptance by the NIR appears to be

particularly relevant. In the overall analysis, the presence of an

AI platform had an inverse effect on the rate of NIR acceptance

for MT on the group of patients in which the teleneurologist

contacted NIR for a suspected LVO. This negative effect of AI

on NIR acceptance of LVO-identified patients appeared to be

driven by patients presenting to non-TC centers [10.79% absolute

reduction (−23.17%), p < 0.001]. While the exact reason for this

phenomenon is uncertain, we hypothesize that the AI platform

may impact NIR decision making by providing a unique high-

quality mobile CT, CTA, and CTP review station to review

outside facility neuroimaging. We hypothesize that the AI mobile

platform, utilized by NIRs in this study, which allowed them to

scrutinize a CTA with full MIP and 3-D rotational ability around

any point in the brain may have played a significant role in

improved selection of appropriate endovascular candidates. With

neuroimaging confidently reviewed, the NIRs may have declined

to accept for MT what would otherwise have been a “futile

transfer” upon patient arrival at the TC center. The reduction

in futile transfers has never been more important than now for

both hub and spoke hospitals (Mullen et al.).1 With hub hospitals

across the United States experiencing critical staffing shortages,

the ability to limit transfers to those patients most in need of

higher level of care is of paramount importance. Similarly, the

need to shut down futile transfers, thereby driving spoke hospital

revenue, is now critically important for countless referral hospitals

teetering on financial collapse (American Hospital Association,

2022; Davenport, 2023; Thompson, 2023; Mullen et al. (see text

footnote 1)]. The positive results of the “large core” interventional

trials enrolling patients with ASPECTS scores 3–5, will likely lead

to a change in guidelines such that more patients with large

infarcts are transferred and undergo thrombectomy (Yoshimura

et al., 2022; Huo et al., 2023; Sarraj et al., 2023). Despite this

expected paradigm shift, the goal of getting every patient admitted

expediently to a center able to maximize their outcome will not

change. Therefore, AI will likely remain a critical tool in our

armamentarium for LVO detection, provider communication, and

treatment facilitation.

Our results beg the question: are these findings specific to the

practice of telemedicine or are they more widely generalizable?

Stroke workflow at telemedicine-based facilities is directly mirrored

1 Mullen, D., Sevilis, T., Avila, A., Devlin, T. (2024). Optimization of acute

stroke-related hospital finances utilizing artificial intelligence - financial

implications of recent clinical study results. Health Serv. Manag. Res. (In

submission).
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after highly efficient in-person neurologist-based facilities with only

minor variations. As such, when assessing the potential effect of

AI on stroke workflow, our findings are less likely to represent

a “telemedicine-specific” effect. The presence of AI platform did

not increase the LVO detection rate across the total population

of patients that underwent advanced imaging (Table 2A). A small,

but significant, increase was seen in the rate of LVO detection

among those patients undergoing advanced imaging in the TC AI

vs. non-AI subgroups (7.10 vs. 0.715%, p = 0.0001) but not the

non-TC subgroup (Table 3A). The lack of difference in the overall

LVO detection rate in our study between AI and non-AI may have

been attributable to both a treating neurologist and a radiologist

reviewing all neuroimaging emergently. At other hospital systems

without this level of intense emergent neuroimaging scrutiny a

greater LVO detection rate with AI may be more likely. Previous

investigators have reported higher levels of LVO detection rates

commensurate with the level of neuro-specific training of their

reviewing physicians (Karamchandani et al., 2022).

Conclusion

In conclusion, despite our modern-day deeper understanding

of “time is brain” (now incorporating the concept of “slow

progressors and fast progressors”), we still cannot predict the

specific infarct rate for any individual LVO patient. As such, all

potential MT patients should be treated as fast progressors with

laser focus by the ED stroke team on rapid LVO detection and

getting appropriate neuroimaging into the hands of the treating

NIR physicians. Numerous studies have been published giving us

great insight into the highly time dependent nature ofMT eligibility

and outcomes (Sun et al., 2013; Goyal et al., 2015, 2016; Jovin et al.,

2015; Saver et al., 2015; Albers et al., 2018; Mulder et al., 2018;

Nogueira et al., 2018; Carrion-Penagos et al., 2022). While it was

not the purpose of this study to prove “time is brain,” the degree of

potential time savings reported in this study would be considered

by most clinicians to be in the highly relevant range. In fact, delays

in contacting the neurointerventionalist have been estimated to

comprise∼57% of the entire patient door in/door out time at spoke

hospitals (Sun et al., 2013). The results of this large multicenter

study, when combined with the results of previous studies,

support the adoption of advanced AI-based care coordination

platforms with automated LVO detection, neuroimaging review,

and communication systems into the armamentarium of acute

stroke care hospitals. Most importantly, this study underscores

the critical need to develop “big data” systems linking multi-

hospital networks to capture detailed data on stroke workflow,

neuro imaging times, specifics of treatments, and patient outcomes.

Only in this way will we be able to fully vet the potential benefit

of AI (and other emerging technologies), expedite adoption, and

maximize the outcomes of our patients.
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