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Despite the improved treatment of cardiovascular diseases, the population with end-stage
heart failure (HF) is progressively growing.The scarcity of the gold standard therapy, heart
transplantation, demands novel therapeutic approaches. For patients awaiting transplanta-
tion, ventricular-assist devices have been of great benefit on survival.To allow explantation
of the assist device and obviate heart transplantation, sufficient and durable myocardial
recovery is necessary. However, explant rates so far are low. Combining mechanical circu-
latory support with regenerative therapies such as cell (-based) therapy and biomaterials
might give rise to improved long-term results. Although synergistic effects are suggested
with mechanical support and stem cell therapy, evidence in both preclinical and clinical set-
ting is lacking.This review focuses on advanced and innovative strategies for the treatment
of end-stage HF and furthermore appraises clinical experience with combined strategies.

Keywords: heart failure, ventricular-assist device, mechanical circulatory support, regenerative therapies, cell
therapy, cardiac recovery

INTRODUCTION
Heart failure (HF) is a progressive disease with an important
economic burden on today’s healthcare. After initial injury, pro-
gressive worsening maladaptive (cellular and structural) changes
result in a process called ventricular remodeling, eventually leading
to diminished cardiac function (1, 2). According to the Framing-
ham study, the incidence of HF has remained stable since the
1970s (3). Despite this unchanged incidence, the population of
HF patients is growing, affecting up to around 23 million patients
worldwide, due to various aspects. Improvement in the acute ther-
apy of myocardial infarction (MI) has played a major role in
survival rates. Other non-pharmacological treatment options such
as ICD therapy have further decreased mortality. In addition, the
widespread use of ACE-inhibitors, ATII-blockers, beta-blockers,
and aldosterone-antagonists, but also cardiac resynchronization
therapy further enhanced survival among HF patients. These
developments in combination with an aging population trans-
late into an increase in the prevalence of chronic “end-stage HF”
(4, 5). Although not clearly defined, according to the guidelines
for heart transplantation, heart transplantation should be consid-
ered in patients with severe symptoms of HF, intractable angina,
or rhythm disturbances, without any alternative form of treatment

Abbreviations: BIVAD, biventricular-assist device; BMMNCs, bone marrow-
derived mononuclear cells; CSCs, cardiac stem cells; EF, ejection fraction; ESC,
European Society of Cardiology; GHs, growth hormones; HF, heart failure; HGF,
hepatocyt growth factor; IGF-1, insulin-like growth factor-1; INTERMACS, Inter-
agency Registry for Mechanically Assisted Circulatory Support; LV, left ventricle
or ventricular; LVAD, left ventricular-assist device; MCS, mechanical circulatory
support; MI, myocardial infarction; miRNA, microRNA; VAD, ventricular-assist
device.

available and with a poor prognosis (6). Concerning the guidelines
for HF, there are different types of management approaches,
which can be broadly subdivided in three groups, (1) general/non-
pharmacological measures, (2) pharmacological therapy, and (3)
devices and surgery (7, 8). The only current available therapy for
end-stage HF is heart transplantation. Opposed to an increasing
demand for donor hearts, the number of heart transplantations in
Europe has diminished in recent years. In the Netherlands espe-
cially, decreasing mortality after traffic accidents, older donors,
and shift from heart-beating donation to non-heart-beating pro-
cedures gave rise to a further decreasing amount of donors (6).
To compensate for the shortcoming of donors, novel therapeu-
tic strategies are inevitable. Experimental regenerative therapies,
intended to restore functional cardiac cells and myocardial func-
tion are of great interest (9, 10). An overview of heart failure
treatment is depicted in Figure 1. For some patients, mechanical
circulatory support (MCS) with a ventricular-assist device (VAD)
is an option. This review will focus on current and novel, advanced
therapeutic strategies for end-stage HF.

CURRENT THERAPIES FOR END-STAGE HEART FAILURE
HEART TRANSPLANTATION
In European countries that are represented by the European Soci-
ety of Cardiology (ESC), there are estimated to be over 10 million
patients with HF (7). For the Netherlands, this number is believed
to be between 100.000 and 150.000 patients, and is expected to
rise to approximately 195.000 in 2025 (11). These numbers are
probably underestimated and lack accuracy due to the absence
of a uniform definition for HF. Easier to determine is the num-
ber of patients waiting for a donor heart. Eurotransplant is the
international collaborative framework responsible for allocation

www.frontiersin.org April 2015 | Volume 2 | Article 10 | 1

http://www.frontiersin.org/Surgery
http://www.frontiersin.org/Surgery/editorialboard
http://www.frontiersin.org/Surgery/editorialboard
http://www.frontiersin.org/Surgery/editorialboard
http://www.frontiersin.org/Surgery/about
http://www.frontiersin.org/Journal/10.3389/fsurg.2015.00010/abstract
http://www.frontiersin.org/Journal/10.3389/fsurg.2015.00010/abstract
http://loop.frontiersin.org/people/173178/overview
mailto:s.a.j.chamuleau@umcutrecht.nl
mailto:s.a.j.chamuleau@umcutrecht.nl
http://www.frontiersin.org
http://www.frontiersin.org/Heart_Surgery/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tseng et al. LVAD and stem cell therapy

FIGURE 1 | Current and experimental heart failure therapy. ACE-i, angiotensin-converting-enzyme inhibitor; PCI, percutaneous coronary intervention; CRT,
cardiac resynchronization therapy; ICD, implantable cardioverter defibrillator; CABG, coronary artery bypass graft; HTx, heart transplantation; CTR-factor,
cortico-trophin-releasing factor.

of donor organs in the Netherlands, Austria, Belgium, Croatia,
Germany, Hungary, Luxembourg, and Slovenia. Annual statistics
show a rising number of patients on the waiting list, with an actual
number of 1250 patients at the end of December 2013, a 2.5-fold
increase compared to 2000 (12). With a total of 563 heart trans-
plantations in 2013, the scarcity of donor hearts is evident. In the
Netherlands, the same trend is seen. Added up with the progres-
sive decline in the amount of donors, heart transplantation will
not relieve the burden of HF on healthcare.

MECHANICAL SUPPORT
As briefly stated in the introduction, MCS with a VAD is a pos-
sibility for some patients. VADs can be used as a bridge to trans-
plantation, recovery or decision, and as destination therapy. These
mechanical pumps partially or completely take over ventricular
function to support circulation. Either the left ventricle (LV), right
ventricle (RV), or both ventricles can be unloaded. Predominantly,
left ventricular-assist devices (LVADs) are implanted because of
disappointing results of biventricular-assist device (BIVAD) sup-
port (13). Since the first successful implantation of a VAD in 1966
by DeBakey (14), mechanical support has shown to be of great
value in survival of patients with advanced HF. The landmark
REMATCH trial (15) compared the long-term use of the first gen-
eration,pulsatile LVADs with optimal medical therapy in end-stage
HF and showed significantly improved survival with an absolute
reduction in mortality rate of 27% at 1 year (16). Two major
factors causing a low 2-year survival rate of 23% in the LVAD
group were infection and mechanical device-failure (16). Since
2006, continuous-flow assist devices are implanted, with much
better results (17). Lahpor et al. (18) explored the outcomes of
more than 400 patients with this second generation, continuous-
flow device and found no mechanical failure, a low incidence of
neurological complications but still major infectious and bleed-
ing complications. Although the mean duration of support was

significantly higher due to the shortage of donor hearts, over-
all survival is comparable to other studies (17, 18). Permanent
mechanical support, or LVAD as destination therapy, is an option
for patients with contraindications for heart transplantation, but
reimbursement differs per country (19). In addition to the finan-
cial aspects, durable LVAD support as a therapy for end-stage HF
is still hampered by substantial bleeding (2.69 events/pt-year) and
thromboembolic events (0.31 events/pt-year), as well as inflam-
matory complications (2.34 events/pt-year) (16, 18, 20–22). The
fifth Interagency Registry for Mechanically Assisted Circulatory
Support (INTERMACS) analysis demonstrated a sixfold increase
of pump exchanges for pump thrombosis between 2011 and 2012,
clinically concerning due to the associated higher mortality rates
(23, 24). These findings emphasize the importance of restricting
long-term support only for those who really need that and stim-
ulating myocardial recovery and device explantation in as many
patients as possible. While initially ventricular remodeling in end-
stage HF was held to be irreversible, multiple analyses have shown
high percentages of “reverse remodeling” but only low numbers
of myocardial recovery (1, 2, 25). Although the influence on end-
organ perfusion and unloading is similar with pulsatile versus
continuous-flow support, conflicting literature exists regarding
their influence on recovery (26). In the current clinical setting,
LVADs infrequently lead to sufficient myocardial recovery to allow
device explantation, i.e., function as a bridge to recovery (BTR).
In a retrospective review with patients receiving MCS as a bridge
to transplantation, recovery occurred in less than 5% of patients
(27). An explantation rate of 9% was described by the LVAD work-
ing group, mostly in younger patients with recent onset HF of
non-ischemic origin (2). These results correspond to prior data
showing higher percentages of myocardial recovery in patients
with non-ischemic cardiomyopathy (28). Yacoub et al. aimed at
the process of “physiological hypertrophy” and “reverse remod-
eling” to maximize the rate of cardiac recovery by using LVAD
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support in combination with a specific sequence of pharmacolog-
ical therapy, including beta-2-agonist Clenbuterol (29). A small
cohort of 15 patients receiving MCS for non-ischemic cardiomy-
opathy without acute myocarditis, were treated with the particular
sequence of medication that resulted in sufficient recovery to meet
explantation criteria in 11 patients (73%). In most cases, improve-
ment maintained for more than 4 years (30). Long-term outcomes
of patients bridged to recovery versus bridged to transplantation
were investigated (31) to review the results of an aggressive attempt
at stimulating myocardial recovery. Particularly patients with non-
ischemic cardiomyopathy profit from aggressively inducing rever-
sal of HF. The rate of device explantation was 20.5%, much higher
than other data so far (2, 31, 32).

EXPERIMENTAL REGENERATIVE THERAPIES
A concise concept of different regenerative approaches, present
experience, and associated hurdles for clinical application will
be discussed. Experimental pharmacological therapies (33) are
beyond the scope of this review.

CELL THERAPY
Various cell populations and delivery strategies have been exam-
ined for their cardiac repair and regenerative capacity in the last
decades. Stem cells can be derived from blood, bone marrow, skele-
tal muscle, adipose tissue, embryonic sources, or cardiac tissue (34,
35). Initially, stem cells were presumed to replace damaged car-
diomyocytes. Instead, currently, the major mechanism of action
is assumed to be trough paracrine factors leading to decreased
neurohormonal activation and apoptosis, better Ca2+-handling,
stimulation of neovascularization, and activation of endogenous
cardiac-resident cells (36–38). Most clinical experience with cell
therapy is gained in ischemic heart disease with unselected bone
marrow-derived mononuclear cells (BMMNCs). Results in clini-
cal setting are modest but significant with greatest improvements
in the lowest LV ejection fraction (EF) at baseline (34, 38–45). The
discordance with preclinical data is not fully explained, but poor
cell retention and survival plus possible malfunctioning of bone
marrow-derived cells in patients with HF are alleged to play a role
in these somewhat disappointing findings (34, 46–48). The dis-
covery of so-called endogenous cardiac stem cells (CSCs) (49) and
evidence that cardiomyocytes have renewal capacity (49–51) have
provided a new therapeutic approach, to stimulate the endogenous
CSCs since these cells are programed to reconstitute cardiac tissue.
Encouraging results were shown in the SCIPIO trial (autologous
CSCs) (52) and in the CADUCEUS trial (autologous cardiosphere-
derived cells) (53). Compared to ischemic heart disease, limited
clinical data is available regarding efficacy of cell therapy in dilated
cardiomyopathy. Results in this population seem mostly positive,
though heterogeneity of the population, procedures, and outcome
parameters prohibit extrapolation (54). A novel cell-based tech-
nology in which somatic cells (all cells in the body except germ
cells) are modified or reprogramed into a special type of stem cell,
called induced pluripotent stem cell (iPS), is in development (35,
55). This technique is already applied for other purposes but is
fairly unknown as therapeutic. To improve clinical success of cell
therapy, better understanding of the primary mechanism and best
cell type are fundamental (10, 36, 38, 41). In addition, knowledge

about optimal timing, dosing, and delivery strategies, including
better cell retention and survival, is essential (35, 46, 56).

GROWTH FACTORS
Growth hormones (GHs) are essential for normal myocardial and
endothelium development, and for the maintenance of function
(57, 58). Endogenous CSCs can be activated by growth factors
in the infarcted heart as shown in rodents (59) and in a porcine
model (60) of acute MI (34, 59–61). Vascular endothelial growth
factor (VEGF) and granulocyte–macrophage colony-stimulating
factor (GM-CSF) augment levels of endothelial progenitor cells
(EPCs) and improve neovascularization (34). Hepatocyt growth
factor (HGF) promotes cell migration, insulin-like growth factor-1
(IGF-1) is mitogenic and antiapoptotic, stimulates myocyte for-
mation, and reduces myocyte death after infarction (59). GH
therapy in chronic setting seems rational since part of the neu-
rohormonal disturbances in HF lies in the GH/IGF-1 signaling
axis (58). Whereas animal studies demonstrate beneficial effects
of growth factor therapy (34, 62), clinical data about the efficacy
of growth factors in HF patients is conflicting (58). In a small
group of patients (n = 13) with severe coronary artery disease
and refractory angina, treatment with high doses of VEGF tem-
porarily enhanced myocardial perfusion (63). A preliminary study
by Fazio et al. (64) showed improved cardiac output in seven
patients with dilated cardiomyopathy treated with GH, whilst
other studies examining the effects of exogenous GH in HF yielded
no beneficial effects on cardiac function (65–68). A more recent
clinical trial (69) with granulocyte-colony-stimulating factor after
MI, although appearing to improve LV function, was terminated
because of high incidence of in-stent restenosis in this treated
group. A safety and efficacy trial with IGF-1 is currently recruiting
patients with acute MI (Clinical trial info: NCT 01438086).

GENE THERAPY
Interest for experimental gene therapy in cardiovascular disease
has grown in the last 10 years. The most relevant systems tar-
geted to restore function of failing cardiomyocytes are (1) the
B-adrenergic system, (2) Ca2+ cycling proteins, (3) homing stem
cells, and (4) cell death (70). The first clinical, phase 2A safety study
(CUPID), with adeno-associated virus (AAV) type 1/sarcoplas-
mic reticulum Ca2+-ATPase (SERCA2a) suggests a positive effect
on LV function (71), but the therapeutic potential will become
apparent as a phase 2b trial is ongoing (clinicaltrials.gov: NCT
01643330) (72). Other targets that have been taken forward toward
clinical trials include adenylyl cyclase type 6 (clinicaltrials.gov:
NCT 00787059) and stromal cell-derived factor-1 (SDF-1) (clin-
icaltrials.gov: NCT 01082094) (70). As more molecular targets
associated with HF are discovered, more effective gene therapy
is expected to emerge (70). Another concept in gene therapy for
HF concerns microRNA (miRNA). These are small non-coding
RNAs that bind to specific target mRNAs, thereby suppressing
protein expression (73, 74). The capacity to manipulate miRNA
expression and function, together with the fact that their func-
tion is heightened under pathophysiological conditions, make
them attractive candidates for therapeutic manipulation. Either
inhibitors (antimiR) or mimics of miRNA are of interest (73). Sev-
eral small and large animal studies have targeted relevant miRNA

www.frontiersin.org April 2015 | Volume 2 | Article 10 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Heart_Surgery/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tseng et al. LVAD and stem cell therapy

(-families) (73). For example, miRNA-208a (cardiac remodeling),
miRNA-21 (cardiac hypertrophy and fibrosis), miRNA-15 (car-
diomyocyte apoptosis and regeneration), and miRNA-92a (angio-
genesis and regeneration) have been found to play a role in cardio-
vascular pathology (74–77). Hinkel et al. demonstrated improved
recovery after ischemia/reperfusion injury by inhibiting miR-92a
by LNA-based miRNA inhibitor in a pig model (74). Challenges in
miRNA therapy essentially concern the pleiotropy and multiplicity
of miRNA that needs intensive research, since only target tissue is
examined in all studies. Next to that, feasibility of adequate dosing
has to be assessed (70).

EXOSOMES
These small membrane vesicles (40–100 nm), endosomal-derived
and extracellularly released by many cells, are involved in inter-
cellular communication (78, 79). Although discovered 30 years
ago (80), major interest in exosomes and their function in regen-
erative medicine recently emerged. In response to injury, extra-
cellular microvesicles are released from activated platelets and
apoptotic endothelial cells, suggesting not only therapeutic but
also diagnostic value (81). Special attention for exosomes derived
from cardiac progenitor cells has originated from the postulated
paracrine effects of cell-based therapy, mainly regarding the release
of growth factors, cytokines, and chemokines (78, 81). Exosomes
derived from cardiomyocyte progenitor cells are proposed to play
a role in cardiac protection (78). In mice as well as in a porcine
model of ischemia/reperfusion injury, mesenchymal stromal cell-
derived exosomes reduced myocardial damage (78, 82). While
acknowledged to target via transfer of proteins or genetic materi-
als, the role of exosomes in cardiac injury is far from clear (79).
Further research on the production and content sorting of exo-
somes and their effect on target (and non-target) cells is crucial
(79, 81).

BIOMATERIALS
Another recent topic in regenerative therapy for cardiovascular
disease is the use of biomaterials. Multiple scaffolds, naturally
derived and synthetic, are used. Therapeutic ability is suggested
for MI, prevention of remodeling, and in consequence preven-
tion of ischemic HF in small and large animal models (83–85).
Whilst originally tissue-engineered cardiac patches were of inter-
est, research in the area of injectable biomaterials is rapidly evolv-
ing (47, 61, 83, 86, 87). The prospective profit of biomaterials is
two-sided, either to stimulate endogenous repair and regeneration
or to provide a vehicle to support delivery of other therapeutics
(e.g., cells, growth factors), generating greater cell retention and
survival (47, 86). Gelatin microspheres have been shown to be
a feasible carrier for cardiomyocyte progenitor cells and growth
factors, resulting in improved engraftment and cell survival in
mice (Feyen. Thesis: Strategies to improve cardiac cell therapy.
Chapter 8: Gelatin microspheres as carriers for cardiac progenitor
cell and growth factor to the ischemic myocardium, unpublished,
2014). Dai et al. studied the effect of non-cellular hydrogels ver-
sus cell therapy in a rat model of chronic ischemia and showed
similar increases in EF and thereby potential of hydrogels alone
(84). No clinical trials have yet been performed with biomaterials.
The challenge of this therapy is the delivery, mainly relating to the

solubility during the procedure while the hydrogel has to become
gel-like after injection in the myocardium.

COMBINED MECHANICAL SUPPORT AND REGENERATIVE
THERAPIES
Following unloading of the ventricle, a complex network of
changes on molecular, cellular, tissue, and organ level arises (32,
88–94). Although the exact mechanism of reversal of HF dur-
ing LVAD support is unclear, the effect of ventricular volume and
pressure unloading together with improved neurohormonal and
cytokine activation are thought to induce reverse remodeling (1,
92, 95). In a study comparing isolated human myocytes of failing
hearts with and without prior LVAD showed increased contractile
properties and beta-adrenergic responsiveness after LVAD support
(96). Immunohistochemical analysis of the contractile myofil-
aments after LVAD implantation uncovered improved staining
pattern of all thin contractile proteins and titin, however structural
myocyte damage was persisting (89). Significant improvement
of the proliferation/apoptosis balance by ventricular unloading
has been shown in a mouse model of ischemic HF (95). Also,
specific changes in gene expression of cytoskeletal proteins after
LVAD support have been seen in recovered versus non-recovered
myocardium (91). The beneficial effect on LV function appears to
deteriorate over time (2), suggesting that combining mechanical
support with other, regenerative, therapeutic strategies like GHs,
gene therapy, or cell therapy might hold the key to better long-
term results (92). The unloaded ventricle provides a less hostile
milieu and thereby a potentially more appropriate platform for
different regenerative therapies. Along the same lines, the com-
bined approach of biventricular pacing and BMMNCs in ischemic
HF indicated a significant and clinically relevant improvement
in cardiac function in comparison with BMMNCs alone, while
CRT showed no impact on perfusion (97). The rationale for
this approach is that electrical stimulation might promote cell
differentiation.

PRECLINICAL EXPERIENCE
Up to date, a representative large animal model of chronic HF
with myocardial unloading is lacking. The majority of LVAD stud-
ies was performed in healthy animals with only a few studies in
chronically failing models (98). Preclinical experience consists of
several (b)ovine ischemic HF models, induced by either coronary
microembolization, coronary ligation, or ameroid constriction
(99–103). Non-ischemic HF models include a pressure and volume
overload model caused by aortic constriction, respectively, mitral
regurgitation via chordae rupture (98, 104). Last-mentioned mod-
els have the disadvantage of required thoracotomy, undesirable
in case of future device implantation. Other methods like pac-
ing, pharmacotherapeutic induced (doxorubicin), direct shock,
and cardiotoxins are not reflective of human HF (98). Recreat-
ing a model similar to human etiology remains a challenge. To
advance innovative and clinically applicable strategies for cardiac
regeneration, suitable preclinical research is inevitable. Not only
to test combined unloading and regenerative therapies, but also
to direct future mechanical support and treatment of earlier stage
HF. Thereafter, different regenerative therapies must be evaluated
in such a model.
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Table 1 | Clinical experience of LVAD combined with cell therapy.

Study type

(Reference)

n Etiology CMP Cell type (and timing) Clinical outcome Measured effect

Phase I (111) 20 Ischemic and

non-ischemic

Allogeneic MPCs (concomitant) Increased weaning frequency and

duration

Safe/efficacy

Case report (105) 1 Dilated Autologous skeletal myoblasts (+16 months) LVAD explantation LVEF increased

Phase I (110) 4 Ischemic Autologous skeletal myoblasts (concomitant) 1 LVAD explantation, 3 non-cardiac

deaths

n = 2 LVEF increased

Case series (108) 2 Ischemic Autologous BMMNCs (concomitant) 1 Improved perfusion, 1 unknown Perfusion improved

Case report (107) 1 Ischemic Autologous skeletal myoblasts (+3 months) Death + 466 days (sepsis) Increased EF

Case series (109) 10 Ischemic Autologous BMMNCs (concomitant) 1 LVAD explantation, 3 HTx, 2

deaths

n = 1 increased EF

Case report (106) 1 Ischemic Autologous BMMNCs (+99 days) LVAD explantation Increased EF and

perfusion

Phase I (40) 6 Ischemic Autologous skeletal myoblasts (concomitant) 4 HTx, 3 deaths Safe/feasible

Phase I (39) 5 Ischemic Autologous skeletal myoblasts (concomitant) 3 HTx, 1 DT, 1 death Safe/feasible

CMP, cardiomyopathy; MPCs, mesenchymal progenitor cells; BMMNCs, bone marrow-derived mononuclear cells; HTx, heart transplantation; DT, destination therapy.

Systematic search LVAD/SCT: search detail: “heart-assist devices” [MeSH Terms] OR (“heart-assist devices” [MeSH Terms] OR (“heart-assist” [All Fields] AND

“devices” [All Fields]) OR “heart-assist devices” [All Fields] OR (“heart” [All Fields] AND “assist” [All Fields] AND “device”[All Fields]) OR “heart-assist device”

[All Fields]) AND (“cell- and tissue-based therapy” [MeSH Terms] OR (“cell-” [All Fields] AND “tissue-based” [All Fields] AND “therapy” [All Fields]) OR “cell- and

tissue-based therapy” [All Fields] OR (“cell” [All Fields] AND “therapy” [All Fields]) OR “cell therapy” [All Fields]).

In total: 195 hits, excluding review/animal/Japanese/no combination → 9 included articles.

CLINICAL EXPERIENCE
Combined mechanical unloading and regenerative therapy in clin-
ical setting has only been examined with cell therapy. The results
of these studies were systematically reviewed as shown in Table 1
(39, 40, 105–111). A total of 50 patients have been treated with
the combinational strategy. The limited data illustrate that in all
cases that LVAD was explanted, an extracorporeal device was used.
Usually, percutaneous support is initiated when myocardial recov-
ery is expected. However, Sawa et al. (105) describe a case where
a patient with idiopathic dilated cardiomyopathy did not show
enough improvement in LVEF for explantation 7 months after
starting MCS. After additional cell transplantation, LV improved
to a reasonable function that sustained for at least 1.5 years. All
studies, except Ascheim et al., used autologous cells, either bone
marrow-derived or skeletal myoblasts, mainly in patients with
ischemic cardiomyopathy. The first and only randomized trial
with allogeneic mesenchymal precursor cells in ischemic and non-
ischemic HF shows encouraging results when it comes to efficacy,
but safety regarding sensitization is concerning, especially when
the aim is to increase the amount of cells in future studies (111). No
results of the combination of SERCA gene therapy and MCS have
yet been reported (clinicaltrials.gov: NCT 000534703). Accord-
ingly, the combination of MCS and cell therapy is promising
as both therapies share action mechanisms and might possess
synergistic effects (39, 40, 92, 105, 107–111). Focusing on this
combination provides not only a point of reference to gain more
success in bridging to recovery but also the unique opportunity to
analyze the myocardium in case of heart transplantation, which
can broaden understanding in the process of ventricular reverse
remodeling and myocardial recovery. In patients awaiting heart

transplantation, allogeneic cell therapy should only be considered
with great precaution because of immunologic sensitization (111).

FUTURE PERSPECTIVE
The rapidly developing field of regenerative therapies enables var-
ious combinations with LVAD support (e.g., hydrogel loaded with
exosomes or growth factors combined with microspheres). Con-
sidering the different etiologies of HF, the most pronounced effect
of combined cell therapy, biomaterials, and mechanical unloading
could be expected in patients with ischemic HF. The rationale is
that the ischemic myocardium will benefit most from the paracrine
effects leading to angiogenesis. The combination with biomate-
rials might positively enlarge efficacy by higher retention rates,
and perhaps through a direct therapeutic effect of the biomater-
ial. Gene therapy in combination with (biomaterials and) MCS is
more probable to enhance myocardial function of patients with
dilated cardiomyopathy. The advancements in assist devices will
help to uncover the most optimal technology to stimulate recovery
and reduce adverse events. Cheng et al. suggest that pulsatile flow
support might have better results with regard to recovery, due
to the less affected vascular reactivity in the presence of a pulse
pressure (26). The absence of arterial pulsatility leads to stiff unre-
sponsive arteries (102). Moreover, the development of algorithms
for continuous-flow-LVADs to generate a pulse pressure is very
intriguing, also for the possible influence on adverse events (26).
The increasing rate of permanent LVAD support will lead to more
clinical data regarding recovery rates and adverse events. How-
ever, the small number of patients included in LVAD trials and the
lack of an illustrative preclinical model, makes moving forward to
clinical application time-consuming. Besides testing of combined
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therapeutic strategies, preclinical research is also inevitable to gain
more understanding of the types of support in the setting of
myocardial recovery.

CONCLUSION
Since heart transplantation, the gold standard therapy for end-
stage HF, is not sufficiently available, other advanced therapeu-
tic approaches are crucial. LVADs provide a bridge for patients
awaiting heart transplantation or myocardial recovery. Rates of
successful and durable recovery are very low, but this can be
stimulated pharmacologically. Better-sustained results could be
expected from combining LVADs with regenerative therapies such
as gene therapy, biomaterials, and cell-based therapies. Especially,
cell therapy for the treatment of heart disease has been exten-
sively studied, showing promising results. The small number of
LVAD patients does not allow clinical testing of the numerous
potential combinations of therapies. A clinically relevant animal
model of unloading should be established for preclinical testing of
these regenerative approaches. Regarding current experience in the
reversal of HF with combined LVAD and cell therapy, future clini-
cal research should focus on placebo-controlled studies in patients
undergoing LVAD implantation.
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