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Since 2006, several laboratories have proved that somatic cells can be reprogramed into
induced pluripotent stem cells (iPSCs). iPSCs have enormous potential in stem cell biology
as they can give rise to numerous cell lineages, including the three germ layers. In this
review, we discuss past and recent advances in human iPSCs used for modeling diseases
in vitro, screening drugs to test new treatments, and autologous cell and tissue regen-
erative therapies, with a special focus on reproductive medicine applications. While this
latter field of research is still in its infancy, it holds great promise for investigating germ
cell development and studying the genetic and physiopathological mechanisms of infertil-
ity. A major cause of infertility is the absence of germ cells in the testes, mainly due to
genetic background or as a consequence of gonadotoxic treatments. For these patients,
no effective fertility restoration strategy has so far been identified. The derivation of germ
cells from iPSCs represents an alternative source of stem cells able to differentiate into
spermatozoa. Lessons learned from animal models as well as studies on human iPSCs for
reproductive purposes are reviewed.

Keywords: human induced pluripotent stem cells, primordial germ cells, human germ cell differentiation, embryonic
cells, infertility

INTRODUCTION
By definition, stem cells can differentiate spontaneously into all
cell types that form the human body. They have the ability to both
differentiate into other mature cell types and maintain an undif-
ferentiated state by self-renewal. These unique properties form the
basis for stem cell use in cell and tissue regeneration. Currently,
embryonic stem cells (ESCs) are the most widely studied stem
cell type. ESCs arise from culture of primitive ectoderm cells of
the inner cell mass of blastocysts and show pluripotency prop-
erties. Under strict culture conditions, they can perpetuate their
undifferentiated pluripotent state indefinitely and are therefore an
in vitro derivative without a specific in vivo counterpart. Since the
first human ESC (hESC) line was obtained in 1998 by Thomson
(1), numerous hESC lines have been recorded in the hESC registry
[www.hESCreg.eu (2)]. However, some ethical issues regarding
the use and destruction of human embryos, as well as concerns
about genetic identity or immunological rejection by the recip-
ient (3, 4), represent serious limitations for hESC application in
humans. Obtaining pluripotent stem cells from alternative sources
such as adult somatic cells, known as induced pluripotent stem
cells (iPSCs), has therefore been contemplated. The aim of this
review is to present their current applications and investigate their
potential use in clinical practice in the light of animal studies.

The first iPSC lines were generated from adult fibroblasts by
retrovirus-mediated introduction of four transcription factors
into the genome of somatic cells (OCT4, SOX2, C-MYC, and KLF4)
(5). OCT4 (6) and SOX2 (7) are core transcription factors of
pluripotency, while C-MYC (8) and KLF4 (9) are involved in self-
renewal. Retroviruses appear to be required only for induction of

pluripotency and not for its maintenance, as demonstrated after
strong silencing of the four retroviruses (10). Epigenetic repro-
graming of autologous somatic cells into PSCs has attracted much
attention because of the potential for autotransplantation therapy,
as cellular derivatives of reprogramed cells will not be rejected
by the recipient and there are no ethical concerns as for embry-
onic cells. iPSCs have been shown to be equivalent to ESCs in
terms of morphology, surface markers, gene expression, prolifera-
tion capacity, and differentiation (11). Indeed, karyotype analysis
revealed no notable difference in the incidence of chromosomal
aberrations in iPSCs compared to hESCs (12). Although repro-
graming occurs at a very low frequency and with only partial
epigenetic reprograming, as determined by the methylated status
of OCT4 in iPSCs cells (13), it appears to be sufficient to generate
reprogramed cell lines that can be used in vitro indefinitely.

MATERIALS AND METHODS
We conducted an extensive Medline search using the following
search terms: iPSCs and germ cell differentiation. A total of 5897
articles dating from 1967 to 2013 were initially retrieved. Since
the topic is innovative, original articles of any design and review
articles published in English and French were suitable for inclu-
sion. Selection criteria were based on the main outcome of interest
referenced in this baseline of articles, namely the potential in
reproductive medicine of iPSCs reprogramed from animal and
human somatic cells, including differentiation into germ lines and
infertility modeling, with a view to synthesizing the state of cur-
rent knowledge for clinical applicability in humans. Regarding
issues connected to the main subject, namely use of iPSC line
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differentiation to (a) understand the physiopathology of diseases,
(b) study the efficacy and toxicology of new medical therapy, and
(c) regenerate cells and tissues, the goal was to introduce the reader
to the literature, rather than provide an exhaustive review. The final
number of studies referenced in this review is 135.

iPSCs USED TO STUDY/UNDERSTAND DISEASES
Since the creation of the first-line of iPSCs from mature adult cells
by Takahashi and Yamanaka (5), generating patient-specific stem
cells through reprograming has become almost routine. iPSC tech-
nology provides a uniquely useful disease-specific tool to analyze
normal development, outline disease features, and study the phys-
iopathological and genetic mechanisms of the disease in vitro. With
the increase in stem cell line collection during the past few years,
disease models have been created from human adult somatic cells
by reprograming. Although iPSCs can be patently derived from
any type of somatic cells, they are mostly reprogramed from skin
fibroblasts, due to ease of accessibility. Table 1 summarizes fully
differentiated disease-specific iPSC lines obtained from somatic
cells so far, as well as iPSCs used for physiopathological screening
and drug testing (Table A1 in Appendix).

iPSCs: TOXICOLOGY STUDIES AND NEW MEDICAL TREATMENTS
Induced pluripotent stem cells technology provides a unique plat-
form to identify possible therapeutic agents, evaluate their efficacy
and toxicity, and study gene repair associated with cell replacement
therapy. Indeed, derivation of patient-specific familial dysautono-
mia (FD) iPSCs (14) illustrates the potential of iPSC technologies
for modeling therapeutic action in human disease in vitro. FD is a
peripheral neuropathy caused by a point mutation in the IKBKAP8
gene, characterized by depletion of autonomic and sensory neu-
rons. After differentiation of FD iPSCs into peripheral neurons,

the effect of candidate drugs in reversing aberrant splicing and
improving neuronal differentiation and migration may be stud-
ied. In addition, while kinetin was reported to affect splicing and
absolute levels of IKBKAP8 (15), exposure of FD-iPSC-derived
neural crest precursors to kinetin was shown to result in a dramatic
reduction in the mutant IKBKAP8 splice form and a significant
increase in the percentage of differentiating neurons under con-
tinuous kinetin treatment, demonstrating the potential usefulness
of disease-specific iPSCs in developing new drug therapies.

Use of cardiomyocytes differentiated from human cat-
echolaminergic polymorphic ventricular tachycardia (CPVT)
iPSCs has provided insights into arrhythmia mechanisms in CPVT,
a calcium-dependent familial arrhythmogenic disorder associated
with dominant mutations in the cardiac ryanodine receptor gene,
allowing screening of the effects of disease aggravators (adrenergic
stimulation) and drug treatments (beta blockers and flecainide)
(16). Analysis of the iPSC line showed mutation into the ryan-
odine receptor gene to be linked with altered calcium release, and
found tested treatments to be effective in vitro.

These latter developments demonstrate the feasibility of using
in vitro iPSC differentiation assays for drug testing, providing a
unique tool in the presence of in vivo study limitations in humans.
Thus, human iPSCs may be used for personalized medicine, with
pharmacological and toxicological tests designed and performed
on an individual’s genome.

iPSCs FOR CELL/TISSUE REGENERATIVE THERAPY: FROM ANIMAL TO
HUMAN APPLICATION
Beyond in vitro use of human iPSC lines, clinical application of
iPSC therapies seems rather unrealistic (see iPSCs Differentia-
tion into Male Gamete Lineage). However, a number of studies
in animals have opened new perspectives for human therapeutic

Table 1 | Differentiation of human iPSCs into male germ cell lineage.

Reference Cell source Additional factors In vitro-derived cells Main evaluation

(42) Fibroblast XY Fetal gonadal cells PGCs Expression (STELLA, VASA, ACROSIN)

Genomic imprint (H19, PEG1)

(31) Fibroblast XY, XX RA, forskolin, and CYP26 PGCs spermatids Expression (VASA, SYCP3)

Genomic imprint (H19)

Genome ploidy

(40) Fibroblast XY, XX BMP 4, 7, and 8 Spermatids Expression (VASA, ACROSIN)

DAZ family overexpression Genome ploidy

(39) Fibroblast XY, XX VASA/DAZL overexpression Spermatids Expression (VASA, ACROSIN)

Genomic imprint (H19)

Genome ploidy

(43) Fibroblast XX, XY, XXY BMP 4, 7, and 8 PGCs XCI (H3K27me3, macroH2A1)

Transcriptome of differentially expressed X-linked genes

(38) Fibroblast XY BMP 4, 7, and 8 SSCs spermatocytes Expression (VASA, ACROSIN)

Spermatids Genomic imprint (H19, IGF2)

Genome ploidy

RA, retinoic acid; CYP26, cytochrome P26; BMP, bone morphogenic protein; XCI, X chromosome inactivation; DEG, differentially expressed gene; SSC, spermatogonial

stem cell.
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applications. In 2007, Hanna and colleagues treated a humanized
mouse model of sickle-cell anemia by transplantation of iPSCs
derived from mouse skin cells repaired with a homologous recom-
bination. Transplanting these repaired iPSCs differentiated into
hematopoietic progenitors led to correction of the disease pheno-
type in the sick mice (17). In 2008, Wernig derived dopaminergic
neurons from iPSCs and found, after engrafting into the brain,
that they survived, were functional and able to partially rescue
a rat model of Parkinson’s disease (18, 19). These two studies,
showing stable and functional engraftment of repaired specific
iPSCs, demonstrate the huge potential of iPSC-based treatment.
Moreover, human iPSCs have already shown beneficial effects after
their differentiation and transplantation into mouse-specific dis-
ease models. Transplantation of human iPSCs into the subretinal
space of a mouse model of retinitis pigmentosa after differenti-
ation into functional retinal pigmented epithelial tissue showed
stable long-term engraftment, assimilation into the host retina
without disruption, and improved visual function over the life-
time (20). These results, and the absence of tumor development
in transplanted mice, suggest that such therapies would be trans-
posable to human clinical practice and would improve classical
treatment.

In humans, a number of clinical studies have already revealed
the benefits of autologous non-iPSC transplantation, particularly
for functional recovery (21–23). While use of iPSCs as a source
for autologous stem cell transplantation is still in its infancy,
some iPSC applications in humans are well on the way to being
introduced into a clinical setting. Indeed, insulin-producing cells
derived from human iPSCs have already been obtained in vitro for
potential therapeutic use in diabetes (24).

iPSCs AND REPRODUCTION
There is no doubt that parenthood plays an important role in
quality of life, so fertility preservation or restoration strategies
need to be developed for infertile patients. Storage of sperma-
tozoa, oocytes, or ovarian tissue should be the first-line treat-
ment approach, as their reproductive potential after freezing has
already been proven in humans. However, storage of mature
or immature germ cells is not always possible, either because
of lack of time in an emergency context like cancer therapy,
or inaccessibility to the technique at the time of disease man-
agement. For these patients, generation of gametes from iPSCs
would be an innovative strategy that could give them hope of
becoming parents. Use of non-gametogenic pluripotent stem
cells as a source of germ cells could also benefit patients suf-
fering from congenital diseases affecting reproduction, such as
Klinefelter syndrome, Y chromosome microdeletions, and Turner
syndrome, who may have already lost their germ cells at the
time of diagnosis. It could also be effective for patients whose
germ cells are not functioning, for instance boys with cryptorchid
testes.

During embryonic development,primordial germ cells (PGCs),
differentiated from epiblast cells, are identifiable at 4 weeks of ges-
tation and migrate through the epiblastic crest to colonize the
gonadal ridges by 7 weeks of gestation (25, 26). While migrating,
PGCs proliferate intensively and begin extensive nuclear repro-
graming to regain self-renewal capacities and reset their genomic

imprinting. Germ cells are highly specialized cells established by a
specific transcriptional program, including repression of somatic
fate and regulation of the extensive epigenetic reprograming of the
genome (27). Cells that undergo differentiation into PGCs show
expression of some key pluripotency-specific genes that appear to
play a role in germ cell specification in mammals, such as Blimp 1
(or Prdm1) (28) and Prdm 14 (29). These processes are completed
after reaching the gonadal ridge. After some rounds of prolifera-
tion, PGCs finally differentiate into oogonia or gonocytes within
the sex cords for female and male individuals respectively.

Due to the complexity of gametogenesis in vivo, mimicking
germ cell differentiation in vitro will help us better understand
the regulation of developmental programs, such as specification,
migration, and sex determination, which allow transmission of
genetic information and creation of new human beings. The
capacity of iPSCs to differentiate into germ cells of both genders
has been tested in several species, and recent studies have demon-
strated that PGCs can be obtained by in vitro differentiation of
iPSCs, producing functional gametes and offspring in mice (10).
In an attempt to shed new light on the benefits of using iPSCs
in reproductive medicine, this review focuses on results obtained
from differentiation of mouse and human iPSCs into germ cell
lineage.

iPSCs DIFFERENTIATION INTO MALE GAMETE LINEAGE
Lessons learned from animal models
Spontaneous differentiation of iPSCs occurs after 4–7 days of cul-
ture and is highly variable and inconstant, resulting in different
cell types from the three germ layers (endoderm, mesoderm,
and ectoderm) in varying amounts. Several studies have reported
derivation of germ cell precursors and gametes from mouse iPSCs.
Injection of iPSCs into blastocysts generated chimeric pups, and
analysis of host organs demonstrated the extensive contribution
of injected iPSCs to various organs, including the eyes, ears, tail,
claws, kidneys, liver, lungs, stomach, guts, and testes (30), confirm-
ing the potential of iPSCs to form gametes in vivo. Differentiation
of iPSCs to PGCs occurs in vitro when factors that promote self-
renewal, such as feeder cells and βFGF, are removed from the
culture medium (31, 32), albeit at a low frequency. Research should
therefore focus on selection and enrichment of specific cell lineages
toward directed differentiation. Improvement of germ cell differ-
entiation, evidenced by enhanced expression of pre-meiotic and
meiotic germ cell-specific genes, was observed in iPSCs derived
from embryoid bodies (EBs) (33). Selection of germ cells from
these EBs may be achieved by a simple density gradient procedure
(34). Furthermore, injection of testicular cells and iPSCs into the
dorsal skin of mice led to reconstitution of seminiferous tubules,
with iPSC-derived germ cells settling on basement membranes of
reconstituted tubules (33, 35). While iPSCs are most commonly
derived from skin fibroblasts, iPSCs derived from adult mouse
hepatocytes can also give rise to presumptive germ cells (36).
iPSCs can therefore produce candidate male germ cells in vitro,
independently of their origin. Moreover, iPSCs transplanted into
the seminiferous tubules of W/Wv mice, lacking endogenous sper-
matogenesis, are able to undergo their own spermatogenesis and
generate offspring after ICSI followed by embryo transfer (37).
Although most transplanted mice died and some pups presented
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with tumors, this study demonstrates the potential of germ-like
cells in fertility recovery.

Studies on human iPSCs
During spontaneous iPSC differentiation, a small population
of male germ cells, including round spermatid-like cells, was
observed (38, 39), suggesting the possibility of achieving differ-
entiation and maturation of iPSCs into spermatozoa. Panula (40)
showed that human iPSCs grown in a medium enriched with bone
morphogenic protein 4 (BMP4) can differentiate into PGCs, albeit
at a low efficiency of just 5%. The deleted in azoospermia (DAZ)
gene family and human deleted in azoospermia-like (DAZL) are
involved in PGC formation, whereas the Y chromosome homolog
DAZ and closely related BOULE promote later stages of meiosis
and development of haploid gametes (41). Indeed, meiosis was
entered when DAZ family proteins (DAZL, BOULE, and DAZ)
were overexpressed and some PGCs continued their maturation
into haploid cells, showing an acrosomal complex identical to that
of spermatids (40). Through similar experiments, Eguizabal et al.
(31) obtained haploid cells using a medium enriched with retinoic
acid, a differentiating factor acting as a trigger for meiosis. Haploid
male germ line acrosin-positive cells were consistently obtained,
without overexpression of any developmentally related genes, from
human iPSCs of different origin (fibroblasts, keratinocytes, or cord
blood), suggesting independence from the epigenetic memory of
reprogramed somatic cells.

So far, no mature sperm have been obtained in vitro and there
are still many unknowns concerning autocrine, paracrine, and
endocrine hormonal factors, as well as the nutritional control of
germ cell maturation. In this regard, attempts to differentiate germ
cells from human iPSCs, with key factors used to direct them into
germ cell lineage, are summarized in Table 1.

iPSC DIFFERENTIATION INTO FEMALE GAMETE LINEAGE
While numerous studies have demonstrated the ability of ESCs to
differentiate into female germ cells, with some groups reporting
formation of follicle-like structures and oocyte-like cells (44–53),
only three studies in animals have investigated the potential of
iPSCs to differentiate into female germ cell lineage. Among germ
cells derived from iPSCs, several have shown the potential to dif-
ferentiate into oocyte-like cells. When iPSCs from male or female
animals were cultured in EB formations, some round-shaped
cells were found to express mouse vasa homolog gene (Mvh), an
early PGC reporter. In addition, these round-shaped cells showed
expression of early oocyte-like markers (54), demonstrating the
capacity of iPSCs to differentiate into female germ cell lineage.
The ability of iPSCs to differentiate into oogonia was evidenced by
expression of oocyte markers Zp2 and Zp3 after exposure of iPSCs
to RA, although at a smaller proportion than in differentiation into
spermatogonial lineage (55, 56).

TECHNICAL LIMITATIONS
Since the discovery of PSCs in human beings, scientists have looked
at the possibility of using this source of special cells to regenerate
tissue and organs, with a considerably reduced risk of an immune
response. Despite the great promise of iPSC technology, there are
still barriers to overcome before these cells can be used in a clinical
context.

The gold standard technique utilized to reprogram somatic cells
is the inducible lentiviral vector that reaches 2% efficiency (57).
While it shows relatively good efficacy, the lentiviral vector requires
genomic integration to reprogram somatic cells. Retroviral vec-
tors contain transcription factors that are potentially oncogenic,
especially oncogene c-MYC, although it has been shown to be
dispensable for iPSC generation (18). However, exogenous OCT4
(58), KLF4 (59), and NANOG (60) can also cause teratoma forma-
tion. Indeed transplantation of a single undifferentiated cell might
result in tumor formation or proliferation of inappropriate cell
types. Retroviral vectors are silenced after reprograming, but slight
reactivation has been observed during differentiation, although
this did not appear to have a major impact on germline-directed
differentiation of iPSCs. Unfortunately, selection of iPSCs with a
low viral copy number is insufficient to eliminate the oncogenic
risk. Besides tumor formation, there is a risk of genetic recombina-
tion or insertion mutagenesis, which can affect cell differentiation
due to random vector integration into the genome. Even for in vitro
applications of iPSCs, such as disease modeling, drug screening,
or toxicology tests, re-expression of exogenous factors resulting
in genome modification could disturb the properties of cells and
yield biased results. Therefore, production of iPSCs with minimal
or no genetic modifications is essential. Maintenance of a stable
karyotype (61) and elimination of the risk of tumor formation
required for clinical use of iPSC lines are challenging areas in iPSC
technology.

STRATEGIES TO ENSURE SAFETY ASPECTS
Induced pluripotent stem cell lines carry the risk of mutagene-
sis. Strategies to overcome this barrier and eventually offer the
possibility of potential application in humans should be imple-
mented. Excisable Lentiviral (62) and transposon (63) vectors
deliver reasonably good reprograming efficiency (0.1–1%), but
require constant and intensive screening of excised cell lines.
Other non-integrating methods, such as repeat application of
plasmid (64), episomal, or adenovirus (65) vectors with tran-
sient expression, have the disadvantage of low efficiency (0.001%)
and occasional genomic integration. The most recent technolo-
gies employ DNA-free methods to reprogram cells. Use of Sendai
virus (66), modified mRNA (67), micro-RNA (68), or proteins
(69) that modulate the reprograming process could be a powerful
approach to generate more efficient and safer iPSCs. The modified
mRNA method in particular shows encouraging results, with effi-
cacy reaching 4.4%. In addition, modified mRNAs bypass innate
antiviral responses, have a fast kinetic response and are applicable
to a range of tissue engineering tasks (68).

Finally, reprograming technology allows avoidance of the stem
cell stage by direct reprograming, converting endogenous cells
directly into desired cell types by gene transfer of defined fac-
tors, as has been demonstrated in hepatocyte (70), neuron (71),
and cardiomyocyte differentiation (72). Direct reprograming has
the principal advantage of drastically reducing the risk of con-
tamination with undifferentiated cells, and hence the risk of
transplanting those cells (73, 74). While there appears to be a
consensus on the need to exclude undifferentiated cells, the level
of differentiation required for clinical use of iPSCs is still an open
question.
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CONCLUSION
Numerous pre-clinical trials (shown in Table A1 in Appendix)
have convincingly shown that iPSCs can be differentiated into cells
with the capacity for tissue or cell repair, but there is still a long
way to go before all differentiation issues are adequately addressed.
Besides demonstrating full and safe functioning, development of
clinical-grade iPSCs has to meet the safety requirements of regu-
latory bodies, namely being virus integration-free (62), respecting
xeno free conditions (75), using of a synthetic matrix (76), and
ultimately applying GMP-compliant reprograming technology.
Meanwhile, iPSCs provide a useful platform for understanding dis-
eases and establishing the efficacy and toxicity of new therapies.
In reproductive medicine, they represent a tool to study human
germ cell development and fertility defects, and offer perspectives
to restore fertility in patients presenting with irreversible infertil-
ity due to gonadotoxic treatment or genetic background. As such,
iPSCs show great promise and will undoubtedly be the subject of
active research in the coming years.
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APPENDIX
Table A1 | Diseases modeled with fully differentiated disease-specific iPSCs.

Disease models Reference Somatic cell source Physiopathological

screening or drug testing

METABOLIC DISEASES

Lesch–Nyhan syndrome (carrier) (77) Fibroblast N

Gaucher’s disease, type III (78) Fibroblast Y

Type 1 diabetes (79) Fibroblast N

α1-Antitrypsin deficiency (80) Fibroblast N

(81) Fibroblast N

Glycogen storage disease Ia (81) Fibroblast N

(82) Fibroblast Y

Familial hypercholesterolemia (81) Fibroblast N

Crigler–Najjar syndrome (81) Fibroblast N

(82) Fibroblast Y

Hereditary tyrosinemia, type 1 (81) Fibroblast N

(82) Fibroblast Y

Hurler syndrome (83) Fibroblast N

Keratinocyte

Mucopolysaccharidosis type IIIB (84) Fibroblast Y

Niemann-Pick type C1 (85) Fibroblast N

NEUROLOGICAL DISEASES

Parkinson’s disease (86) Fetal cortical progenitor Y

(77) Fibroblast N

(87) Fibroblast Y

(88) Fetal lung fibroblast Y

Bone marrow mesenchymal stem cells

(89) Fibroblast Y

(90) Fibroblast N

(91) Fibroblast Y

Huntington’s disease (92) Fibroblast N

(93) Fibroblast N

Familial amyotrophic lateral sclerosis (94) Fibroblast N

(95) Fibroblast Y

Familial dysautonomia (14) Fibroblast Y

Rett syndrome (96) Fibroblast Y

(97) Fibroblast N

(98) Fibroblast N

Spinal muscular atrophy (99) Fibroblast Y

(100) Fibroblast N

Angelman’s syndrome (101) Fibroblast Y

Prader–Willi syndrome (101) Fibroblast N

(102) Fibroblast N

Friedriech’s ataxia (103) Fibroblast N

Schizophrenia (104) Fibroblast Y

Machado–Joseph disease (105) Fibroblast Y

Childhood cerebral Adrenoleukodystrophy and

adrenomyeloneuropathy

(106) Fibroblast Y

Alzheimer’s disease (107) Fibroblast Y

(108) Fibroblast Y

Warkany syndrome 2 X-linked adrenoleukodystrophy (106) Fibroblast Y

(20) Amniocyte Y

Fibroblast

Emanuel syndrome (20) Amniocyte N

Fibroblast

(Continued)
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Table A1 | Continued

Disease models Reference Somatic cell source Physiopathological

screening or drug testing

RETINOPATHIES

Gyrate atrophy (109) Fibroblast Y

Retinitis pigmentosa (110) Fibroblast N

(111) Fibroblast Y

(132) Fibroblast Y

Leber’s congenital amaurosis (112) Fibroblast N

Usher syndrome N

Leber’s hereditary optic neuropathy N

IMMUNE AND BLOOD DISEASES

Fanconi’s anemia (113) Fibroblast N

β-Thalassemia (134) Fibroblast N

Polycythemia vera (134) CD34+ cell N

Primary myelofibrosis (134) N

Sickle-cell anemia (80) Fibroblast N

Scleroderma Fibroblast N

Chronic myeloid leukemia disease (115) Fibroblast N

(116) CD34+ cell N

Severe congenital neutropenia (117) Fibroblast N

CARDIOVASCULAR DISEASES

LEOPARD syndrome (118) Fibroblast N

Long-QT 1 (119) Fibroblast N

Timothy syndrome (120) Fibroblast Y

Overlapping Na+ channel disease syndrome (121) Fibroblast N

Familial dilated cardiomyopathy (122) Fibroblast Y

Long-QT 2 (123) Fibroblast Y

(124) Fibroblast Y

(125) Fibroblast Y

Catecholaminergic polymorphic ventricular

tachycardia

(126) Fibroblast Y
(127) Fibroblast Y

(128) Fibroblast Y

(16) Fibroblast Y

(129) Fibroblast Y

Arrhythmogenic right ventricular

cardiomyopathy

(133) Fibroblast N

(130) Fibroblast Y

OTHER DISEASES

Down syndrome (131) Fibroblast N

Cystic fibrosis (80) Fibroblast N

Recessive dystrophic epidermolysis bullosa (83) Fibroblast N

Keratinocyte

Patau syndrome (20) Amniocyte Y

Fibroblast

Klinefelter syndrome (43) Fibroblast N
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