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Background: Mechanical thrombectomy is the standard of care for Acute
Ischemic Stroke caused by proximal large-vessel occlusion in the anterior
circulation. In the stent retriever approach, a nitinol stent engages the clot via
outward radial force to enable removal. However, current procedures lack direct
clot visualization under fluoroscopy, which can reduce retrieval efficacy and
often require multiple passes. Improving first-pass success is critical given the
time-sensitive nature of stroke intervention.
Methods: This study presents a clot visualization method using the spatial
arrangement of radio-opaque markers on the Medtronic SolitaireTM stent. A deep
learning model, Clot[U]-Net, based on the U-Net architecture, was trained on
800 anteroposterior and lateral in-vitro images and evaluated on a separate
test set.
Results: The Clot[U]-Net model achieved strong performance in clot boundary
prediction, with a mean Intersection over Union (IOU) of 87.9% and an AUROC
of 89.9%, and standard deviations of 2.2 and 3.16, respectively.
Conclusion: The proposed method enables clot visualization during stent
retriever thrombectomy without altering existing clinical workflows. With further
pre-clinical and clinical validation, this approach may support real-time decision-
making and improve procedural outcomes.
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Acute Ischemic Stroke, mechanical thrombectomy (MT), stent retriever (SR), clot
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Introduction

Acute Ischemic Stroke (AIS) is a type of stroke where a blood clot occludes a vessel,
causing decreased blood flow to the brain, resulting in damage to brain cells. It is the
most common type of stroke and represents about 87% of all strokes (Benjamin et al.,
2017). In selected patients with disabling AIS, intravenous thrombolysis within 4.5 h and
mechanical thrombectomy (MT) within 24 h of symptom onset significantly improve
functional outcomes (Mendelson and Prabhakaran, 2021; Lambrinos et al., 2016). AIS
with major intracranial vessel occlusion is commonly caused due to cardioembolism
or atherosclerosis related in situ stenosis/occlusion (Horie et al., 2016). MT is used
for treatment of AIS with both these causes (Tsang et al., 2019; Deng et al., 2019).
Predominantly, two procedures and their combinations have been used in MT including
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stent retriever and aspiration. With aspiration, the clot is suctioned
out using a catheter endovascularly. While in the stent retriever
technique, a nitinol stent mechanically engages with the clot
due to its outward radial force and the clot can be retrieved
through the vasculature via an interventional procedure. This is
an interventional procedure carried out under fluoroscopy. As
shown in Figure 1, the stent is deployed against the clot and
the platinum radio opaque markers help visualize the position
of the stent. However, it is important to note that the entire
procedure is carried out without being able to visualize the clot.
This is because the clot is not radio opaque and is invisible
during imaging. Clinical fluoroscopic image of this endovascular
procedure (including the stent with platinum radio opaque markers
deployed against a blood clot) is shown in Ntoulias et al. (2023).
Not knowing the boundary of the clot can lead to potential
challenges during clot retrieval resulting in reduced clot retrieval
efficacy (Lee, 2023). Currently, multiple clot retrieval cycles may
be required for complete clot removal, both in the case of chronic
stenosis with superimposed thrombosis where stenting is needed to
maintain vessel patency and acute cardioembolic stroke. Multiple
thrombectomy passes can cause vessel wall injury and increase
bleeding risk (Mohamed et al., 2021). Several techniques are being
tested for effective clot retrieval including combination therapy,
and Solumbra technique (Arslanian et al., 2019; Yi et al., 2021),
wherein the stent retriever is used in combination with other
techniques such as aspiration to retrieve clot more efficiently.
However, based on stent retrieval only and combination therapies,
the first pass efficacy or the percentage of the times that the
entire clot is retrieved in the first attempt can range between 35
and 55% (Liang et al., 2020; Requena et al., 2023). Improvements
in first pass efficacy are extremely critical in stroke treatment
since brain cells continue dying every second blood flow is not
restored leading to long term disability (Saver, 2006). The clots

FIGURE 1

(A) Access to the middle cerebral artery (MCA) during MT. (B, C) Graphic of Medtronic Solitaire’s engagement with the clot. Circular inset represents
fluoroscopic visualization of stent engagement with the clot. (D, E) Boundary of the clot is reconstructed using a predictive algorithm.

that could potentially break off from the stent retriever remain
unseen until a subsequent fluoroscopy run shows a corresponding
occlusion to flow (Yeo et al., 2019). There is a need to visualize
the radiolucent clot under fluoroscopy without disrupting the
mechanical integrity of the clot so as to prevent clot fragmentation
and resulting distal embolization (Pilgram-Pastor et al., 2021;
Chueh et al., 2016). Furthermore, studying interaction of stent
retriever with the clot could provide insight into clot composition,
which might inform decisions regarding the retrieval technique
used (Shin et al., 2022; Gurary et al., 2025; Aliena-Valero et al.,
2021). Concepts in deep learning, and computer vision can be
used to develop a predictive algorithm for object detection, and
segmentation (Chen et al., 2022; Gupta et al., 2022). The accuracy
of prediction could be improved with the introduction of larger
datasets, thereby creating a tool that could effectively create a
digital clot twin (Hoffmann et al., 2022; Figueroa et al., 2012; van
Genderingen et al., 2024). Prior works in computer vision have
attempted to use UNets for organ-level or disease segmentation
tasks (Krithika et al., 2022). Others have used different neural
network architectures (e.g., Transformer-based U-Net) (Cao et al.,
2022) or more information-dense imaging methods such as optical
coherence tomography (Qin et al., 2025) or ultrasound (Chen et al.,
2024).

In this study, we propose using the relative position of the radio
opaque platinum markers on the stent to visualize boundaries of
the clot. Medtronic’s Solitaire was utilized in this study since it is
the most widely used stent retriever. We used a training dataset
containing a total of 408 anteroposterior (AP) view and 408 lateral
view images. The model was trained to predict the boundary of the
clot in a test dataset and compared against the ground truth using
established machine learning metrics including intersection over
union (IOU) and area under the receiver operating characteristic
curve (AUROC).
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FIGURE 2

A sample input image of an in-vitro clot retrieval procedure with a Medtronic Solitaire Stent used as part of the test dataset shown in both AP and
lateral views. (a) AP reference frame. (b) Lateral reference frame.

Materials and methods

In this work, a computer vision model is developed to take
fluoroscopic images as input (as shown in Figures 2a, b) and output
a binary mask representing the location and shape of the clot. Since
the boundary of the clot is not visible in the fluoroscopic image, the
model picks up subtle deformations on the radiopaque markers to
predict the location and boundary of the clot. The training dataset
is used to train the model and tune the hyperparameters. Finally,
a test data set is used to evaluate the performance and results are
corroborated via visual comparison of generated clot predictions
and optical images of the clots. Note that no ethical approval was
needed for this work since the training data was obtained using an
in-vitro model imaged under biplane fluoroscopy.

Dataset overview: The dataset comprises proprietary
Medtronic fluoroscopic images produced specifically for this
training and evaluation. It consists of 408 in-vitro Solitaire clot
retrieval procedures imaged under fluoroscopy using a commercial
C arm (Siemens-Healthineers Artis zee with PURE), in a biplane
configuration. Each item in the dataset is a tuple of both an AP
(top view) and lateral (side view) image produced by the two
biplanar detectors. In the training dataset, the in vitro clot is
prepared with a radiopaque compound (barium sulfate) for clot
visualization as shown in Figure 3a. Note that this only for the
purposes of obtaining the ground truth and is not possible during a
clinical procedure. The clots used in this study were prepared using
porcine blood, fibrinogen from bovine plasma and bovine plasma
thrombin. The morphology of this clot maybe characterized to be
between an RBC rich and fibrinogen rich clot. The clot was placed
within a 2 mm internal diameter (ID) in-vitro vasculature. In the
test split/dataset, the clots are not injected with barium sulfate, but
instead a third optical image (as shown in Figure 4) of the clot is
included in the tuple for manual verification of the approximate
size and shape of the clot. Each image in the dataset has shape (908,
908, 3). The first two dimensions correspond to the height and
width of the image in pixels, while the last dimension represents
the 3 RGB channels.

Data processing: We use the Python programming language for
data processing and developing the machine learning model. In
order to prepare data for training and evaluation, we segmented
the clot based on the AP view image. Typical 2-class image
segmentation tasks use binary masks to represent each of the two
classes. In this case, the two classes are the background and clot,
of which the clot segmentation is of primary focus. Preprocessing
primarily focuses on binarizing the data and removing timestamps
and other text left on the image by the imaging system. We
primarily use the cv2, image, and numpy Python libraries for
data processing. The data was pre-processed by clot labeling
and elimination of text annotations produced during fluoroscopic
imaging that can be seen in Figures 2a, b.

Note that the images were taken in an environment controlled
for contrast and brightness. This allowed us to first convert the
images to grayscale, an action which had the added benefit of
collapsing the last dimension of the image to a single channel.
We then created a mask of the clot based on the areas of the
image within a certain grayscale threshold. A visual side-by-side
inspection of the radiopaque marker (Figure 3c) and clot masks
(Figure 3d), with the respective ground-truth image (Figure 3a)
across the training dataset confirmed high visual similarity. An
additional potential challenge can be that a model trained on
this training dataset containing radiopaque clots (as shown in
Figure 2a) may struggle to generalize to the clinical environment
where clots are not radiopaque. This is mitigated by using
thresholding to generate a mask of the Solitaire markers/dots. We
then train a model that predicts the clot mask from the dot mask. As
shown in Figure 3, the threshold-based approach yields clot masks
that are sometimes of even higher quality than the manually labeled
clots, while also producing accurate dot masks.

Modeling: We propose Clot[U]-Net—a computer vision model
based on the U-Net (Ronneberger et al., 2015), a popular
architecture for segmentation tasks, with a novel training loss
paradigm. A U-Net is, in essence, a machine learning model
architecture that attempts to extract the most salient information
from an image in iterative steps, before then reproducing a
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FIGURE 3

(a) Original image (a grayscale cropped version of the dataset); (b) Manually labeled mask representing the shape and location of the clot; (c) Result
of using greyscale thresholding to extract shape and location of radiopaque markers; (d) Greyscale thresholding for clot.

FIGURE 4

An example of model prediction robustness evaluated on our second, separately collected test set. Apart from the in vitro clot, the images are
identical to those observed in clinical settings.

binary image that highlights the shape of the predicted clot. The
training loss is a mathematical formula that dictates how the
model should learn from training examples. Details of the U-
Net architecture are provided in Supplementary material section of
this manuscript. We train for 1,000 epochs and use a batch size
of 32. An epoch represents one iteration of the model learning
from the full training dataset and batch size is the number
of individual examples the model looks at before updating its
parameters. As opposed to parameters (of which the models have
hundreds of thousands and learn automatically during training),
hyperparameters are the architectural-level settings humans choose
before training begins. In order to set the latter, we perform a
rudimentary hyperparameter search by experimenting with various
architectures and evaluating performance, as measured by both
the visual and mean IOU/accuracy metrics. We choose the most
effective hyperparametric configuration for our final model (more
details on convolutional (e.g., number of filters, kernel size, stride
length) and pooling layers are shown in Supplementary material
of this manuscript). For evaluation, we use 2-class mean IOU,
AUROC, and accuracy. We choose mean IOU since it is typically
used when measuring segmentation model performance, models

that identify shapes within images (Lin et al., 2024). The metric
measures the number of overlapping pixels between predicted and
actual clots relative to the union of prediction and actual. Since
the clots are typically small relative to the total image area, this
provides us a metric that aligns more closely with predictions that
visually look good. We choose AUROC since it helps measure
average classification ability at the pixel level compared to a random
classifier. We secondarily refer to accuracy because it gives us a
good baseline of what proportion of pixels are correctly predicted.
Translation of this technique to the clinic is dependent on hardware
requirements and latency due to post processing. While model
training takes approximately 5–30 min using a state-of-the-art
Nvidia H100 graphical processing unit (GPU), inference is possible
in near real-time on a standard laptop GPU which can be integrated
with current fluoroscopic systems.

Statistical methods: We further analyze the statistical
significance of the mean IOU and AUROC scores for the test set.
First, we assess whether the data is representative of a normal
distribution using the Shapiro–Wilk test (α = 0.05), which suggests
the data satisfies the normality assumption (IOU: W = 0.846, p =
0.183; AUROC: W = 0.949, p = 0.727). Proceeding with parametric
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FIGURE 5

An example of model output on test set held out from our training/validation dataset, juxtaposed with the reference clot shape and location. This
prediction achieves a mean IOU of 87.9% and AUROC of 89.9%.

analyses, we then compute for each metric the arithmetic mean
(μ), sample standard deviation (s), standard error of the mean,
and the 95 % confidence interval using the t-distribution with n−1
degrees of freedom:

CI95% = μ ± t0.975, n−1 × s√
n

.

Results

Our model, based on a U-Net architecture, includes two
differentiating aspects: 1. We use thresholding to separate image
features before passing them into the U-Net (clot and dot masks
described previously in data pre-processing paragraph) 2. During
training, we alternate the loss function between binary cross
entropy and mean IOU.

We observe, qualitatively, that performance improves with
separate addition of each of the above contributions relative
to using the standard segmentation model paradigm. We also
observe greater stability during training given our small dataset
(the model consistently produces a well-trained model under our
configuration as opposed to stochastic model prediction quality
under the standard U-Net configuration). We evaluate ClotNet
on a held-out test set (a dataset the model has not yet seen),
producing reliable clot predictions (an instance of these is shown in
Figure 5), and achieving an 85.8% mean IOU and an 89.9% AUROC
under a 1,000 epoch configuration. Other observations during
training and evaluation are described below. Additional model
outputs are presented in Section 2 and Supplementary Figure S1.
The input data contains low signal, by construction, since the
dot mask used as input is 5 sets of 3 radiopaque markers.
ClotNet, reliably approximated the boundary and position of the
clot, typically performing well in the dimension normal to the
clot. This is because the outlines of the predicted mask, and
those of the reference clot, correspond closely with the left- and
right-most markers as shown in the visual overlay of the input,
output and reference images in Supplementary Figure S2, making it
relatively easy to interpolate between clusters. However, lengthwise

TABLE 1 Mean, standard deviation, and confidence interval for test set
metrics.

Metric Mean (μ) Std. Dev. (s) 95% CI

IOU (%) 85.78 2.20 [83.05, 88.51]

AUROC (%) 89.94 3.16 [86.02, 93.85]

prediction accuracy appears to be relatively poor because of the
distance between consecutive clusters of radiopaque markers. This
limited information provided by markers could lead to ambiguity
related to the position of distal end of the clot. Note that this model
is trained with commercial clot retrieval stents. Clot prediction can
be enhanced by future design changes to placement and number of
radiopaque markers used on the stent.

ClotNet appears to be robust to distracting features, such as
the radiopaque marker on the distal segment of the microcatheter
(shown in Figure 5). It correctly passes this feature directly
through to the output image, despite this microcatheter marker
appearing in different locations across examples (shown in
Supplementary Figures). This suggests that the model may be
robust to distracting features, provided that they are seen
in the training data, even when these features are larger
than the stent markers themselves. The model also predicts
accurately on a separately collected test dataset (see Figure 4 and
Supplementary Figure S3) with different scaling, thereby further
highlighting its promising performance for this application.

To evaluate the statistical significance of test set IOU and
AUROC scores, we analyze the central tendency and dispersion
of mean IOU and AUROC (see Table 1). Both metrics exhibit
low variability across test images, based on the width of the
confidence intervals.

The high average performance and narrow CIs confirm the
model’s robustness. Specifically, we note that our confidence
interval width is near-best-in-class when compared with CI widths
across 56 Medical Image Computing and Computer-Assisted
Intervention segmentation challenges (Christodoulou et al., 2024).
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Discussion

In this work, we evaluate the feasibility of using a machine
learning model to visualize boundary of the clot during MT.
This is further confirmed using established metrics including IOU,
AUROC and accuracy. With a limited dataset, the model is able
to predict the boundary of the clot with mean IOU of 85.8%
and AUROC of 89.9% and standard deviations of 2.2 and 3.2,
respectively. Based on prior work in deep learning (Hoffmann
et al., 2022; van Genderingen et al., 2024), it has been found that
prediction accuracy can be improved with large training datasets.
Model presented in this work can be further enhanced with larger
datasets obtained through future pre-clinical and clinical studies.
Although this study has been performed using a stent retriever
only technique, this can be expanded to combination therapies
employing aspiration as well. Prior study Weafer et al. (2019)
has demonstrated variation in stent indentation with composition
of clot. Stent indentation obtained from radiopaque markers’
position in this model can be used to determine the type of
clot upon deploying the stent retriever. If an operator employs
combination technique (Requena et al., 2023), an aspiration
catheter can be introduced and tracked up to the stent. As
discussed by Lee (2023), visualization of clot can further help
with limiting fragmentation during retrieval. Although our current
model demonstrates feasibility of clot boundary prediction in a
single frame with a small dataset, this exact prediction can be
applied to subsequent frames during retrieval which could help
with clot retention and subsequently improve first pass efficacy.
Puntonet et al. (2019) highlights the importance of clot retention by
stating that infarcts in initially unaffected territories were reported
in 1–8.6% of patients. They also emphasize that this is likely
underestimated since most studies relied on follow up CT for
this estimate.

Currently, for imaging of occlusive thrombi in AIS,
methodologies such as high-resolution magnetic resonance
imaging (HR-MRI), multimodal computed tomography (CT),
ultrasonography and contrast-based imaging such as angiography
are being explored (Zhang et al., 2023; Gasparian et al., 2015).
Zhang et al. (2023) used 3D T1-weighted HR-MRI to identify
intracranial thrombus. This can be useful in determining clot
location and burden. However, may not provide characteristics
of clot composition (Gasparian et al., 2015). CT is helpful
in determining clot length accurately and non-contrast CT
can be performed relatively quickly (Gasparian et al., 2015).
Intraoperative contrast-based imaging techniques such as
catheter angiography can be sensitive and offer in-situ treatment.
It also helps define the location of proximal occlusions and
corresponding collaterals (Gasparian et al., 2015). The predictive
model described in this work offers the benefit of modeling the
clot boundary and composition intraoperatively and can be used
with catheter angiography that is currently employed in MT. It
also offers the advantage of being incorporated within the current
workflow, thereby not requiring additional procedural steps from
the operator.

A potential challenge for the methodology presented in the
current work is misplacement of the stent retriever by the operator.
Imaging techniques such as contrast-enhanced cone beam CT

(CE-CBCT) has been proposed by Hofmeister et al. (2025) to
visualize the distant segment (or “dark side”) of the clot which
could be beneficial. This study utilized standard CE-CBCT and 3D
Rotational Angiography (3DRA) acquisition protocols predefined
by the manufacturer and are commercially available, thereby aiding
implementation. However, this was a single center, retrospective
study with a limited sample size. Therefore, further work is needed
to understand the workflow implications.

Another potential limitation is that the current version of this
model is trained with limited data heterogeneity. This includes
the use of a single commercial stent retriever, lack of variation
with anatomy, clot type and retrieval technique. Furthermore,
operator errors and use of different fluoroscopic equipment could
also contribute to the performance of this model. Therefore, future
training dataset obtained from pre-clinical and clinical studies must
account for this variability to ensure that the model is exposed to
these factors to provide better prediction.

Conclusion

Our model accurately segments the clot from the original image
in the anteroposterior (AP) view, with an average validation mean
2-class mean intersection over union (IOU) of 85.8% and area
under the receiver operating characteristics (AUROC) of 89.9%. In
future work, we plan to test these results in pre-clinical models
to further refine the efficacy of these predictive models. Design
changes to position and density of radiopaque markers on the stent
can help refine the accuracy of prediction. Furthermore, this can
lead to real-time 3-D reconstructions of clot engagement with the
stent during retrieval which could further enhance first pass efficacy
in endovascular thrombectomy procedures.
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