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Introduction: A key element of personalized stroke rehabilitation is early
prediction of an individual’s potential to walk in the community.

Objective: We aim to determine the predictive value of patient characteristics,
clinical test results, and Inertial Measurement Units (IMU) based balance, clinical
gait and daily-life measures, measured at admission and discharge in clinical
stroke rehabilitation, for community walking 6 months after stroke.

Methods: Data were collected from people after stroke during clinical
rehabilitation and at 6 months post stroke. The assessment during rehabilitation
consisted of an IMU-based 2-min walk test (2MWT), three IMU-based balance
tests, an IMU-basedmeasurement of gait in daily life, and several standard clinical
tests, including the Berg Balance Scale, Barthel Index, Functional Ambulation
Categories, Motricity Index (MI), and Trunk Control Test (TCT). At 6-months,
gait in daily life was measured with an IMU for two consecutive days. From
this measurement, three gait features were calculated, namely the strides per
day, and average and maximum gait speed. We assessed the predictive value of
IMU-based balance, gait, and daily-life measures, the clinical tests and patient
characteristics at admission and discharge for predicting daily-life measures
at 6 months after stroke with univariate ordinary least squares regression.
Subsequently, significant predictors were included in amultivariate ordinary least
squares regression.

Results: Thirty-five individuals after stroke were included. Ordinary least squares
regression analysis indicated that age, gait features and strides per day at
admission and discharge had significant predictive value for the step count at
6 months. For the average and maximum gait speed in daily life at 6 months,
the 2MWT gait speed, TCT, MI and the baseline average and maximum gait
speed in daily life were significant predictors. Multivariate analysis indicated that
the outcomes at admission had more predictive value than the outcomes at
discharge, with adjusted R2 values for the strides per day, average and maximum
gait speed models of 0.60, 0.42, and 0.53, respectively.

Conclusions: Age, trunk stability (TCT), a�ected leg strength (MI), and the
clinical and daily-life gait had predictive value for community walking 6-months
after stroke. Future research with a larger sample size is required to refine
these findings.
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1 Introduction

Walking problems are common in people after stroke, leading

to decreased mobility, independence, and overall quality of life

(Lord et al., 2004; Park and Kim, 2019; Grau-Pellicer et al., 2019).

These problems are due to a variety of impairments, such as muscle

weakness, spasticity, and reduced coordination (Li et al., 2018).

The nature and intensity of the impairments are directly linked

to the type and severity of the stroke, as well as the affected brain

area (Payabvash et al., 2018). Recovery after stroke typically follows

a logarithmic pattern, with the most significant improvements

in walking ability occurring in the first few weeks after stroke

(Kwakkel et al., 2004). These improvements can be attributed to

spontaneous recovery and clinical rehabilitation, which can both

induce neural plasticity as well as adaptive behaviors.

After 6 months, recovery reaches a critical point from which

individuals can likely only improve functional gait by adopting

compensation strategies, i.e., functional adaptations to overcome

impairments (Stanhope et al., 2014; Cirstea and Levin, 2000; Buurke

et al., 2008).

The differences in impairments, recovery rates and

compensation strategies make the stroke population a

heterogenous group with a wide variety of movement patterns

(Felius R. A.W. et al., 2024; Balaban and Tok, 2014). A consequence

of the variety within the stroke population is that there is no single

intervention that caters to the needs and circumstances of each

individual. Therefore, personalized rehabilitation, in which

interventions are tailored to the unique impairments, needs and

goals, is of paramount importance to achieve the best possible

outcomes in stroke rehabilitation (Chang, 2022; Moore et al.,

2022).

One important aspect of personalized rehabilitation is accurate

prediction of an individual’s potential to walk in the community

after rehabilitation. Such predictions allow clinicians to focus

intervention strategies and manage patient expectations more

effectively (Moons et al., 2009). There are various ways to define

“walking in the community”, with the simplest approach being a

questionnaire to assess participation in community activities (Lord

et al., 2004; Ada et al., 2009). However, the subjective nature of

questionnaires can lead to biased outcomes. These are difficult to

predict, as they might misrepresent an individual’s true walking

capacity, defined as the distance an individual is capable of walking

during a given period of time (Robinson et al., 2011). A more

objective method is to characterize the level of walking in the

community via the number of strides per day, in which a higher

step count reflects a higher level of community walking (Fulk

et al., 2017). To get a better understanding of walking in the

community after stroke, other measures should be explored as well.

Two potentially interestingmeasures are the average andmaximum

gait speed in the community. These might provide a different

perspective of someone’s ability to walk in the community, as they

may be less affected by environmental factors than step count.

Moreover, evidence suggests that clinical gait speed is directly

linked to community walking, therefore it is imaginable that gait

speed in the community is an indicator of community walking as

well (Fulk et al., 2017; An et al., 2015; Bijleveld-Uitman et al., 2013;

Vive et al., 2021; Grau-Pellicer et al., 2019).

Previous work indicated several predictors that influence

walking in people after stroke (Fulk et al., 2017; Wouda et al.,

2024; Kollen et al., 2005). Fulk et al. (2017) used a cross-sectional

analysis to predict community walking, defined in terms of step

count. They found that gait speed, movement impairments, and

balance were significant predictors for walking in the community

(Fulk et al., 2017). The review of Wouda et al. (2024) focused

on early predictors of walking independence after stroke. They

concluded that trunk stability while sitting and the strength of

the affected leg, both assessed on the 9th day after stroke had

predictive value for independent walking after stroke (Wouda

et al., 2024). Lastly, research by Kollen et al. (2005) investigated

the factors associated with changes in functional gait within

the 1st year after stroke. They found that improvements in

strength, balance and synergism were linked to improvements in

functional gait.

Beside the previously indicated predictors, evidence suggests

that gait features, i.e., gait characteristics, such as asymmetry and

variability, are associated with walking abilities as well (Wonsetler

and Bowden, 2017; Punt et al., 2016; Patterson et al., 2008).

Therefore, it is conceivable that these also have predictive value

for the capacity of people after stroke to walk in the community.

However, to the best of our knowledge there is no study that

evaluated the predictive value of these features for community

walking after stroke.

The objective of this study was to determine the predictive

value of clinical tests, balance features, clinical gait features, daily-

life measures and patient characteristics, measured during clinical

rehabilitation, on the ability to walk in the community 6-months

post stroke. Community walking was measured with three different

gait features, namely the number of strides per day, the average gait

speed and the maximum gait speed in daily life. Understanding

which variables have predictive value for community walking is

crucial, as they can support accurate goal setting, manage patient

expectations and may help clinicians to tailor interventions to

expected level of recovery.

2 Materials and methods

2.1 Participants

Individuals after stroke in the acute and sub-acute phase

were recruited in two clinical rehabilitation centers in the

Netherlands between January 1, 2021, and July 1, 2023. The

inclusion criteria were as follows: (1) participants aged 18

years or older; (2) capable of understanding and signing

the informed consent document; (3) able to understand and

perform simple tasks; (4) first-ever or recurrent stroke; and

(5) able to walk at least 8m within 2min without physical

assistance (FAC 3). Participants provided written informed

consent before participating. Participants were excluded if either

the initial or follow-up measurement was missing. During

rehabilitation, participants received care depending on the

individual needs, including physiotherapy, speech therapy, and

occupational therapy. The Medical Ethical Review Committee of

Utrecht approved the protocol (20-462/C).
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2.2 Instruments

Inertial Measurements Units (IMUs, Aemics b.v. Oldenzaal,

The Netherlands) were used in this study. IMUs can be used to

measure a variety of human activities, including balance and gait

(Gujarathi and Bhole, 2019; Renggli et al., 2020; Kim and Eng,

2004; Ohta et al., 2023; Jarvis et al., 2022; Felius et al., 2023, 2022a;

Felius R. et al., 2024; Alsubaie et al., 2019; Ghislieri et al., 2019;

Patel et al., 2020; Jung et al., 2020). The IMUs consisted of a triaxial

accelerometer and gyroscope and could measure up to 104 samples

per second with a maximum of 16g and 2,000 rad/s (Figure 1).

2.3 Protocol

The assessment was administered every 3 weeks during

clinical rehabilitation, from admission to discharge. At 6 months

after stroke, one follow-up assessment was administered in

the participant’s home environment. The assessment during

rehabilitation and the follow-up assessment consisted of four and

two parts, respectively, which are described below. Prior to the

initial assessment, demographic and stroke-specific characteristics

were collected, including sex, age, stroke type and side, and pre-

morbid walking aid use. All assessments were administered by an

experienced physiotherapist or trained research assistant.

2.3.1 Assessment during clinical rehabilitation
Part 1.1: Participants walked for 2min at a self-selected speed

on a fourteen-meter walking path (Jarvis et al., 2022). Three IMUs

were used to collect data from the left and right foot, as well as the

lower back. The IMUs were attached using elastic bands. The IMUs

measured with a sampling rate of 104 samples/s. Participants were

allowed to walk with a walking aid during the walking test.

Part 1.2: Participants completed three balance conditions to

measure postural sway. The balance conditions were (1) Sitting

unsupported on a balance cushion with feet touching the ground

and knees in a 90 degrees angle for 60 s; (2) Standing with feet in

a self-selected position for 60 s; (3) Standing with eyes closed and

feet in a self-selected position for 30 s (Felius et al., 2022a). The

sensor was placed at the back, at the level of T7 during sitting and

L5 during standing, of the upper body andwhole body, respectively.

Part 1.3: Several standard clinical tests were administered,

including the Berg Balance Scale (BBS) (Berg et al., 1992) and

Barthel Index (BI) (Collin et al., 1988), the Functional Ambulation

Categories (FAC), both with and without a walking aid (Holden

et al., 1984), and theMotricity Index (MI) (Demeurisse et al., 1980).

Part 1.4: The participant’s’ ability to ambulate in daily life was

monitored over two consecutive days using one IMU. Participants

were instructed to always wear the sensor, except while sleeping or

showering. The IMU was fixed to the ankle of the paretic leg. If no

paretic leg could be identified, the IMU was attached to the right

ankle. The IMU measured with a sampling rate of 52 samples/s.

The location and sampling rate were adjusted in comparison to the

2MWT to minimize the risk of sensor loss and enhance battery life.

Moreover, a single sensor was used instead of three, enhancing the

feasibility of the measurements and reducing the risk of sensor loss.

The measurement automatically stopped after ∼2 days when the

IMU’s battery depleted. No specific instructions or goals were given

to the participants regarding the measurement. Participants walked

with and without walking aid, depending on their needs.

2.3.2 Follow-up assessment
Part 2.1: Participants were contacted by telephone to schedule

a semi-structured interview and to receive instructions for the

IMU-based sensor measurements (part 2). If participants could not

independently complete the interview or the IMU measurement,

they were advised to seek help from a family member or caregiver.

Part 2.2: An IMU sensor was sent to the participants via

post. Instructions provided guided them to secure the IMU

around the ankle of the paretic leg. If no paretic leg could be

identified, individuals were instructed to attach the IMU to the right

ankle. The IMU was worn during normal daily activities for two

consecutive days to measure ambulation in daily life. To initiate the

measurements, participants were directed to press the start button

on the sensor (Figure 1). A special code was implemented within

the sensor’s system to prevent accidental deactivation. Participants

were instructed to always wear the sensor, except while sleeping

or showering. The measurement period concluded automatically

after ∼2 days when the IMU’s battery depleted. Subsequently,

participants were instructed to return the sensors via post.

2.4 Data processing

The collected IMU data underwent digital processing on a

custom-made online platform, where data were processed and

stored. The IMU data were processed by first resampling the data

to 100 samples/s for the balance and gait measurement, and to 50

samples/s for the daily-life gait measurement. Next the gyroscope

offset was corrected by subtracting the previously collected offset

during a static measurement. Last, clinical gait, balance and daily-

life measures were calculated.

2.4.1 Clinical gait (part 1.1)
Gait was described using seven gait features. The following

four gait features were calculated using conventional calculation

methods: speed [m/s], asymmetry, smoothness, and variability [s]

(Ghislieri et al., 2019; Patel et al., 2020; Jung et al., 2020; Berg

et al., 1992). These four gait features were selected because they

are reliable and represent different aspects of gait (Tasseel-Ponche

et al., 2022; Garcia et al., 2021). The other three gait features

were calculated with a Variational AutoEncoder (VAE). A VAE

is a generative model that uses deep learning to learn a low

dimensional representation of the data, while minimizing data

loss (Felius R. et al., 2024; Kingma and Welling, 2019). These

gait features were included, as previous research indicated good

clinimetric properties and that they contain different information

than the conventional gait features (Felius R. et al., 2024). A detailed

description of the VAE and the seven gait features is provided in the

Supplementary Appendices S2, S4.
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FIGURE 1

Image of the Inertial Measurements Units (IMUs). The IMUs were used to measure clinical gait during a 2MWT, postural sway during various balance
conditions and gait in daily life.

2.4.2 Balance (part 1.2)
The postural sway data of the three balance conditions was

described using one feature per measurement, namely: path length.

The path length was computed as the length of the postural sway

trajectory determined from the IMU [m/s2] (Felius et al., 2022b;

Alsubaie et al., 2019; Ghislieri et al., 2019). A higher path score

indicates more movement during the balance assessment, which is

associated with a worse gait. A detailed description of path length

is provided in the Supplementary Appendix S1.

2.4.3 Daily-life gait (part 1.4 and 2.2)
The data of the IMU-based measurement in daily life

were split up into parts of 10 s before applying a previously

trained convolutional neural network with long-short term

memory to identify episodes of gait in daily life (Felius

et al., 2023). The model was trained on a balanced dataset

containing walking at gait speeds between 0.5 and 5 km/h,

among other activities, such as sitting, lying, standing, and

standing kitchen work. The model achieved an accuracy of 0.93

indicating an excellent ability to identify gait. The following

three features were calculated: number of strides per day,

and average and maximum gait speed. The maximum gait

speed was determined from the 95th percentile of the speed

distribution during the measurement. A detailed description of

the calculation of the daily-life measures is provided in the

Supplementary Appendix S3.

2.5 Statistical analysis

Ordinary Least Squares (OLS) regression was employed to

predict the daily-life measures (dependent variables) at 6-months

after stroke (Mauskopf, 2005). The collected clinical gait, balance

and daily-life measures, clinical tests and patient characteristics

both at admission and discharge were used as predictors. The

predictors were transformed into z-scores to detect outliers.

Absolute z-scores higher than 3 were removed from the analysis.

For each daily-life gait feature, a separate univariate OLS was

created per predictor. Statistical significance was determined

by a p-value of <0.05. If a significant relationship between

the predictor and the response variable was established, the

following assumptions were evaluated to ensure the validity

of the results: (1) linearity; (2) normality of error terms;

and (3) homoscedasticity. A multivariate OLS analysis was

conducted using significant predictors identified at admission and

discharge. A forward selection method was employed, beginning

with the most significant predictor. Additional predictors were

subsequently added one at a time, and each was retained

in the multivariate model it resulted in an increase of the

adjusted R². This process ensured that each new predictor

enhanced the explanatory power of the model. Both the

univariate and multivariate OLS were conducted with the

available data. The final multivariate OLS was evaluated and

described using the adjusted R2, the model’s p-value and

the F-statistic.

3 Results

3.1 Characteristics

Longitudinal data of 35 people after stroke were collected

(Table 1). On average, participants were discharged after 62

days (SD 64, range 8-379). Participants improved on all the

standard clinical tests (BBS, BI, FAC, MI, TCT) from admission

to discharge. Of the IMU-based balance, clinical gait and daily-

life gait measurements, only the strides per day showed a

notable increase during rehabilitation. The outcomes of the

dependent variables at follow-up were comparable to the outcomes

at discharge.

3.2 Prediction models

A univariate OLS was created for each predictor for

the strides per day (Table 2), average gait speed (Table 3)

and maximum gait speed (Table 4), both for admission and

discharge. None of the included predictors was significant for
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TABLE 1 Predictors at admission and discharge and dependent variables at follow-up.

Predictors Dependent variables

Rehabilitation Follow-up

Admission N Discharge N 6-Months N

Demographics

Sex Male/Female 18/17 35

Age in years µ (σ ) 69.9 (10.1) 35

Pre-morbid walking aid Yes/no 4/31 35

Stroke type Ischemic/hemorrhagic/other 26/6/3 35

Stroke side Left/right/other 17/10/8 35

Time after stroke (weeks) µ (σ ) 4.2 (2.5) 34 13.3 (9.6) 35

Clinical tests

BBS µ (σ ) 38.0 (18.1) 32 47.9 (11.8) 29

BI µ (σ ) 13.6 (5.6) 35 18.8 (1.8) 31

FAC µ (σ ) 2.1 (1.9) 34 3.6 (1.6) 30

MI paretic leg µ (σ ) 82.8 (21.4) 33 91.1 (14.3) 29

TCT 91.1 (17.2) 33 98.3 (5.5) 30

Balance conditions

USIT [m/s2] µ (σ ) 25.7 (9.4) 31 21.4 (8.8) 28

EO [m/s2] µ (σ ) 28.9 (10.8) 27 23.2 (6.8) 26

EC [m/s2] µ (σ ) 20.4 (7.3) 25 22.8 (15.4) 27

Clinical gait

Walking aid [%] Yes/No 41/59 22 35/65 27

Speed [m/s] µ (σ ) 0.81 (0.24) 22 0.82 (0.27) 27

Asymmetry µ (σ ) 0.96 (0.16) 21 1.05 (0.41) 27

Variability µ (σ ) 0.06 (0.02) 21 0.06 (0.02) 26

Smoothness µ (σ ) 0.44 (0.11) 22 0.4 (0.16) 27

VAE 1 µ (σ ) 0.08 (0.68) 21 0.11 (0.75) 24

VAE 2 µ (σ ) 0.19 (0.77) 21 0.12 (0.96) 24

VAE 3 µ (σ ) −0.81 (0.52) 21 −0.78 (0.53) 24

Gait in daily life

Wearing time [h] µ (σ ) 27.1 (8.9) 22 26.4 (7.3) 23

Strides per daya µ (σ ) 2,785 (1,786) 22 4,083 (1,984) 23 3,874 (2,536) 35

Average gait speed [m/s] µ (σ ) 0.45 (0.13) 22 0.46 (0.1) 23 0.43 (0.13) 35

Maximal gait speed [m/s]b µ (σ ) 0.87 (0.17) 21 0.88 (0.15) 23 0.79 (0.2) 35

aStrides per day was calculated as the number of strides divided by the wearing time per day.
bThe maximum gait speed was calculated as the 95% gait speed.

all three response variables. Subsequently, all predictors with

significant predictive value were added to the multivariate models

(Table 5).

3.2.1 Univariate prediction of strides per day
Three variables at admission and three variables at discharge

were predictive for the strides per day in daily life 6-months

post stroke. Age, VAE 2 and strides per day at admission,

and VAE 1, VAE 2 and strides per day at discharge had

predictive value for the strides per day at 6 months post stroke.

None of the clinical-tests and balance-conditions predictors were

significant. Evaluation of the OLS assumptions indicated no

violation (Supplementary Figures S5.1, S5.2).

3.2.2 Univariate prediction of average gait speed
Four variables at admission and three variables

at discharge were significantly related to the average

gait speed in daily life 6 months post stroke. The
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TABLE 2 Univariate prediction of strides per day in daily life 6-months after stroke.

Strides per day in daily life

Admission Discharge

β (SE) [–CI, CI] T P β (SE) [–CI, CI] T P

Demographics

Sex −408 (867) [−2,174, 1,357] −0.5 0.64

Age [years]∗ –98 (40) [–180, –16] –2.4 0.02

Pre-morbid walking aid −2,506 (1,296) [−5,143, 131] −1.9 0.06

Time after stroke weeks −49.6 (178.5) [−413, 314] −0.3 0.78

Clinical tests

BBS 15 (25) [−36, 67] 0.6 0.55 64 (35) [−8, 137] 1.8 0.08

BI 85 (77) [−71, 242] 1.1 0.28 326 (233) [−150, 803] 1.4 0.17

FAC 260 (227) [−202, 722] 1.1 0.26 439 (269) [−111, 991] 1.6 0.11

MI paretic leg 22.24 (21.3) [−21.1, 65.6] 1 0.3 24.5 (32) [−41.9, 91.0] 0.8 0.46

TCT 19.4 (26.6) [−34.9, 73.6] 0.7 0.47 46.2 (77) [−113, 205] 0.6 0.56

Balance conditions

USIT [m/s2] −30.06 (50.3) [−133, 72.8] −0.6 0.55 −44.2(50) [−146.1, 57.7] −0.9 0.38

EO [m/s2] −9.02 (45.9) [−103.5, 85.5] −0.2 0.85 −14.9(65) [−150, 120.5] −0.2 0.82

EC [m/s2] −103 (67) [−241.9, 34.5] −1.6 0.13 −3.9 (28) [−62.9, 55.2] −0.1 0.89

Clinical gait

Speed [m/s] 2,869 (2,320) [−1,970, 7,710] 1.2 0.23 1,015 (1,476) [−2,025, 4,055] 0.7 0.5

Asymmetry 1,736 (3,730) [−6,071, 9,543] 0.5 0.65 −557 (1,067) [−2,755, 1,640] −0.5 0.61

Smoothness 2,542 (5,161) [−8,223, 13,308] 0.5 0.63 −761 (2,711) [−6,344, 4,822] −0.3 0.78

Variability −21,949.27 (23,880.4) [−71,931, 28,033] −0.9 0.37 −17,192 (20,296) [−59,083, 24,697] −0.8 0.41

VAE 1 779 (886) [−1,075, 2,633] 0.9 0.39 1,817 (499) [780, 2,853] 3.6 <0.01

VAE 2∗ –2,132 (633) [–3,458, –805] –3.4 <0.01 –1,218 (470) [–2,194, –243] –2.6 0.02

VAE 3 −645 (1,175) [−3,106, 1,815] −0.5 0.59 −977 (815) [−2,669, 714] −1.2 0.24

Gait in daily life

Average gait speed [m/s] −1,084 (4,122) [−9,684, 7,515] −0.3 0.8 1,384 (4,430) [−7,829, 10,597] 0.3 0.76

Maximum gait speed [m/s] −1,303.15 (3,358.9) [−8,333.4, 5,727.1] −0.4 0.7 1,299 (2,744) [−4,445, 7,043] 0.5 0.64

Strides per day∗ 0.85 (0.24) [0.35, 1.35] 3.5 <0.01 0.42 (0.2) [0.01, 0.83] 2.1 0.04

A significant relationship (p < 0.05) was marked in bold.

Predictors that had a significant relationship with the response variable at admission and discharge were marked with a ∗ .

MI paretic leg, clinical gait speed, average gait speed,

and maximum gait speed had significant predictive

value for the average gait speed 6 months post stroke.

Evaluation of the OLS assumptions indicated no violation

(Supplementary Figures S5.3, S5.4).

3.2.3 Univariate prediction of maximum gait
speed

Three variables at admission and one variable at discharge

had significant predictive value for the maximum gait speed

in daily life. The MI at admission and TCT at discharge

were positively related to the maximum gait speed. The VAE

2 at admission was negatively related to the maximum gait

speed. Evaluation of the OLS assumptions indicated no violation

(Supplementary Figures S5.5, S5.6).

3.2.4 Multivariate prediction of daily-life measures
The coefficients of the predictors that improved the

multivariate model are described in Table 5. The final Adjusted R2

values for the models for strides per day, average and maximum

gait speed models with variables measured at admission were

0.60 [F(3,18) = 9.6, p < 0.01], 0.41 [F(3,19) = 5.1, p = 0.01] and

0.53 [F(3,14) = 7.3, p < 0.01], respectively. The adjusted R2 values

for predictors measured at discharge for the strides per day,

average and maximum gait speed were 0.53 [F(4,14) = 6.2, p <

0.01], 0.36 [F(3,18) = 6.7, p < 0.01], and 0.40 [F(1,29) = 21.3, p <

0.01], respectively.

4 Discussion

We determined the predictive value of patient characteristics,

standard clinical tests and IMU-based balance, clinical gait and
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TABLE 3 Univariate prediction of the average gait speed in daily life 6-months after stroke.

Average gait speed in daily life

Admission Discharge

β (SE) –CI, CI T P β (SE) –CI, CI T P

Demographics

Sex −0.65 (4.6) [−9.9, 8.6] −0.1 0.89

Age [years] 0.12 (0.2) [−0.3, 0.6] 0.5 0.6

Pre-morbid walking aid 6.98 (7.1) [−7.4, 21.3] 1 0.33

Time after stroke weeks −1.49 (0.9) [−3.3, 0.4] −1.6 0.11

Clinical tests

BBS −0.04 (0.1) [−0.3, 0.2] −0.3 0.79 0.29 (0.2) [−0.2, 0.7] 1.3 0.2

BI 0.32 (0.4) [−0.5, 1.15] 0.8 0.43 0.74 (1.3) [−2.0, 3.5] 0.5 0.59

FAC −1.29 (1.2) [−3.7, 1.14] −1.1 0.29 1.76 (1.1) [−0.5, 4.1] 1.6 0.13

MI paretic leg 0.22 (0.1) [0.0, 0.4] 2.1 0.04 0.16 (0.2) [−0.2, 0.5] 0.9 0.38

TCT 0.18 (0.1) [−0.1, 0.5] 1.4 0.17 1.06 (0.4) [0.3, 1.9] 2.7 0.01

Balance conditions

USIT [m/s2] 0.08 (0.2) [−0.4, 0.6] 0.3 0.75 −0.27 (0.3) [−0.9, 0.4] −0.8 0.4

EO [m/s2] 0.37 (0.2) [−0.0, 0.7] 2 0.05 0.26 (0.4) [−0.5, 1.1] 0.7 0.51

EC [m/s2] 0.35 (0.3) [−0.2, 0.9] 1.3 0.21 −0.07 (0.2) [−0.4, 0.3] −0.4 0.71

Clinical gait

Speed [m/s] –19.25 (8.22) [–36.4, –2.1] –2.3 0.03 −9.8 (8.6) [−27.5, 7.9] −1.1 0.27

Asymmetry −0.23 (14.1) [−29.8, 29.4] 0 0.99 1.52 (6.3) [−11.5, 14.6] 0.2 0.81

Smoothness −18.14 (19.6) [−59.0, 22.8] −0.9 0.37 −4.03 (16.1) [−37.1, 29.0] −0.3 0.8

Variability 111 (92) [−81, 305] 1.2 0.24 141 (107) [−79, 361] 1.3 0.2

VAE 1 4.33 (3.3) [−2.6, 11.3] 1.3 0.21 −4.6 (3.7) [−12.3, 3.1] −1.2 0.23

VAE 2 −4.56 (2.9) [−10.6, 1.5] −1.6 0.13 −0.75 (3.2) [−7.5, 6.0] −0.2 0.82

VAE 3 5.45 (4.4) [−3.7, 14.6] 1.2 0.23 5.88 (4.9) [−4.3, 16.1] 1.2 0.25

Gait in daily life

Average gait speed [m/s]∗ 35.42 (11.1) [12.1, 58.7] 3.2 <0.01 66.51 (23.4) [17.8, 115.2] 2.8 0.01

Maximum gait speed [m/s]∗ 24.53 (8.1) [7.6, 41.5] 3 0.01 35.5 (16.0) [1.9, 69.0] 2.2 0.04

Strides per day −0.0 (0.0) [−0.0, 0.0] −1 0.33 −0.0 (0.0) [−0.0, 0.0] −0.5 0.6

Significant variables (p < 0.05) were marked in bold.

Predictors that had a significant relationship with the response variable at admission and discharge were marked with a ∗ .

daily-life measures at admission and discharge for the ability to

walk in the community 6 months post stroke. None of the included

variables had significant predictive validity for all three measures

(strides per day, average gait speed, and maximum gait speed) of

walking in the community. Per dependent variable, only a few of the

included variables had predictive value. Of these, the results were

mostly inconsistent between admission and discharge. To further

improve prediction accuracy other factors, such as cognitive,

behavioral and environmental factors, should be considered as well.

For the number of strides at 6 months, we found age, number

of strides at admission and discharge, and gait features at admission

and discharge to be predictive. The effect of age is in line

with previous research which indicated that age has a negative

relationship with recovery after stroke (Bagg et al., 2002; Kugler

et al., 2003). The predictive value of the stride count at admission

and discharge may reflect that individuals with a higher walking

capacity at onset also have a higher walking capacity at the follow-

up measurements, but may also reflect a trait to be physically active

which was preserved over the study duration. Lastly, gait features

indicated by features obtained with a Variational AutoEncoder

were significant. Presumably, gait impairments result in a lower

locomotion efficiency (Brodie et al., 2017; Kramer et al., 2016;

Blokland et al., 2021, 2023), i.e., higher energy expenditure during

walking, causing individuals to walk less. None of the conventional

clinical-test outcomes had significant predictive validity on the step

counts in the community. These results are in contrast with the

conclusions of Fulk et al. (2017) who were able to discriminate

between home and community ambulators using conventional
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TABLE 4 Univariate prediction of the maximum gait speed in daily life 6-months after stroke.

Maximum gait speed in daily life

Admission Discharge

β (SE) –CI, CI T P β (SE) –CI, CI T P

Demographics

Sex −5.19 (6.7) [−18.8, 8.4] −0.8 0.44

Age [years] 0.13 (0.3) [−0.6, 0.8] 0.4 0.71

Pre-morbid walking aid 8.98 (10.5) [−12.4, 30.4] 0.9 0.4

Time after stroke weeks −2.4 (1.3) [−5.1, 0.3] −1.8 0.08

Clinical tests

BBS 0.05 (0.2) [−0.3, 0.4] 0.2 0.81 0.56 (0.3) [−0.1, 1.2] 1.8 0.09

BI 0.63 (0.6) [−0.6, 1.9] 1.1 0.3 1.26 (1.8) [−2.5, 5.0] 0.7 0.5

FAC −1.01 (1.8) [−4.6, 2.6] −0.6 0.58 2.06 (2.5) [−3.0, 7.1] 0.8 0.41

MI Paretic leg 0.4 (0.1) [0.1, 0.7] 2.8 0.01 0.48 (0.3) [−0.0, 1.0] 1.9 0.07

TCT 0.31 (0.2) [−0.1, 0.7] 1.6 0.11 1.54 (0.5) [0.4, 2.7] 2.8 0.01

Balance conditions

USIT [m/s2] 0.29 (0.3) [−0.4, 1.0] 0.8 0.41 −0.51 (0.5) [−1.5, 0.5] −1.1 0.29

EO [m/s2] 0.41 (0.3) [−0.1, 0.9] 1.6 0.12 0.56 (0.5) [−0.5, 1.6] 1.1 0.28

EC [m/s2] 0.51 (0.4) [−0.3, 1.3] 1.3 0.19 −0.14 (0.2) [−0.6, 0.4] −0.6 0.59

Clinical gait

Speed [m/s] −23.5 (12.7) [−50.0, 3.1] −1.8 0.08 −9.45 (11.2) [−32.5, 13.6] −0.8 0.41

Asymmetry 10.36 (20.9) [−33.4, 54.1] 0.5 0.63 6.21 (8.1) [−10.4, 22.8] 0.8 0.45

Smoothness −20.2 (29.4) [−81.5, 41.1] −0.7 0.5 −29.15 (19.8) [−70.0, 11.7] −1.5 0.15

Variability 157 (137.9) [−131, 446] 1.1 0.27 141 (134) [−134, 417] 1.1 0.3

VAE 1 3.7 (5.1) [−7.0, 14.4] 0.7 0.48 −6.12 (4.9) [−16.3, 4.1] −1.2 0.23

VAE 2 –8.93 (4.1) [–17.5, –0.3] –2.2 0.04 −1.78 (4.3) [−10.7, 7.1] −0.4 0.68

VAE 3 11.59 (6.2) [−1.5, 24.7] 1.9 0.08 6.35 (6.6) [−7.4, 20.1] 1 0.35

Gait in daily life

Average gait speed [m/s] 44.65 (22.5) [−2.3, 91.6] 2 0.06 65.14 (34.3) [−6, 136] 1.9 0.07

Maximum gait speed [m/s] 55.95 (15.8) [22.9, 89.0] 3.5 <0.01 44.0 (23.3) [−4.7, 92.7] 1.9 0.07

Strides per day −0.0 (0.0) [−0.0, 0.0] −1.1 0.27 −0.0 (0.0) [−0.0, 0.0] 0 1

Significant variables (p < 0.05) were marked in bold.

clinical tests, such as the 6MWT and the BBS. The differences

might be explained by the large differences in sample size, since

they had a sample size which was ∼12 times larger. Moreover,

they used walking in the community as a categorical variable.

This however has several limitations. First, a large amount of

information is lost by transforming a continuous outcome measure

into a dichotomous outcome measure, disregarding all variance

within the defined groups. Second, individuals that are close to but

on opposite sides of the cut-off points appear different, however

might be very similar. Therefore, in this study we decided to use

continuous outcomes of community walking.

The predictors for the average and maximum walking speed

in daily life were comparable, as for both trunk stability (TCT),

affected leg strength (MI paretic leg), clinical gait speed (2MWT),

and gait-speed in daily life at admission and discharge had

significant predictive value. The predictors were mostly not

consistent between admission and discharge. This makes it unclear

if the results are caused by differences in test-scores between

admission and discharge not reflected in daily-life walking or

are due to a measurement error. Notably, multivariate analysis

indicated that variables measured at admission explained more

variance in the daily-life measures at 6 months than variables

measured at discharge. Nonetheless, a considerable amount of

variation remains unexplained for both admission and discharge.

A possible explanation for this finding might be that the severity

of impairments at the time of admission is a critical determinant

of long-term outcomes despite rehabilitation efforts Another

explanation could be that the variation between individuals is lower
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TABLE 5 Multivariate prediction of daily-life measures 6-months after stroke.

Admission Discharge

β (SE) –CI, CI T P β (SE) –CI, CI T P

Strides per day

Age [years] −59.8 (38.1) [−141, 22] −1.6 0.14 −41.1 (28.8) [−102, 20] −1.4 0.19

VAE 1 −1,704 [−2,928,−480] −3.0 <0.01 1,037 (547) [−136, 2,211] 1.9 0.08

VAE 2 201 (420) [−700, 1,101] 0.48 0.64

Strides per day 0.74 (0.25) [0.212, 1.270] 3.0 0.01 0.47 (0.22) [−0.01, 0.94] 2.1 0.05

Average gait speed

TCT 0.65 (0.44) [−0.26, 1.57] 1.5 0.15

Speed [m/s] −7.7 (8.6) [−25.9, 10.5] −0.9 0.38

Average gait speed [m/s] 62.6 (20.6) [19, 106] 3.0 <0.01 60.9 (25.6) [7, 114.7] 1.8 0.03

Maximum gait speed

MI paretic leg 0.38 (0.25) [−0.16, 0.92] 1.5 0.16

TCT 1.58 (0.34) [0.88, 2.29] 4.6 0.01

VAE 2 −7.8 (16.0) [−16.0, 0.5] −2.0 0.06

Maximum gait speed [m/s] 52.6 (16.0) [18.2, 87.1] 3.3 0.05

at discharge, as balance and gait are often criteria for discharge.

This reduced variation might have complicated the estimation of

coefficients. Clinical gait features were poor predictors for the daily-

life measures. Therefore, a simple evaluation of gait with a 2MWT,

might result in inaccurate estimations of someone’s ability to

ambulate in the community (Waters andMulroy, 1999; Takayanagi

et al., 2019).

We found one gait feature, VAE2, obtained with a Variational

AutoEncoder to have high predictive value for the number of

strides per day both at admission and discharge. This finding

indicates that gait impairments during clinical rehabilitation are

somehow related to the walking at a later stage, which is not

captured in the conventional gait features, such as gait speed

and asymmetry. In previous research, VAE2 was also found to

have good psychometric properties (test-retest ICC: 0.85; difference

stroke-healthy: P < 0.01). VAE2 was computed with a type of deep

learning, which makes it difficult to identify which aspect of gait

this variable reflects. In a previous study, we created an online

tool, accessible via http://edu.nl/p3kv4, to visualize what effect a

change in the VAE2 (L2) outcome has on raw sensor data. Visual

inspection suggests that the variable is a combination of stride

length and stride smoothness, with higher and smoother peaks in

the anterior-posterior and vertical direction. Future research might

further explore alternative data-driven methods to process IMU-

data, or other movement data, as these might be more suitable to

extract the predictive information from complex multidimensional

data than conventional gait features.

None of the included features were predictive of all three

measures of daily-life measures. This finding was unexpected, as

all three daily-life measures were anticipated to be related. For

example, we hypothesized that individuals capable of walking

faster would also walk relatively more compared to those with

slower walking speeds. However, we were unable to confirm

this assumption, suggesting that these measures are different

within the stroke population. Further research is needed to better

understand the relationship the associations among different daily-

life gait measures.

The strength of this study is that a variety of different types of

data was collected that provided new insight into the relationship

between walking capacity and walking in daily life after stroke.

This study also has several limitations. The first limitation is the

small sample size (N = 35) of the follow-up data. Moreover, not

all individuals were able to conduct all tests at admission and

discharge resulting in some missing values. Given these facts,

in combination with the number of evaluated predictors and

the risk of false positives, the results should be interpreted with

caution. Nevertheless, some predictors were significant both at

admission and discharge which makes it more likely that the

results are accurate. Secondly, we measured daily-life gait for

only two consecutive days, which might not be sufficient to

accurately capture daily-life gait for individuals after stroke given

the day-to-day variance. Moreover, we did not collect information

about the use of walking aids in daily life, which could have

influenced outcomes as well. Thirdly, in this study, only data of

individuals after stroke in clinical rehabilitation were collected,

therefore the conclusions are not applicable to the whole stroke

population. Fourthly, the IMUs were placed on the forefoot during

the 2MWT, whereas they were positioned on the ankle during

daily-life measurement. Consequently, gait speed recorded during

the 2MWT may differ from that observed in daily life. Küderle

et al. (2022) confirmed that sensor placement affects single-

stride errors and variability. However, they also reported that

the average error across multiple strides remains relatively stable

(Küderle et al., 2022). Since our study relies on aggregated gait

speed, we assume that sensor location had minimal impact on

comparability. Nevertheless, the inconsistent placement of IMUs
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between the clinical and daily-life settings should be acknowledged

as a limitation of the study. Last, ordinary least squares regression

is a technique that assumes a linear relationship between the

predictors and response variables. This assumption may not always

hold true and should be evaluated in future studies with larger

sample sizes.

5 Conclusion

We aimed to assess the extent to which patient characteristics,

observed during rehabilitation, could predict community walking

6 months post stroke. We discovered that age, clinical gait features,

and the amount of walking in daily life had predictive value for

the number of steps 6 months after stroke. Furthermore, we found

affected leg strength (MI paretic leg), trunk stability (TCT) and

speed during a 2-min walk test (2MWT) and everyday walking

speed to be predictive for daily-life gait speed. Future research with

a larger sample size is required to confirm these findings.
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