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Brain volume is a better
biomarker of outcomes in
ischemic stroke compared to
brain atrophy

Kenda Alhadid, Robert W. Regenhardt, Natalia S. Rost and

Markus D. Schirmer*

Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA,

United States

Objective: This study aimed to determine whether brain volume at the time of

ischemic stroke injury is a better biomarker for predicting functional outcomes

than brain atrophy.

Background: Brain parenchymal fraction (BPF) has been used as a surrogate

measure of global brain atrophy and a neuroimaging biomarker of brain reserve

in studies evaluating clinical outcomes after brain injury. Brain volume itself is

a�ected by natural aging, cardiovascular risk factors, and biological sex, among

other factors. Recent studies have shown that brain volume at the time of injury

can influence functional outcomes, with larger brain volumes being associated

with better outcomes.

Methods: Acute ischemic stroke cases at a single center between 2003 and

2011, with neuroimaging obtained within 48h of presentation were eligible

for the study. Functional outcomes represented by the modified Rankin Scale

(mRS) score at 90 days post-admission (mRS score ≤2 deemed a favorable

outcome) were obtained through patient interviews or per chart review. Deep

learning–enabled automated segmentation pipelines were used to calculate

brain volume, intracranial volume, and BPF on the acute neuroimaging data.

Patient outcomes were modeled through logistic regressions, and a model

comparison was conducted using the Bayes information criterion (BIC).

Results: A total of 467 patients with arterial ischemic stroke were included in

the analysis, with a median age of 65.8 years and 65.3% of the participants being

male. In both models, age and a larger stroke lesion volume were associated

with worse functional outcomes. Higher BPF and a larger brain volume were

associated with favorable functional outcomes; however, a comparison of both

models suggested that the brain volume model (BIC = 501) better explains the

data than the BPF model (BIC = 511).

Conclusion: The extent of global brain atrophy (and its surrogate biomarker BPF)

has been regarded as an important biomarker for predicting functional post-

stroke outcomes and resilience to acute injury. In this study, we demonstrate

that a higher global brain volume at the time of injury better explains favorable

functional outcomes, which can be directly measured in a clinical setting.
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1 Introduction

With aging populations in the United States and around the

world, along with an increased incidence of stroke among younger

patient populations, the prevalence of arterial ischemic stroke is

on the rise (World Health Organization, 2006; Feigin et al., 2014;

Zhang et al., 2023). Understanding the determinants of post-stroke

outcomes that may lead to functional independence is of great

clinical, societal, and economic importance. Determining the most

relevant clinical and imaging biomarkers for predicting functional

outcomes is essential for developing targeted preventative and

therapeutic approaches. Phenotypic information, such as age and

lesion volume (Nakayama et al., 1994; Löuvbld et al., 1997; Thijs

et al., 2000), have been utilized to model post-stroke outcomes;

however, current models are insufficient to adequately explain

clinically observed variations in outcomes.

Neuroimaging studies have started to reveal important factors

related to clinical outcomes, such as white matter hyperintensity

volume (Debette and Markus, 2010; Schirmer et al., 2019a;

Hong et al., 2021; Ball et al., 2023). Additionally, studies have

demonstrated that brain volume, specifically cortical volume, is

related to an individual’s cognitive abilities and intelligence, even

when corrected for age, sex, and other collinearities (McDaniel,

2005; Deary et al., 2010; Van Essen et al., 2013; Pietschnig et al.,

2015; Genç et al., 2018; Weerasekera et al., 2023). Many of

these studies rely on high-resolution, often 1 mm3 T1-weighted

imaging sequences. However, for acute ischemic stroke patients,

prolonged imaging acquisitions can lead to a delay in time to

treatment and thus negatively impact patients’ outcomes. New

developments in neuroimage analysis pipelines have enabled the

assessment of volumetric neuroimaging markers at admission from

clinical magnetic resonance imaging (MRI) scans (Schirmer et al.,

2019a, 2020; Hoopes et al., 2022; Billot et al., 2023; Laso et al.,

2024; Hoffmann et al., 2024). This has led to the identification of

brain volume in stroke patients at admission as an independent

biomarker of functional post-stroke outcomes (Schirmer et al.,

2020; Sagnier et al., 2017; Oliveira et al., 2023; Schirmer et al.,

2024). Volumetric brain studies often normalize each patient’s

brain volume by their intracranial volume, also known as brain

parenchymal fraction (BPF), which can serve as a surrogate

measure of global brain atrophy in cross-sectional studies (Vågberg

et al., 2017; Bu et al., 2021; Luijten et al., 2022; Yazici et al., 2024).

However, no consensus exists on the utility of non-normalized and

normalized brain volume measurements.

In this study, we compare the utility of non-normalized and

normalized brain volume in outcome modeling by building on

advances in deep learning–enabled segmentation algorithms to

estimate brain volume and BPF in a cohort of 476 acute ischemic

stroke patients based on their acute clinical neuroimaging data

acquired in the emergency department. Using multivariable logistic

regression models of functional outcome, measured using the 90-

day modified Rankin Scale (mRS) score, we compare the models

including either BPF as a surrogate measure of brain atrophy

or a volumetric measure of brain volume. We demonstrate that

an individual’s brain volume at the time of acute injury, rather

than a measure of brain atrophy, is a better marker for modeling

functional outcomes.

2 Materials and methods

2.1 Standard protocol approvals,
registration, and patient consent

The use of human patients in this study was approved by our

site’s institutional review board, and informed written consent was

obtained from all participating patients or their surrogates at the

time of enrollment following the Declaration of Helsinki.

2.2 Study design, setting, and patient
population

Patients older than 18 years of age presenting to the emergency

department at our hospital between 2003 and 2011 with signs

and symptoms of acute ischemic stroke (AIS) were eligible for

enrollment. In this analysis, we included subjects with (a) acute

cerebral infarct lesions confirmed by diffusion-weighted imaging

(DWI) scans obtained within 48 h of symptom onset and (b)

T2 fluid-attenuated inversion recovery (T2-FLAIR) sequences

available for volumetric analyses. All clinical variables, including

demographics and medical history, were obtained on admission.

Patients and/or their caregivers were interviewed in person or by

telephone 3 months after the acute clinical stroke presentation

to assess functional outcomes (mRS score). If the patient could

not be contacted, an mRS score was determined from a review of

clinical evaluations.

The standard AIS imaging protocol at time of presentation

and obtained within 48 h of symptom onset in the emergency

department on a 1.5T Signa scanner (GE Medical Systems)

included DWI with single-shot echo-planar imaging (1–5 B0

volumes, 6–30 diffusion directions with b = 1,000 s/mm2, 1–

3 averaged volumes) and T2-FLAIR imaging [Repetition time

(TR) 5,000ms, minimum Echo time (TE) of 62–116ms, Inversion

time (TI) 2,200ms, Field-of-view (FOV) 220–240mm]. DWI data

sets were assessed and corrected for motion and eddy current

distortions (Sorensen et al., 1999). Acute infarct volume was

manually assessed on DWI (DWIv). A manual estimate of ICV

was calculated on T1 sagittal sequences, where available [median

(interquartile range, IQR) TR 400 (400–450) ms, TE 14 (10–14) ms,

and FOV 240 (240–240) mm], using a previously validated method

(Ferguson et al., 2005).

2.3 Automated brain and intracranial
volume estimation

The brain volume and intracranial volume (ICV) estimations

were calculated in a standardized, automated process utilizing the

available FLAIR imaging data. Each patient image first underwent

N4 bias field correction (Tustison et al., 2010), followed by brain

extraction using synthstrip (Hoopes et al., 2022). The estimated

brain mask was utilized in a secondary N4 bias field correction,

after which the image underwent intensity normalization using

a mean shift algorithm, and normal-appearing white matter was
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FIGURE 1

Magnetic Resonance imaging CLinical resOlution brain VolumEtRics (MR-CLOVER) pipeline for generating brain volume and intracranial volume

(ICV) segmentations and volume estimations using clinical fluid-attenuated inversion recovery sequences obtained at hospital admission.

set to an intensity of 0.75. Subsequently, each image underwent

thresholding at 0.375 to extract an estimate of total brain volume,

given by combined gray and white matter volume, following our

previously published approach (Schirmer et al., 2020). ICV masks

were estimated based on the segmentation results from synthseg

(Billot et al., 2023), utilizing the bias field corrected image as input.

Figure 1 presents an overview of the MRI CLinical resOlution

brain VolumEtRics (MR-CLOVER) pipeline. Both synthstrip and

synthseg are publicly available as part of Freesurfer (Fischl, 2012),

and the MR-CLOVER pipeline is also publicly available1.

2.4 Statistical analysis and model
description

Before analysis, each mask underwent manual quality control

by visual inspection. For each patient, brain volume and ICV

were determined by multiplying the number of voxels by the

corresponding voxel size. Automated and manual estimates of ICV

were compared using a linear model without intercept, reporting

the coefficient.

We calculated BPF for each patient as the ratio of brain volume

to intracranial volume, which was subsequently logit-transformed.

Age and brain volume were utilized in the model in units of decade

and dm3, respectively, to avoidmodeling issues due to scale. Patient

outcome was encoded as functional independence (mRS score ≤2)

and moderate to severe disability (mRS score >2). Patient outcome

was then modeled through logistic regressions, given as

mRS( > 2 ) ∼ Age + Sex + HTN + DM2 + Non− Smoker

+ DWIv + X,

where X was either BPF or brain volume, resulting in two

models for comparison. A model comparison was conducted using

the Bayes information criterion (BIC).

1 https://github.com/mdschirmer/mr-clover

TABLE 1 Characteristics of the cohort utilized in this study.

N 476

Age [years; median (IQR)] 65.8 (55.3, 76.3)

Sex (% male) 311 (65.3)

HTN (%) 332 (69.7)

DM2 (%) 96 (20.2)

Non-smoker (%) 286 (60.1)

Lesion volume [cc; median (IQR)] 2.2 (0.6, 12.7)

BPF [%; median (IQR)] 0.81 (0.77, 0.83)

Brain volume [cc; median (IQR)] 1,306.9 (1,190.9, 1,413.9)

mRS score >2 (%) 118 (24.8)

IQR, interquartile range; HTN, hypertension; DM2, diabetes mellitus type 2; BPF, brain

parenchymal fraction.

TABLE 2 Summary of model parameter estimates.

BPF p Brain volume p

Intercept 2.95 0.366 1.78 0.266

Age 0.25 0.019 0.25 0.010

Sex (M) –0.88 <0.001 −0.36 0.194

HTN 0.20 0.506 0.08 0.792

DM2 0.54 0.056 0.47 0.105

Non-smoker −0.08 0.737 −0.02 0.919

log(lesion volume) 0.34 <0.001 0.35 <0.01

BPF –7.32 0.038 –

Brain volume – – –3.83 <0.001

HTN, hypertension; DM2, diabetes mellitus type 2; BPF, brain parenchymal fraction. Bold

values are statistically significant.

After model fit, we tested the model assumptions, that is,

linearity in the logit for continuous variables, the absence of

multicollinearity given by a variance inflation factor lower than 2,

and a lack of strongly influential outliers. All statistical analyses

were conducted using the computing environment R (R Core

Team, 2024). Significance was set at p < 0.05.
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3 Results

The clinical characteristics of the study cohort are described in

Table 1. The cohort had a median age (IQR) of 65.8 (55.3, 76.3)

years, 65.3% were male, 69.7% had a diagnosis of hypertension, and

24.8% of patients had a bad outcome with an mRS score >2. All

brain and ICV masks passed the quality control, and the volumes

are summarized in Table 1. Manual and automated ICV estimates

showed good agreement (coefficient ± standard error; β = 0.944

± 0.002), enabling us to utilize the automated ICV estimates for

further analyses.

The parameters of both outcome models are summarized in

Table 2 and Figure 2. All assumptions of the logistic regression

models were fulfilled. In both models, older patients and patients

with larger stroke lesion volume had worse outcomes. Male sex was

only found to be significant in the BPF outcome model, where male

patients demonstrated better functional outcomes. Both higher

BPF, that is, less brain atrophy and higher brain volume were

associated with better functional outcomes.

Evaluating the BIC for both models resulted in values of 511

and 501 for themodel based on BPF and brain volume, respectively.

The comparison of both models suggests that the brain volume

model explains the observed data better than the corresponding

base model, with 1BIC= 10.

4 Discussion

In this study, we highlight the significant role of brain volume

and its association with functional outcomes after ischemic stroke.

In a large cohort of AIS patients, we demonstrated that uncorrected

brain volume at the time of injury is a better biomarker of

stroke outcomes than brain atrophy. We derived brain volume

and intracranial volume estimates automatically on clinical MRI

sequences using a deep learning–enabled pipeline. This allowed

this important parameter to be extracted from clinical imaging

data obtained as the standard of care in the emergency department

for patients with acute stroke presentations. Our results indicate

that a larger brain volume at the time of the acute injury leads to

better functional outcomes. In twomodels comparing brain volume

and BPF, we determined a 1BIC = 10, providing strong evidence

that the brain volume model outperforms the BPF model (Raftery,

1995).

The relationship between larger brain volume and higher

cognitive abilities has been consistently reported (McDaniel, 2005;

Weerasekera et al., 2023; Royle et al., 2013), with more recent work

delineating the underlyingmicrostructural architecture observed in

larger brain volumes that could explain this benefit. It is put forth

that larger cortices benefit from the increased processing power of a

higher number of neurons, with concomitant lower neurite density

and orientation dispersion maximizing the network efficiency

and reducing energy demand (Genç et al., 2018). Importantly,

previous studies have shown that total brain volume is a significant

determinant of functional (mRS) and patient-reported outcome

after ischemic stroke (Schirmer et al., 2020; Oliveira et al., 2023).

This may further relate to the concepts of brain and effective

reserve, which aims to quantify the brain’s ability to compensate

for negative effects, such as sudden vascular events (Schirmer

et al., 2024, 2019b; Stern et al., 2020). Our data show that brain

volume without normalizing for intracranial volume was a better

determinator of functional outcomes post-stroke.

In our model evaluating the relationship between BPF and

functional outcomes at 90 days, male sex is significantly associated

with a favorable functional outcome, and this is in line with

previous studies showing that women are typically older at the

time of stroke and endure worse functional outcomes post-stroke

(Rexrode et al., 2022). However, sex becomes non-significant

after including brain volume at the time of injury. This is likely

explained by brain volume differences in the context of known

anthropometric differences between men and women, which may

account for the majority of sex-specific variation in the current

data. Future large-cohort studies are needed to further disentangle

sex-specific differences in patient outcomes.

Our study had limitations. Due to the AIS treatment

timeline, a limited number of axial slices were obtained during

MRI acquisition. These clinical scans lack isotropic resolution,

experience partial volume effects, and prevent localized/regional

brain volume estimates. However, the imaging data used reflects

FIGURE 2

Graphical representation of parameter estimates including 95% confidence intervals. BIC, Bayes information criterion; HTN, hypertension; DM2,

diabetes mellitus type 2; BPF, brain parenchymal fraction.

Frontiers in Stroke 04 frontiersin.org

https://doi.org/10.3389/fstro.2024.1468772
https://www.frontiersin.org/journals/stroke
https://www.frontiersin.org


Alhadid et al. 10.3389/fstro.2024.1468772

what is typically available during standard of care in acute stroke

patients, in which rapidly estimating biomarkers is crucial for

clinical decision-making. Additionally, examining the effects of

lesion location, including the impact of strokes in eloquent vs.

non-eloquent areas, was not performed. Lesion location and

regional brain volume estimates have the potential to further refine

outcome models in stroke and should be considered in future

studies. Acknowledging that brain volume within 48 h of acute

ischemic stroke might not fully represent stable conditions due

to neuroinflammation and remodeling processes occurring in the

acute phase after stroke is also important. This is compounded

by potential confounding effects of acute edema, which can vary

among patients and impact brain volume assessments. Ad hoc

analysis showed a low correlation between brain volume and lesion

volume (r = 0.1, p = 0.035), aligning with previous literature

(Schirmer et al., 2020). In this study, no follow-up imaging data

were available, but a detailed investigation into this aspect will

be an important part of future research. Finally, acute treatments

administered to stroke patients, particularly thrombolytic therapy

in our cohort, are likely to influence outcomes. Imaging was

conducted shortly after admission, mitigating the direct effects

of treatment on brain volume. However, treatment, as well as

other aspects such as risk factor control, neurorehabilitation,

and other post-stroke interventions, will have a significant

impact on outcomes; however, this information was not

available. Future studies should consider these variables to refine

outcome predictions.

Our study’s strengths include the utilization of a large

hospital-based cohort with clinical neuroimaging data available in

the emergency department. Importantly, employing state-of-the-

art clinical neuroimaging analysis methodologies enabled us to

delve deeper into the associations with post-stroke outcomes at

admission to the hospital, identifying neuroimaging biomarkers

that can readily be assessed in the clinic. To the best of our

knowledge, this study represents the first investigation into the

benefit of utilizing non-normalized volumetric estimates of brain

volume over measures of brain atrophy.

5 Conclusion

Our study provides strong evidence in a large cohort of

stroke patients that brain volume at the time of injury is

a better determinant of functional post-stroke outcomes than

brain atrophy. Importantly, the presented analysis pipeline

was based on clinical MRI data, offering the opportunity for

immediate translation to a clinical tool that can quantify this

biomarker at the initial point of care. This opens new avenues

for expanding our knowledge on prognosticating outcomes in

stroke populations.
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