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trauma in major surgery
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and Dentistry, James Cook University, Townsville, QLD, Australia

Despite a technically perfect procedure, surgical stress can determine the success or 
failure of an operation. Surgical trauma is often referred to as the “neglected step-child” 
of global health in terms of patient numbers, mortality, morbidity, and costs. A stagger-
ing 234 million major surgeries are performed every year, and depending upon country 
and institution, up to 4% of patients will die before leaving hospital, up to 15% will 
have serious post-operative morbidity, and 5–15% will be readmitted within 30 days. 
These percentages equate to around 1000 deaths and 4000 major complications every 
hour, and it has been estimated that 50% may be preventable. New frontline drugs are 
urgently required to make major surgery safer for the patient and more predictable for 
the surgeon. We review the basic physiology of the stress response from neuroendo-
crine to genomic systems, and discuss the paucity of clinical data supporting the use of 
statins, beta-adrenergic blockers and calcium-channel blockers. Since cardiac-related 
complications are the most common, particularly in the elderly, a key strategy would be 
to improve ventricular-arterial coupling to safeguard the endothelium and maintain tissue 
oxygenation. Reduced O2 supply is associated with glycocalyx shedding, decreased 
endothelial barrier function, fluid leakage, inflammation, and coagulopathy. A healthy 
endothelium may prevent these “secondary hit” complications, including possibly immu-
nosuppression. Thus, the four pillars of whole body resynchronization during surgical 
trauma, and targets for new therapies, are: (1) the CNS, (2) the heart, (3) arterial supply 
and venous return functions, and (4) the endothelium. This is termed the Central-Cardio-
Vascular-Endothelium (CCVE) coupling hypothesis. Since similar sterile injury cascades 
exist in critical illness, accidental trauma, hemorrhage, cardiac arrest, infection and 
burns, new drugs that improve CCVE coupling may find wide utility in civilian and military 
medicine.
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As the patient goes to the operating room and anesthesia is induced, trauma is suffered 
and convalescence begins.

Moore (1) p. 291
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introduction

Major Surgery, Trauma and the Stress Response
Major surgery is defined “as any intervention in a hospital 
operating theater that requires incision, excision, manipulation 
or suturing of tissue occurring and requiring regional or general 
anesthesia or profound sedation to control pain” (2). Surgical 
trauma is defined as any injury produced by or related to major 
surgery. As recognized by surgeon Francis Moore over 60 years 
ago, trauma begins early in the operating room before general 
anesthesia and before the first surgical incision (1). The extent of 
injury will depend on the type and duration of surgery and anes-
thesia, the presence of cardiopulmonary bypass (CPB), a patient’s 
age, gender, pre-existing health status, medication profile, fluid 
loading and post-operative pain (3–6). Age is a particular concern 
because many older patients present with multiple comorbidities 
and have decreased reserves to cope with the stress of surgery 
(7–9) while the very young are often more sensitive to general 
anesthetics (10).

The stress response can be broadly defined as the body’s 
response to a “stressor,” which may be an injury, hemorrhage, 
infection or a burn. It is a physiological reaction of profound 
importance in nature and medicine. From an evolutionary per-
spective, the stress response would have been triggered by the 
central nervous system (CNS) to protect against macroscopic 
“external” threats (e.g., fight-or-flight response) followed by 
an underlying “internal” response to promote survival, which 
included activation of the acute inflammatory or immune 
systems to initiate wound repair and protect against pathogens 
(11). Rapid protective mechansisms would have conferred a 
profound “survival fitness” from events such as escaping preda-
tors, hunting accidents, or defending a territory. Although highly 
protective by design, there are chinks in the stress response’s“inter
nal”evolutionary armor. Under certain conditions, such as major 
surgery, instead of inflammation being self-limiting and restora-
tive, the response can exceed the body’s internal tolerances and 
become “overexpressed” and lead to further injury. The working 
hypothesis underpinning this review is that if surgical stress can 
be halted or diminished, patient outcomes will be improved since 
most cells in the body are genetically programed in that direction 
of repair. It is about “helping the body help itself.”

Objective and Scope of the Problem
Surgery has recently been referred to as the “neglected 
stepchild of global health”

Farmer and Kim (12) and Rose et al. (13)

Surgical stress is a global problem. In a recent modeling study, 
Weiser and colleagues estimated there are around 234 million 
non-cardiac surgical procedures performed annually around the 
world (2), 40 million in the USA (14) and 19 million in Europe 
(15). Of these patients, around 30% have an increased risk of 
cardiovascular complications, or 70 million patients per year. In 
the USA, Leape and colleagues recently analyzed nearly 500,000 
surgeries and reported a 30-day readmission rate of 5.7%, with 
over 30% being surgical site infections (16). In another study, 
Dimick and Ghaferi analyzed nearly 60,000 patients from 112 

Department of Veterans Affairs hospitals, and found that the 
overall 30-day readmission rate was two-times higher (11.9%) 
than Leape’s study, mostly from higher surgical site infections 
(56%) (17). These data, and others, led Bartels to write that: “The 
magnitude of all-cause perioperative mortality would make it 
the number three cause of death in the USA” (18). Moreover, in 
28 European nations, Pearse and colleagues conducted a 7-day 
cohort study among 46,539 non-cardiac surgery patients from 
498 hospitals, and found that 4% of total patients died before 
hospital discharge, and 8% were admitted to critical care with a 
median length stay of 1–2 days (19). The group concluded that 
new strategies are urgently required to improve perioperative 
outcomes because 73% of these surgical deaths occurred before 
admittance to critical care (19).

Combining the available data, surgery-related deaths range 
from 0.4 to 4% and post-operative morbidity from 5 to 15% (2, 
19). Thus, up to 9 million patients die each year during or imme-
diately after major surgery, and up to twice this number have post-
operative complications. Since major surgery addresses around 
11% of the global burden of disease (20), it can be deduced from 
the available statistics that: (1) surgical trauma already is in global 
crisis, (2) the large differences in mortality and morbidity within 
and across countries and institutions are unacceptable, and (3) 
around half of the deaths and complications may be preventable. 
New drug therapies could save up to 500 lives every hour.

Homeostasis, Trauma and the  
“Steady-State”

The coordinated physiological processes which main-
tain most of the steady states in the organism are so 
complex and so peculiar to living beings - involving, 
as they may, the brain and nerves, the heart, lungs, 
kidneys and spleen, all working cooperatively - that I 
have suggested a special designation for these states, 
homeostasis.

Cannon (21) p. 20–24

Todays’ understanding of the stress response has its roots 
firmly embedded in Walter B. Cannon’s concept of homeosta-
sis. Cannon formally introduced the concept in 1926, which 
he cited in his 1929 review: Organization for Physiological 
Homeostasis (22, 23). Cannon’s homeostasis was built on 
Pfluger’s concept of “steady-state” (1877), Claude Bernard’s 
concept of “milieu intérieur” (1878), and Richet’s “stability of 
the organism” (1900) (22, 24). Cannon argued that a living 
organism was a system in dynamic state of constancy, with its 
constituent parts and processes being actively maintained in 
constant balance despite external fluctuations. This “balance” 
required a continuous exchange of matter and energy between 
the organism and the environment, and internal regulatory 
mechanisms to keep it in-check. Thus, Cannon’s homeostasis 
was not an equilibrium state, but a steady-state. This distinc-
tion is important because all living organisms are open systems 
that rely on a net flow of matter and energy with time whereas 
a strict equilibrium state, by definition, has no net flux (25). 
A stress, injury, or sickness was now seen in new light, and 
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viewed as a challenge to the body’s dynamic steady-state. Thus 
a major goal of any drug therapy or treatment was to restore 
that balance.

early History of the Surgical Stress 
Response

George Crile and “Stress-Free” Surgery
In the early 1900s, the idea of lowering surgical stress was 
spearheaded by neurosurgeon George W. Crile (1864–1943) at 
the Cleveland Clinic (26). Crile’s operative technique to improve 
recovery was revolutionary and included lightly anesthetizing 
the patient with mask inhalation of nitrous oxide and oxygen, 
and infiltrating all tissues with a dilute local anesthetic procaine 
before the first incision (27). General anesthesia was insufficient to 
reduce the patient’s stress response, and so he proposed the word 
anoci-association (anoci; noxious or harmful and associations; 
stimuli) to describe the potentially harmful “stressors” during 
surgery. For a “shockless” operation, Crile suggested a combina-
tion of sedation, local and regional anesthesia to reduce pain 
and improve recovery (28). Crile’s called his concept “stress-free 
anesthesia” (29), which formed the basis of modern “preemptive 
anesthesia” (see Optimizing Anesthesia and Analgesia to Reduce 
Pain and the Stress Response). Neurosurgeon Harvey Cushing 
(1869–1939) extended Crile’s revolutionary ideas and promoted 
the use of regional blocks before removing ether anesthesia from 
the patient to guarantee an optimal postoperative recovery (30). 
Cushing also confirmed Crile’s observation that surgical shock 
could be prevented by the careful monitoring of blood pressure 
and avoiding the “stressors” associated with surgery (30, 31). 
These century-old ideas and practices from two giants in medi-
cine form the basis of modern-day anesthesiology.

Cuthbertson’s “ebb and Flow” injury Hypothesis 
and the HPA Axis
In the early 1930s, Scottish Chemist David Cuthbertson was 
among the first to characterize the “stress response to injury” 
(32). Cannon had already suggested a role for an activated 
sympathetic nervous system with adrenal secretions to increase 
cardiac output (CO) and mobilize energy stores in the “fight-
or-flight” response (22, 33). However, Cuthbertson found in 
his patients with long bone fractures a dramatic rise in the loss 
of nitrogen (as urea), potassium, phosphorus, sulfur, creatine 
and creatinine compared with volunteers with no injury (32). 
This was groundbreaking because it suggested that trauma itself 
induced a “stress response.” Cuthbertson divided the body’s 
response into two quantifiable events: (1) An early “ebb” phase, 
which began 2  h post-injury and lasted 2–3  days; this was 
associated with a decrease in CO, reduced tissue perfusion, a 
lower metabolic rate and glucose intolerance, and: (2) a second 
“flow” phase lasting days and weeks, that was characterized by an 
increase in metabolic rate, a hyperdynamic circulation (higher 
CO, respiratory rate), hyperglycemia, a negative nitrogen bal-
ance, and muscle wasting (32, 34). The extent and duration of 
both “ebb” and “flow” phases depended upon the severity of the 
injury. Today, whole body energy consumption following major 

surgery (e.g., abdominal) can increase up to 1.5 times (up to 5 ml 
O2/kg/min) (35).

Over the next few decades, the body’s stress response to injury 
was identified to be under “neural control via the hypothalamus 
and the hypophyseal portal vessels of the pituitary stalk” (36). 
This grouping of the “responses” within the CNS and adrenal 
glands was termed the hypothalamic–pituitary-adrenal (HPA) 
axis (37). Cuthbertson lean muscle wasting was now viewed as 
a CNS-linked-catecholamine response, which could be blunted 
by beta-adrenergic, but not alpha-adrenergic blockers (3). Today, 
the HPA axis and catecholamines have many diverse functions 
from controlling CO and metabolism to selectively regulating 
the compliance, capacitance and blood volume of the systemic, 
splanchnic and venous vasculature (38). Within seconds of 
catecholamine release, nearly two-thirds of the splanchnic blood 
volume (~800 ml) can be autotransfused into the systemic cir-
culation during times of stress (38). Thus catecholamine surges 
and changes in blood volume and shifts during surgery may be 
a potential target to improve patient outcomes following surgery 
(see Injury, Inflammation and Multiple Organ Failure, The First 
Incision, Effects of Anesthesia on the Surgical Stress Response, 
and Effects of Major Surgery on Other Organs) (7–9).

injury, inflammation and Multiple Organ 
Failure

Another major milestone in unraveling the stress response was 
the discovery of the relationship between injury, inflammation, 
infection and organ dysfunction (39). The history of inflam-
mation dates back to the ancient Egyptians and Greeks, and 
the Roman medical writer Celsus in the first century AD who 
characterized injury by rubor (redness), tumor (swelling), calor 
(heat), dolor (pain) and functio lesa (loss of function) (40). 
Along with advances in immunology and molecular biology 
in the 1970s, a mechanistic link between injury and inflamma-
tion was serendipitously found by surgeon Arthur Baue who 
noticed a progressive, systemic organ failure in his intensive care 
patients (41). Two years later, Eiserman and colleagues termed 
this phenomenon multiple organ failure (MOF) and described 
it as a “fatal expression of uncontrolled infection” (42). Infection, 
however, was only part of the story.

In the 1980s, a German team led by Faist (43) and a Dutch 
group led by Goris (44) found that MOF developed in trauma 
patients, but curiously these patients did not have an infection. 
The new “stressor” was an “autodestructive inflammatory 
response,” and carried a mortality of over 50% (45). This 
devastating affliction was termed the systemic inflammatory 
response syndrome (SIRS) and was accompanied with delayed 
immunosuppression (46). Mild immunosuppression, like mild 
stress, is generally not harmful but if it progresses, secondary 
infections may occur followed by late MOF and death (47). 
Late MOF became so prevalent that Deitch wrote: “MOF has 
reached epidemic proportions in most intensive care units and 
is fast becoming the most common cause of death in the surgi-
cal intensive care unit” (39). Today, MOF remains the greatest 
contributor to late-trauma mortality and morbidity than any 
other cause (47).
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Currently, animal studies to investigate MOF and SIRS are 
based on “one-hit” and “two-hit” models proposed by Ernest and 
Fred Moore (45, 48). In the “one hit” model, the initial stressor 
(trauma, hemorrhage, sepsis, or burn) is so massive that the 
subject is overwhelmed with SIRS and succumbs to MOF (49). In 
the “two-hit” model, less severe injury slowly develops into MOF 
from reactivation of an earlier “minor” inflammatory response 
(“secondary-hit”), which may cascade into a life-threatening 
situation (50). While significant overlap exists, the two models, 
and other variants, attribute MOF to an unchecked inflammation, 
cardiac depression, HPA axis activation, sympathetic discharge, 
coagulopathy, and impairment of mitochondrial function (47, 51). 
After severe to catastrophic trauma, loss of whole body homeo-
stasis can develop into a lethal triad, which involves hypothermia, 
acidosis, and coagulopathy, and death is imminent (50, 52).

The First incision

Besides cardiopulmonary bypass, the cutting, burning, 
fracturing and stretching of tissues induce an additional 
repair process, mediated by inflammatory responses 
and cell regeneration, which consumes energy and 
reserves. … The burden on some of them is substantial: 
a single sternotomy might reach the equivalence of a 
long bone fracture.

Prêtre (53)

Local Tissue Trauma
The first surgical incision induces localized injury to tissues, 
afferent nerves, pain receptors and blood vessels (Figure 1). Nerve 
damage leads to afferent signals from the injury site to the brain 
and stimulation of the HPA axis (Figures 1 and 2). Local coagula-
tion necrosis, microparticle release, endothelial damage, immune 
cell activation, localized cell ischemia, edema and metabolic dys-
function all contribute to a succession of rapidly cascading events 
from a local to a systemic phenomenon (54–60). Hypoxia also 
contributes to injury, in part, through the activation of hypoxia-
inducible factor (HIF-1) and potentiation of NF-kappaB, a master 
regulator of genes involved in innate immunity, inflammation, 
and apoptosis (59, 61). The degree of trauma will be affected 
by the invasive nature of surgical procedure (56). Laparoscopic 
procedures, for example, have lower levels of trauma compared 
with open procedures, and lower surgical stress (62). Open 
surgeries include a median sternotomy, thoracotomy, laparotomy, 
abdominal hysterectomy and orthopedic surgery (54, 63). Cardiac 
surgeon René Prêtre equated the severity of a median sternotomy 
in cardiothoracic surgery with a long bone fracture (quote above).

Activation of Resident immune Cells
At the incision site, resident and non-resident immune cells are 
the “first responders” to danger signals (Table  1) (60, 73–77). 
Resident immune cells are the macrophages, mast cells, dendritic 
cells, fibroblasts and lymphocytes (via lymph), and the non-
resident blood-borne cells such as neutrophils and lymphocytes, 
which all produce a variety of cytokines, chemokines, proteases, 
leukotrienes, and nitric oxide (NO) in response to local injury 
(Tables 1 and 2) (75, 78–80). Mast cells are normally found in 

close association with blood vessels, lymphatic vessels, pain 
receptors and nerves, and on activation they degranulate with the 
release of inflammatory cytokines, histamine, and prostaglandins 
that initiate a neuropathic and nociceptive pain response and 
local changes in blood flow (60, 81–83). Circulating platelets also 
contribute to immune surveillance, damage control and amplifi-
cation response to local injury (84–86). At the injury site, tissue 
factor (TF) activates platelets and coagulation pathways to reduce 
further blood loss. Normally, an effective inflammatory response 
isolates the area of injury, clears the injured cells/debris or kills 
invading pathogens and restores tissue function. However, the 
stress response can quickly become over-expressed and promotes 
further injury.

inflammatory Cytokines: iL-1, iL-6, and  
TnF-Alpha
The main pro-inflammatory cytokines are IL-1, IL-6, and TnF-
alpha (Table 2) (7, 76, 80, 87–91). IL-1 beta can directly activate 
nociceptive fibers within 60 s, and indirectly elicit the production 
of prostaglandins in response to injury (60, 78, 81, 88, 92). In addi-
tion to local effects, plasma IL-1, IL-6, and TnF-alpha stimulate the 
HPA axis leading to the release of cortisol and catecholamines and 
systematization of the stress response (68, 93). Interestingly, plasma 
IL-6 levels appear to correlate with the severity of surgical injury 
and post-operative complications (94). In 2006, Ishibashi and 
colleagues showed that IL-6 levels correlated with the length of a 
surgical incision (1.0 cm vs. 3.0 cm) with the larger incision leading 
to doubling of IL-6 values at 3 and 6 h (95). During colorectal sur-
gery, plasma IL-6 and P-selectin were also shown to increase during 
surgery and peaked at day one after surgery (96). IL-6 also appears 
to play a dual role by providing a later “immunological brake” to 
restore homeostatic balance by up-regulating anti-inflammatory 
mediators and cytokine inhibitors, such as prostaglandin PGI2, 
IL-1 receptor antagonist (IL-1ra), IL-10, and transforming growth 
factor (TGF-b) (40, 77, 97). Thus, resolution of the local and sys-
temic inflammatory responses is an emerging area of increasing 
complexity and involves immune cells, cytokines, the endothelium, 
and a multitude of negative feedback new mediators such as the 
resolvins, lipoxins, maresins, and NF-kappa beta pathways (40).

TNF-alpha is another major cytokine and participates in 
a diverse number of cellular and molecular events such as 
neutrophil-endothelial adhesive interactions, vasodilatation, 
microvascular leakage, edema, and oxidative stress (Table  2) 
(98–100). TnF-alpha, and other cytokines, activate the hepatic 
acute phase protein response with the release of C-reactive pro-
tein (CRP), pro-calcitonin, and C-3 complement factor (70, 92). 
Complement activation is an integral part of the stress response 
to surgical injury and intersects and amplifies the coagulation 
activation pathways (see Complement Injury Cascade) (84). Like 
IL-6, TNF-alpha serves a dual role in resolution of the inflamma-
tory response via signaling through the TNF-R2 (p75) receptor 
(101). The timing of these pro- and anti-inflammatory roles dur-
ing surgical stress and recovery are not well understood.

Local Coagulation and Systemic Coagulopathy
Local clotting, as mentioned, is initiated by exposure of platelets 
to the subendothelial components and TF activation of plasma  
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factors VII/VIIa via the extrinsic pathway, which in turn leads 
to the generation of thrombin, fibrin deposition, and clot 
formation (102–104). Other proteins, such as von Willebrand 
factor, facilitate the binding of platelets to the injured vessel 
wall. TF is expressed by the injured blood vessel wall (adven-
titial fibroblasts, smooth muscle cells and pericytes), platelets, 
activated endothelium, macrophages, neutrophils, circulating 
microparticles, and epithelial cells (105, 106). Importantly, TF 
is essential for hemostasis, but uncontrolled expression of TF can 
lead to coagulopathy (107). A second clotting pathway, known 
as the Intrinsic Pathway, appears to be more important in the 
growth, amplification and elongation of clot formation, rather 
than the TF-activated initiation (108). The intrinsic pathway 
involves clotting factors within the blood itself combined with 
cell fragments, microparticles or damage-associated molecular 
pattern molecules (109). The relationships between the extrinsic 
and intrinsic pathways, and their different timings and systemic 
manifestation during major surgery are not well understood.

In major surgery, a common complication is hyperfibrinolysis 
(110). According to the STS database, up to 50% of cardiac surgery 
patients require blood product transfusions (111), and 5–7% will 
lose in excess of 2  l in the first day postoperatively (112, 113). 
About 50% of blood loss is due to identifiable surgical bleeding, 
and the other 50% is due to a hypocoagulopathy associated with 
surgical trauma, heparinization, and CPB (112, 113). Surgical 
hypothermia further exacerbates hemorrhagic, cardiovascular, 
and infectious complications compared to normothermia (114). 
In non-cardiac surgery, coagulopathic perioperative bleeding 
is also a major problem. In a recent prospective, multicenter 
observational cohort study of 1134 consecutive patients with 
coronary stents, 9.5% experienced postoperative hemorrhagic 
complications after non-cardiac surgery, and 12% of these died 
(115). In general, trauma-induced postoperative coagulopathy is 
associated with extended hospital stays and three times higher 
healthcare costs (116). The impact of the first incision on triggering 
the local inflammatory and coagulation responses appears to be 
overlooked, as there is surprisingly little information on the nature 
and timing of these events, and when they become systemically 
expressed. New pharmacological therapies for prevention or early 
correction of inflammation and coagulopathy are urgently sought.

Complement injury Cascade
Complement activation is another integral part of the stress 
response to surgical injury (Figure 1). The blood complement sys-
tem comprises a group of at least 30 soluble plasma and membrane 

bound proteins and can be activated in two main ways; (1) as a 
component of the innate immune cascade in response to aseptic 
tissue injury (i.e., antibodies or T cell receptors not involved), and 
(2) from the adaptive immune response when antibodies (IgG or 
IgM) binds to antigen at the surface of a cell (117–121). Along 
with the local inflammatory and coagulation responses to injury, 
the complement system is part of an ancient innate immune 
response to trauma, ischemia, hemorrhage, burns, infection, and 
autoimmunity (120, 121).

Complement proteins are synthesized in the liver and by 
extra-hepatic tissue macrophages, blood monocytes, and epithe-
lial cells. Local production and activation of complement makes 
a significant contribution to local tissue inflammatory injury 
(necrosis), coagulopathy, and augmentation of the adaptive 
immune response (117, 122). The two main mechanisms of com-
plement cell damage include membrane attack complex (MAC) 
and cell bound ligands C4b and C3b that activate innate immune 
cells such as neutrophils bearing complement receptor (117), 
and second, from small activation fragments known as anaphyla-
toxins (C3 and C5 convertases) that further promote the influx 
and activation of neutrophils, cytokines, chemokines, adhesion 
molecules, and cascade mechanisms (117). Tissue ischemia 
and reperfusion can also activate complement by exposing cell 
phospholipids and mitochondrial proteins that are recognized by 
natural and locally occurring antibodies and autoantibodies (118, 
120, 122, 123). CRP, an acute phase pro-inflammatory mediator 
and activator of the classical complement pathway, has been 
shown to increase up to 1000-fold in human plasma following 
tissue injury (120, 124).

In cardiac surgery, the timing of complement system activa-
tion was thought to occur only when the patient’s blood was in 
contact with pro-inflammatory plastic tubing of the CPB circuit 
(125, 126). However, Gu and colleagues found that plasma com-
plement and inflammation occurred soon after the first chest 
incision (127). This was further supported by their observation 
that complement was activated in those patients who did not 
receive CPB but related to the first incision (127). In addition, a 
smaller anterolateral thoracotomy was associated with reduced 
complement activation, and lower IL-6, compared to the median 
sternotomy. Interestingly, IL-6 was not elevated in plasma until 
the end of the operation, and Gu’s group suggested that the “inci-
sion” trigger was a tissue type plasminogen activator, which is 
known to stimulate complement (127). Unfortunately, the study 
did not measure plasma IL-1, TnF-alpha, or other markers of 
inflammation and coagulation at baseline and before or after CBP. 

Surgical stress triggers a wide and varied response at multiple levels 
depending on the type and duration of surgery, anesthesia and the patient’s 
age, gender and prior health status. The early drivers of the stress response 
are sterile local injury, afferent nerve cell firing, activation of the 
Hypothalamic-Pituitary-Adrenal (HPA) axis, Nucleus Tractus Solitarus (NTS), 
endothelial dysfunction and inflammation. Damage signals (also termed 
danger-associated molecular patterns or DAMPs and alarmins, e.g., heat 
shock proteins, adenosine, HMGB-1) are generated from tissue injury and 
detected by resident and non-resident immune cells. The key pro-
inflammatory cytokines are IL-1, IL-6, and TnF-alpha and a complex 

interactions with complement. The primary goal of the acute immune 
response is wound healing and to prevent pathogen invasion. It is a 
restorative process that involves four phases: coagulation, inflammation, 
proliferation, and remodeling. Each phase of repair is predominately 
mediated by immune cells, cytokines, chemokines, transcription, and 
post-translational pathways (Tables 1 and 2). However, during major trauma, 
the early repair process can be overexpressed and lead to further injury, if 
not held in check. Peripheral nerve injury and pain induce afferent mediators 
and neurotransmitters to the spinal cord and central nervous system (CNS) 
and produce stress hormones, which exacerbate the stress response during 
major surgery.

FiGURe 1 | Continued
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FiGURe 2 | Schematic of the HPA axis and the Stress Response to 
Surgery. Different anesthetics have different effects on the HPA axis and 
immune system (see Effects of Anesthesia on the Surgical Stress Response). 
During surgical stress, activation of the HPA axis is controlled by a relatively 
small number of neurons located in the paraventricular nucleus (PVN) of the 
hypothalamus. These neurons release neural factors, such as corticotrophin-
releasing hormone (CRH) and arginine vasopressin (AVP) into the hypophyseal 
portal circulation, which stimulates the anterior pituitary gland to release ACTH 
into the blood and activates the adrenal gland to release the stress hormones, 
catecholamines, and cortisol. Under normal exposure to stress, the HPA axis is 
held in check via multiple negative feedback mechanisms. However, during 

major surgery, trauma, infection or burns, imbalances occur and the action of 
stress hormones are potentiated by cytokines IL-1beta, IL-6 and TNF-alpha, 
prostaglandin-2 (PGE-2), and nitric oxide (NO), which predispose the body to 
further injury from ischemia, inflammation, and coagulopathy. Older surgical 
patients appear to be more vulnerable to surgical stress because their 
hypothalamus and pituitary are less sensitive to negative feedback from both 
cortisol and ACTH (7–9). The medullary Nucleus Tractus Solitarus (NTS) is also 
influenced by the stress response as it receives sensory neural inputs from the 
arterial baroreceptors, integrates this information with the hypothalamus, and 
other parts of the brain, and regulates the sympathetic and parasysmpathetic 
outflows to the body (7, 64–72).
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As with other components of the innate immune response, exces-
sive activation of complement pathways damages healthy tissues 
from “friendly fire,” and exacerbates the surgical insult (121). 
Further research is required to better understand the mechanisms 
of hyper-expression, the timing of systemic organ damage and 
failure, and to develop novel therapeutic strategies, such as com-
plement inhibitors, to possibly improve surgical outcomes (126).

Role of Histamine, Nerve Growth Factors and 
Local Opioids
Histamine is locally released from mast cell granules, and nerve 
growth factor is released from damaged nerves, which activate 
peripheral nerves that either terminate in the brain or spinal 
cord dorsal horn resulting in pain facilitation (128). Histamine 
release also appears to be directly related to changes in the car-
diovascular system that are often seen during anesthesia (129). 
Simultaneously, endogenous analgesic mechanisms are activated 
including anti-inflammatory cytokines, endocannabinoids, 
and opioid peptides. Opioid peptides such as endorphins, 
enkephalins, and dynorphins are produced by immune cells such 
as leukocytes and can be released locally in the inflamed tissue 
on stimulation with IL-1 or from corticotropin releasing factor 
that drives the body’s response to stress (130). Following release, 

opioid peptides bind to receptors on peripheral sensory neurons 
and produce analgesia in animal models and humans (131).

effects of Anesthesia on the Surgical 
Stress Response

It is critical to recognize that certain stressors may act 
on the brain even in the unconscious state - this is true 
of the anesthetic itself and the hormonal, metabolic and 
inflammatory mediators of the surgical stress response.

Borsook et al. (132) p. 607

Blunting the Stress Hormones
Notwithstanding the difficulty in separating the stress effects of 
anesthesia from the surgery itself, there is a general consensus that 
most anesthetics reduce the neuroendocrine response. The degree 
of reduction is difficult to assess and most likely depends upon the 
anesthetic’s mode of action, dose and duration of use (Figure 2). 
As mentioned in Section “Cuthbertson’s “Ebb and Flow” Injury 
Hypothesis and the HPA axis,” the central integrative “hub” control-
ling the stress response is the HPA axis that controls catecholamine 
and cortisol production, and the Nucleus Tractus Solitarus (NTS) 
that control sympathetic-parasympathetic outflows (7,  64–72). 

TABLe 1 | immune cells involved in the detection, integration and healing following localized sterile injury.

Type Tissue 
location

Main functions

Macrophages Resident Macrophages are innate immune cells that ingest and process foreign materials, dead cells, and debris and recruit 
additional macrophages in response to inflammatory signals. Tissue-resident macrophages include brain (microglial), 
muscle, gut, kidney, alveolar, liver (Kupffer cells), bone (osteoclasts), and interstitial connective tissue (histiocytes) 
macrophages. Resident macrophages produce cytokines, chemokines, proteases, nitric oxide, and leukotrienes as part 
of their damage detection and amplification roles to local injury. Blunting the activation of resident macrophages/immune 
cells may reduce the stress response to surgery.

Mast cells Resident Mast cells are densely granulated effector cells of inflammation and immunity. They are located close to outer layers 
and barriers, such as epithelial borders, nerves, mucosal membranes, and vascular walls. At a nerve lesion, mast cells 
degranulate and release histamine, prostaglandins, leukotrienes, chemokines, and cytokines (TnF-alpha) to initiate the 
neuropathic and nociceptive pain response. Mast cells are involved in the local inflammatory response, vasodilatation, 
and plasma extravasation.

Dendritic cells Resident Like macrophages, dendritic cells are mononuclear phagocytes with multiple subpopulations that orchestrate host 
defense and wound healing to resolve local inflammation and support the resolution of fibrosis. An overexpression of 
inflammation causes increased recruitment of dendritic cells and collateral local and systemic injury.

Fibroblasts Resident Fibroblasts are involved in remodeling of extracellular matrix after injury. Excessive proliferation or secretion of 
extracellular matrix proteins may result from an overexpression of inflammation and pathologic progression of fibrosis 
and further tissue injury and adhesions. 

Neutrophil Blood-borne Neutrophils migrate from postcapillary venules into the site of sterile tissue injury (or infection) and are the hallmarks of 
endothelial activation and acute inflammation. Their entry into the cell and release of cytokines, chemokines, proteases, 
and oxidants can contribute to further damage. Neutrophils can also promote fibroblast proliferation, aberrant collagen 
accumulation, and fibrosis. Inhibition of neutrophils and neutrophil-platelet interactions may be an important and effective 
target to reduce the local stress response during surgery.

Monocytes Blood-borne Increased monocyte reactivity occurs in trauma, infection, or burns. During local tissue damage monocytes are rapidly 
recruited to the tissue usually after neutrophils, where they differentiate into and replenish tissue macrophages or 
dendritic cells. Monocytes are equipped with a set of Toll-like receptors and possess unique scavenger receptors 
that recognize damage or pathogen-associated molecular patterns (DAMPS and PAMPS) and can clear apoptotic 
neutrophils by phagocytosis in a non-inflammatory process called efferocytosis.

Lymphocytes (B cells, 
natural killer cells and 
T cells)

Resident 
(lymph) and 
blood-borne

Damaged or necrotic cells alert the immune system to activate naïve T cells even in the absence of infective pathogens. 
T-cell induction, specifically CD4+ (Helper) and CD8+ (cytotoxic) cells, is now known to participate in recruiting neutrophils 
for the initiation of wound healing after sterile injury. Lymphocyte cells can also contribute to further inflammation and 
induce the up-regulation of endothelial cell adhesion molecules. The gut is a major source of lymphocytes and one of the 
“drivers” of major organ dysfunction and failure during the stress response to surgery.
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In addition, prostaglandin and NO production in higher centers, 
such as the cortex, hippocampus, and amygdala and periphery, are 
all involved in the regulation of HPA axis and NTS under basal 
and stress conditions (71) (Figures 1 and 2).

Blunting the stress response includes a reduction in the pro-
duction of the following major hormones or autocoids as possible 
clinical endpoints:

•	 pituitary hormones: adrenocorticotropic hormone (ACTH), 
growth hormone (GH) and antidiuretic vasopressin, 
beta-endorphins;

•	 adrenal catabolic hormones: cortisol and catecholamines;
•	 pancreatic hormone: glucagon;
•	 prostaglandins (e.g., PGE-2).

The most common general anesthetics include the barbitu-
rates (thiopental), opioids (fentanyl, remifentanil, sufentanil), 
benzodiazepines (midazolam), dissociative anesthetic agents 
(ketamine) and intravenous propfofol, etomidate, and clonidine 
(7, 68). No sedation or drug cocktail, however, offers complete 
“stress-free anesthesia” (133). Opioids appear to be the most 
powerful suppressors of HPA, and particularly short-acting 
etomidate, which suppresses corticosteroid production, cortisol 
release, catecholamines, and aldosterone release, which may last 
between 8 and 22 h after surgery (68, 134). Propofol-remifentanil 
cocktail also blunts the stress response but to a lesser degree 

(135). Despite their individual effects, many of the current 
anesthetic combinations, particularly used in cardiac surgery, 
still lead to persistent elevations of 2– 6 fold in cortisol, GH, and 
norepinephrine lasting around 2  days (136). The volatile anes-
thetics halothane, isoflurane, sevoflurane, and nitrous oxide have 
been reported to be less effective in blunting the stress response 
(137, 138). However, sevoflurane appears to be more effective at 
blunting the inflammatory response than isoflurane (139). Other 
anesthetics, such as thiopental, ketamine, and opioids, possess 
some anti-inflammatory and anti-oxidant properties (140), 
however, prospective, randomized clinical trials are required to 
examine if these differences are clinically significant (138, 141).

Optimizing Anesthesia and Analgesia to Reduce 
Pain and the Stress Response
Nearly 90% of surgical patients claim to experience moderate-to-
severe postoperative pain after major surgery (142). Neuropathic 
and nociceptive pain contributes to and amplifies the stress 
response by increasing inflammation, coagulation disorders, organ 
hypoperfusion, decreasing wound healing, and possibly cognitive 
dysfunction (77, 143, 144). To address this problem, the concept 
of pre-emptive analgesia has been introduced in recent years (142, 
145, 146), which combines general anesthesia with epidural and/or 
intravenous (IV) infusion agents (e.g., opioids, local anesthetics). 
This analgesic strategy also reduces the need for steroids, which 

TABLe 2 | Major cytokines, chemokines and danger signals involved in the acute stress response to sterile injury.

IL-1 IL-1 has two subtypes, IL-1α and IL-1β, and they are key mediators of sterile inflammation. IL-1β is a potent pro-inflammatory cytokine 
produced mainly by tissue macrophages and can directly activate nociceptive fibers, and indirectly elicit the production of prostaglandins. IL-1β 
upregulates neutrophil- and monocyte-endothelial adhesion interactions. During acute stress, systemic IL-1β markedly increases brain IL-1β 
levels in the hippocampus, prefrontal cortex and hypothalamus. IL-1 also stimulates the hypothalamic-pituitary-adrenal (HPA) axis and alters the 
Nucleus Tractus Solitarus (NTS) sympathetic and parasympathetic outflow during stress.

IL-6 IL-6 is a sensitive, early marker of sterile tissue damage and acts as an inducer of the acute phase protein response. It also stimulates the HPA 
axis during stress and is a complex multifunctional cytokine that exerts pro- and anti-inflammatory effects.

IL-8 IL-8 is a chemokine produced by monocytes, T cells, neutrophils, natural killer cells, and somatic cells (e.g., endothelial cells, fibroblasts, and 
epithelial cells). It is inducible by IL-1 and TNF-alpha and recruits and activates neutrophils, promotes vascular smooth muscle cell proliferation 
and migration, and is involved in the chemotaxic and adhesion of monocytes to endothelial cells.

IL-10 IL-10 is an anti-inflammatory cytokine that serves as a brake to hyper-inflammation and immunosuppression by reducing the synthesis of 
proinflammatory mediators. Adenosine via A2A receptor-CAMP/PKA pathway inhibits IL-12 and TnF-alpha and stimulates production of IL-10 
by antigen-presenting cells. Other protective cytokines include IL-17 that activates the differentiation of anti-inflammatory macrophages and 
phagocytosis of apoptotic neutrophils in response to IL-10 or glucocorticoids, and IL-21 and IL-22 play a role against tissue inflammation and 
protection. Induction of IL-10 expression, and the other anti-inflammatory cytokines, is a highly desirable therapeutic goal during major surgery.

TnF-alpha TNF-alpha serves many functions in the inflammatory response with hormonal, metabolic, hemodynamic and neural effects. The cytokine is one 
of the early “danger” signals produced by resident macrophages, monocytes, dendritic cells, and neutrophils and T-lymphocytes. After Injury, 
Schwann cells produce TNF-alpha suggesting a role in neuropathic pain. TnF-alpha is also a chemotactic factor for fibroblasts and upregulates 
leukocyte-endothelial adhesion interactions, and is inhibited by adenosine. TNF-alpha may alter muscle metabolism by increasing amino acid 
availability, and is involved in insulin resistance. It also stimulates the HPA axis during stress and has anti-inflammatory properties.

NF- κB NF-κB is an archetypal pro-inflammatory pathway activated by IL-1 and TnF-alpha. Once activated, the pathway induces proinflammatory 
genes, cytokines, chemokines, and endothelial adhesion molecules. NF-κB was once considered the “holy grail” as a target for new anti-
inflammatory drugs, but it is now known to have anti-inflammatory properties. Thus NF-KB transcription factors regulate inflammation and 
orchestrate the immune response during sterile injury or following infection. 

HMGB1 High mobility group box-1 is a ubiquitous nuclear protein loosely bound to chromatin and is released from macrophages and monocytes 
exposed to inflammatory cytokines. It also acts as a danger signal (DAMP) from sterile injury via loss of membrane integrity of damaged or 
necrotic cells and is an initiator of innate immunity. HMGB1’s surface receptor, RAGE (receptor for advanced glycation end products) promotes 
NF-κB activation, which is responsible for most events elicited by necrotic cells. HMGB1 may also be involved in restorative effects leading to 
tissue repair and regeneration. Active HMGB1 secretion also appears to be under autonomic nervous control with splenic macrophages being 
an abundant plasma source during the stress response. After major surgery, high plasma levels have been linked to cognitive decline.

Mitochondria Mitochondrial damage is a rich source of danger signals (DAMPS), including mitochondrial DNA, formyl peptides, cytochrome C, and ATP. 
These micro-particles are potent stimulators of acute inflammation. Tissue ischemia and reperfusion can also activate complement by exposing 
mitochondrial proteins and cell phospholipids that are recognized by natural and locally occurring antibodies and autoantibodies.
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have been associated with increased infections (147, 148), and opi-
oid use, which reduces GI post-operative complications (149). The 
recent emphasis on pre-emptive analgesia for procedure-specific 
pain management via CNS and peripheral desensitization appears 
to be improving post-operative care (150), and similar to George 
Crile’s anoci-association and “stress-free surgery” proposed over 
100 years ago (see George Crile and “Stress-Free” Surgery).

Stress-induced Diabetes
Stress hormones from the HPA axis and increased sympathetic 
outflows from the NTS also lead to hyperglycemia and insulin 
resistance (Figure  2), which may persist for several days from 
higher levels of cortisol, catecholamines, GH, and pro-inflamma-
tory cytokines (66, 72, 151). This condition has been termed the 
“diabetes of injury” (5, 6) or “critical illness diabetes,” and is com-
mon after severe surgical trauma, multiple injury trauma, burns, 
or infection (5). Surgical stress leads to net glucose production, 
a decrease in uptake and tissue utilization and/or a decrease in 
pancreatic β-cell responsiveness to insulin signaling (68, 152, 
153). It is also associated with endothelial activation, coagulopa-
thy, cardiac dysfunction, arrhythmias, immunosuppression, and 
slower wound healing times (72, 154). In addition, those patients 
who are already diabetic and undergo cardiac surgery, have a 24% 
higher risk of readmission for cardiac-related issues, deep sternal 
wound infections and post-operative strokes, and a 44% higher 
risk for rehospitalization for any cause (155).

Cognitive Dysfunction

The pathogenesis of postoperative cognitive dysfunc-
tion (POCD) is multifactorial and future studies should 
focus on evaluating the role of postoperative sleep 
disturbances, inflammatory stress responses, pain and 
environmental factors.

Krenk et al. (156), p. 951

A Persistent Complication of Major Surgery
Cognitive dysfunction remains a continuing complication in the 
aged and very young. In patients 60 years or older undergoing 
cardiac surgery, cognitive dysfunction occurs in 30–52% of cases 
(157), and may last up to 5 years (158, 159). In non-cardiac surgery 
patients, Price and colleagues reported cognitive dysfunction in 
56% of cases, and 25% in older patients after 3 months (160). A 
number of systematic reviews generally support these findings 
but cautioned that differences may also reflect differences in the 
neuropsychological tests to assess cognitive dysfunction (161). 
In pediatric patients after cardiac surgery, 5–10% acquire some 
form of cerebral dysfunction (162), although it usually resolves 
faster than in older patients (156). In addition, major surgery in 
very low-birth-weight infants is independently associated with a 
greater than 50% increased risk of death or neurodevelopmental 
impairment and anesthetics are believed to be involved (163).

The factors responsible for cognitive dysfunction are complex 
and include transient hypoperfusion, hypoxia, ischemia-
reperfusion injury, low preoperative hemoglobin levels, fluid 
overload, blood transfusions, microemboli, perioperative pain, 
hyperglycemia, and large swings in CNS temperature (77, 157, 

164–167). However, the underlying factor believed to be respon-
sible for cognitive dysfunction underpinning all these appears to 
be inflammation (Figure 3).

Neuroinflammation: A Driver of Cognitive Loss
Neuroinflammation is associated with local or widespread activa-
tion of microglia, which are the resident macrophages in the brain 
and spinal cord, and early responders to injury (77, 86, 172, 173). 
A large part of early cognitive decline appears to occur within 
the hippocampal and prefrontal cortex areas (174, 175), and may 
involve: (1) the acute activation of the phagocyte NADPH oxidase 
(PHOX) found in microglia, (2) expression of the inducible nitric 
oxide synthase (iNOS) in glia, and (3) microglial phagocytosis of 
neurons (176). In addition, an acute overexpression and secre-
tion of brain-derived neurotrophic factor (BDNF) by microglial 
cells, and their intraneuronal pathways, have been implicated as 
potential mediators of inflammation and hippocampal neuronal 
dysfunction (e.g., decreased neurogenesis, synaptic plasticity and 
long-term potentiation of stable memory formation) (174, 175, 
177). Recently, Hovens further showed microglia activation in the 
hippocampus and prefrontal cortex persisted for one week after 
major surgery (175).

Neuroinflammation and cognitive loss may also occur from 
damage to the blood brain barrier (BBB), which forms the nexus 
between the central and peripheral nervous and circulatory 
systems. A breach to the BBB may facilitate entry of blood-borne 
immune cells (e.g., neutrophils, lymphocytes) and cytokines (e.g., 
IL-1, IL-6, or TnF-alpha) and prostaglandins (PGE-2), which all 
exacerbate inflammation (166, 178) (Figure 3). Based on cerebral 
MRI, BBB disruption and leakiness have been reported in around 
50% of cardiac surgery patients with CPB (179, 180). Excessive 
leakage of fluid and proteins is also a common occurrence follow-
ing traumatic and ischemic brain injury, and is more pronounced 
in the elderly (181). The presence of cerebrospecific protein S100β 
in serum is an important indicator of cerebral damage (182). 
Platelets also accumulate in the CNS parenchyma and release 
pro-inflammatory factors, and play a role in the pathogenesis 
of cognitive decline (86). In 2012, He and colleagues found in 
aged rats after a splenectomy that the BBB was damaged, and the 
hippocampus had high levels of upregulated HMGB1 and the 
receptor for advanced glycation end products (RAGE) compared 
to controls (183). Since control rats received the same general 
anesthesia, the cognitive dysfunction was attributed to the 
surgery. Serum HMGB1 and IL-6 levels increase significantly 
after major gastrointestinal (GI) surgery in elderly patients and 
have been associated with cognitive decline after surgery (184). 
Unfortunately serum S100β was not measured. Currently there is 
no adequate protective therapy for cognitive decline.

effects of Major Surgery on the  
Other Organs

Myocardial injury
Among adults undergoing non-cardiac surgery, myo-
cardial injury after non-cardiac surgery is common and 
associated with substantial mortality.

Botto and Alonso-Coello (185), p. 564
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Globally each day over 700,000 adult patients undergo non- 
cardiac surgery, and around 30% will have some form of 
pre-existing coronary artery disease (14). In this pre-existing 
coronary artery disease group, 3.9% or over 8000 patients per day 
will carry the risk of suffering a major perioperative cardiac event 
(186). The most common event is a myocardial infarction (MI), 
which is associated with an in-hospital mortality of 15–25% (186, 
187). In a recent international prospective cohort study of over 
15,000 non-cardiac surgery patients, 8% of patients over 45 years 
suffered myocardial injury, based on elevated blood troponin T 
levels, and 10% of these (120 patients) died from a cardiac event 
within 30 days (185).

Myocardial ischemia can also result from excessive catechola-
mine production, alterations in baroreceptor set-point receptiv-
ity, and reduced heart rate variability, especially in older patients 
(188). Plasma catecholamines are associated with higher cardiac 
troponin levels, and some perioperative thrombotic states can 
lead to coronary plaque disruption and MI (187). Recent trials 
using low-dose presynaptic alpha2-adrenergic agonist, clonidine, 
designed to blunt norepinephrine production, failed to reduce 
the incidence of perioperative MI (189). However, pretreatment 
with cyclosporine-A in patients undergoing elective CABG 
surgery did reduce the perioperative myocardial injury during 
longer CPB operations (190). Further drug discovery to reduce 

FiGURe 3 | effect of Major Surgery on the Blood Brain Barrier and 
Neuroinflammation. The blood brain barrier (BBB) is the body’s natural 
“firewall” to protect against unwanted incoming agents entering the CNS from 
the general circulation. During major stress and trauma, the BBB is particularly 
vulnerable to attack from inflammatory cells and cytokines (156). A breach 
can lead to neuroinflammation and activation of microglial cells, the brain’s 
resident macrophages, which may lead to further injury and cognitive 
dysfunction. The three most common types of cognitive dysfunction are 
delirium, postoperative cognitive dysfunction (POCD) and dementia (168). 

Delirium is normally defined as a transient loss of mental attention and 
orientation in the hours after surgery; dementia is a series of syndromes 
associated with global deterioration of cognitive ability lasting months to 
years; and POCD is the deterioration in performance (156, 169). POCD is a 
more subtle condition and longer lasting than delirium and can include 
post-traumatic stress disorder after an ICU stay (156). Stroke is another 
leading cause of severe, long-term cognitive disability after major surgery and 
occurs in around 2% of patients (167, 170), and 20% of these occur within 
the first two postoperative days (171).
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perioperative “adrenergic stress” and protect the heart from 
myocardial injury is urgently needed (185).

Another adverse event of major surgery is low CO syndrome, 
particularly following pediatric and adult cardiac surgery (191). 
Cardiac depression occurs in many other acute critical states, such 
as hemorrhagic shock, infection, sepsis, or burns (192–194). While 
the mechanisms are not fully understood, a cardiac inflammatory 
response and altered myocardial Ca2+ handling are thought to 
be involved (191). Interestingly, in animal models, infusion of 
pro-inflammatory cytokine TNF-alpha has been shown to induce 
myocardial depression and ischemic-reperfusion injury (195, 196). 
Similarly, during major surgery it is proposed that the gut may be a 
possible source of high levels of TnF-alpha because in acute injury 
models, the gut and mesenteric lymphatics are major contribu-
tors to systemic inflammation and multiple organ dysfunction 
(39, 192, 197, 198). In addition, rat studies show that ligating the 
mesenteric duct has improved CO during acute burn trauma, 
further suggesting a “gut-derived factor” may be responsible for 
low CO syndrome (192, 193). The heart itself may contribute to 
depressed function because TnF-alpha can also be produced by 
resident macrophages (199). Other cardiovascular complications 
during major surgery include arrhythmias, unstable angina, car-
diac arrest, heart failure, hypertension, and stroke (200).

Renal Dysfunction
Postoperative acute deterioration in renal function, 
producing oliguria and/or increase in serum creatinine, 
is one of the most serious complication in surgical 
patients.

Brienza et al. (201), p. 2079

Cardiac dysfunction can negatively impact on every organ and 
tissue of the body. The kidneys normally receive 20% of the CO 
and insufficient flow can lead to an abrupt reduction in glomeru-
lar filtration rate and acute kidney injury (AKI) (202). AKI occurs 
in 1% of non-cardiac surgical patients, and up to 30% in cardiac 
surgery patients and around 3% of these patients may require 
dialysis (203, 204). Patients with AKI requiring renal replacement 
therapies have mortality rates in excess of 40–50% (202). This 
condition is strongly associated with ischemia, systemic inflam-
mation, emboli, GI bleeding, respiratory infections, and sepsis 
(205). To date, no single perioperative strategy has demonstrated 
a therapeutic benefit to improve CO and prevent renal injury after 
CPB surgery (202, 203).

Perioperative Pulmonary injury
Perioperative pulmonary complications may equal or 
outnumber cardiac events.

Johnson and Kaplan (206)

An unappreciated fact is that pulmonary perioperative 
complications may equal or outnumber cardiac complications 
(206–208). Postoperative lung dysfunction occurs in 3–10% 
of patients after elective abdominal surgery (209), 2–7% after 
thoracic surgery (210), and 30–50% in patients after cardiac 
surgery (211). Anesthesia induction itself can lead to ventilation/
perfusion mismatch, atelectasis and impaired oxygenation (208, 

209). Atelectasis occurs in around 90% of all major surgeries and 
can persist for several days and predispose the patient to pulmonary 
infection (212). Abdominal or thoracic surgery is often associated 
with 20% or more loss of functional residual capacity from dia-
phragmatic dysfunction, decreased chest wall compliance, and 
pain-limited inspiration, which may not resolve itself for a week 
postoperatively (212).

A devastating complication of cardiac surgery is acute respira-
tory distress syndrome (ARDS), which occurs in 2–3% of low to 
medium risk patients, and up to 20% in high-risk patients (213, 
214). Post-operative ARDS carries a mortality of 40–80% (214). 
A milder form of ARDS is acute lung injury (ALI) and it generally 
appears within 2 days of surgery (137, 215). Both ARDS and ALI 
are part of a systemic disorder associated with microvascular 
endothelial permeability dysfunction, inflammation, and wide-
spread organ involvement including the heart and cytokines from 
the GI tract (216, 217). A recent study involving 1817 patients 
found that transfusion-related ALI, termed TRALI, occurred in 
1.4% of patients undergoing major surgery with higher incidences 
reported (2–3%) after vascular and transplant surgery (218). In 
addition, the same group found that transfusion-associated 
circulatory overload (TACO) was a leading cause of transfusion-
related fatalities with an overall incidence of 5.5% and highest in 
vascular (12.1%), transplant (8.8%), and thoracic surgeries (7.2%) 
(219).

Pulmonary complications after CPB have been known since 
the mid-1950s because the lungs are almost entirely excluded 
from the systemic circulation, and alveolar blood is nearly “static” 
other than receiving residual blood flow from the bronchial arter-
ies (137). During long cross-clamp times, the lungs are under 
enormous ischemic and inflammatory stress, which is further 
exacerbated when the cross-clamp is released and the heart and 
lungs are “reperfused” with oxygenated blood. Re-oxygenation, 
mitochondrial free oxygen radicals and increased “gut” cytokines 
further exacerbate the inflammatory response. Neutrophils and 
macrophage infiltration damage Type I cells leading to alveolar 
flooding with protein-rich fluid (edema) and Type II cells leading 
to reduced surfactant production, both of which predispose the 
lung to ALI and ARDS (214). Recent clinical trials with β2 ago-
nists to increase alveolar fluid clearance and “immunonutrition” 
with omega-3 fatty acids have been disappointing (215). Novel 
therapies are required to protect the lung from injury during 
major surgery, and in particular CPB surgery, and the possibility 
of using mesenchymal stem cells to form new Type 1 and 2 cells 
are being investigated.

Gastrointestinal injury and the “Cytokine Storm”
We believe that there is currently no unifying hypoth-
esis that encompasses the diverse ways in which the gut 
influences outcome in critical illness. 

Clark and Coopersmith (198), p. 385

During major surgery, excessive sympathetic activation, and 
inflammatory and coagulation imbalances can cause gut dysfunc-
tion (220). The GI tract is a powerful immunologically active 
organ, and plays a key role in maintaining the health of the brain, 
heart, and lung under normal conditions (38). GI dysfunction 
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ranges from mild complications such as ileus to less common 
but severe hypoperfusion and ischemic complications, which 
all carry a high mortality of 60–80% (221). Like the kidneys, the 
GI tract receives about 20–25% of the resting CO (38). However, 
during surgical stress sympathetic alpha-adrenergic stimulation 
can constrict the mesenteric artery and intestinal and intrahepatic 
portal veins leading to hypoperfusion of the gut and associated 
organs (liver, pancreas, and spleen), and this response may be 
potentiated by the posterior pituitary hormone vasopressin (38, 
222). During CPB, the initial rise in circulating catecholamines 
can decrease hepatic perfusion by 20–45% and splanchnic blood 
flow by approximately 20% (38, 222). These falls in blood perfu-
sion can lead to ischemic complications especially during longer 
more complex operations. GI injury is an important component 
of the SIRS and can lead to sepsis, MOF, and death.

The gut is so critically important to the health of the surgical 
patient that Meakins and Marshall described it as the “motor” 
of MOF (198) p384. This “motor” can magnify the systemic 
inflammatory response from: (1) a breach in intestinal epithe-
lium permeablity, (2) activation of the cytokine-mediated GI 
immune system, and (3) bacterial and endotoxin translocation 
from the lumen into the peritoneum via the portal circulation 
(198, 223). A breach can have such a profound effect because 
in a normal healthy intestine there are more than a hundred 
trillion (~1015) bacteria, viruses, and fungi, which outnumbers 
the cells in the human body by tenfold (224, 225). In addition, 
there are more lymphocytes associated with the intestine than 
there are in the rest of the human body. Commensal bacteria 
at the intestinal epithelial interface are believed to regulate 
the level of NF-κB activity and thereby affect the GI mucosal 
immune balance (226). During major surgery, and other forms 
of trauma, if this balance is perturbed complications can arise 
from a “cytokine storm.” As the “storm” develops more circulat-
ing neutrophils are attracted to the interstitial compartments 
and damaging O2 free radicals, proteolytic enzymes and more 
cytokines are produced, tight junctions are breached, mucosal 
cells proceed to necrosis and apoptosis and endotoxemia and 
sepsis can develop.

The cytokine “storm” from the gut may also be respon-
sible for perioperative cardiac, lung, brain, and other organ 
dysfunction. As mentioned, cardiac depression, ALI and 
ARDS are related to an overexpression of the acute immune 
response. Following major GI surgery, Takahata and colleagues 
correlated the duration of SIRS and pulmonary dysfunction 
with the appearance of serum cytokine HMGB-1 levels (227). 
Other studies implicate intestinal phospholipase A2 generated 
arachidonic acid and its subsequent 5-lipoxygenase products to 
pulmonary injury (216), while others suggest an alteration of 
the T-helper 1/T-helper 2 cytokine lymphocyte balance (228). It 
is also becoming apparent that CNS imbalances leading to low 
heart rate variability (229, 230) are associated with increases in 
systemic inflammation, and possibly involve TNF-alpha pro-
duction by spleen macrophages (231). Interestingly, increasing 
parasympathethic outflow via vagal cholinergic stimulation 
appears to reduce inflammation in ileus following intestinal 
manipulation in animal models (229, 230). Other factors that 
modulate the gut may come into play and include vasoactive 

intestinal peptide, glutamate, and NO, all of which have been 
shown to modulate immune cells (230). Maintaining a healthy 
GI tract is imperative to bolstering a patient’s defense against 
the stress of major surgery.

Liver injury During Major Surgery
The clinical task to minimize perioperative hepatic 
cellular injury is challenging for anaesthetists and 
intensivists alike.

Beck et al. (232), p. 1070

Mild liver dysfunction in patients without liver disease is 
common following major surgery (232, 233). Acute “ischemic 
hepatitis,” as it is termed, is a diffuse injury that arises secondary 
to hypoperfusion (hemodynamic instability) and hypoxia, and is 
exacerbated by systemic inflammation. Typically, this condition 
resolves within a few days. More serious complications can arise 
in patients with preexisting liver disease and cardiac dysfunction. 
The liver is particularly vulnerable to low flow because of its high 
O2 requirement and complex portal vein and hepatic artery net-
work (38, 232, 234). The portal system from the stomach, spleen, 
pancreas, intestines, and omentum supplies 70–80% of blood to 
the liver at very low pressures (5–10 mmHg) (234), and patients 
with chronic hepatic congestion or cirrhosis are vulnerable to 
hypoxic liver injury (232). Other risk factors include the use of 
CPB, total time on bypass, non-pulsatile flows, fluid overload, 
and the type of anesthetic and perioperative vasopressor support 
(233). As mentioned above (see Gastrointestinal Injury and the 
“Cytokine Storm”), CPB can lead to decreases in splanchnic 
blood flow by ~20% and hepatic arterial blood flow by up to 45% 
(222), which may lower venous return and therefore CO resulting 
in systemic ischemia (38, 235). Anesthetic agents can also reduce 
hepatic artery blood flow by 50–70% (232, 233). Agents such as 
isoflurane, desflurane, sevoflurane, and propofol are preferred 
in patients with liver disease because they have less impact to 
reduce blood flow compared to other inhaled anesthetic agents 
(232, 233).

Systemic inflammation is perhaps the most common underly-
ing factor leading to acute and chronic liver dysfunction (236). 
The patient with liver disease is already in a pro-inflammatory 
state of “rebalanced hemostasis” that can lead either to excessive 
bleeding or thrombotic complications (237). Like the GI tract, 
the liver plays a critical role in immune defense against surgical 
stress (238, 239), and is involved in maintaining adequate venous 
return and CO (38, 235). New therapies are urgently required 
to protect the liver and maintain adequate blood flow through 
the splanchnic system to support cardiac function during major 
surgery.

immunosuppression and Susceptibility to 
infection

General anesthesia accompanied by surgical stress 
is considered to suppress immunity, presumably by 
directly affecting the immune system or activating the 
hypothalamic-pituitary-adrenal axis, and the sympa-
thetic nervous system.

Kurosawa and Kato (240)
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Immunosuppression is common following major surgery 
secondary to systemic inflammation and coagulopathy (87, 97). 
A dramatic depression of cell-mediated immunity predisposes 
the patient to slow healing, multiple organ injury, infection, 
and sepsis (58, 241, 242). In cancer patients, emboli dispersal 
from surgery along with post-operative immunosuppression 
can lead to further tumor metastases (243). Recent studies 
implicate impaired natural killer (NK) cell response, lymphocyte 
depression, and monocyte deactivation as playing major roles 
in mediating immunosuppression after major surgery (57, 244). 
Trauma appears to increase the expression of T-helper 2 (Th2)-
stimulated lymphocytes and their cytokines resulting in a lower 
plasma Th1/Th2 cytokine ratio, which is believed to be associated 
with immune paralysis (228, 239).

A lower plasma Th1/Th2 cytokine ratio is also mediated by 
the stress hormones glucocorticoids and norepinephrine via 
activation of the HPA axis and mast cell-histamine reactions 
(239, 245, 246), and possibly from increased NTS sympathetic 
outflows. Immunosuppression may be exacerbated by persis-
tent perioperative splanchnic and liver hypoperfusion and gut 
cytokine production (247–249). Suppressed cellular immunity 
can continue for 3–10  days post-operatively in patients who 
have undergone major surgery, but not minor surgery (57). As 
noted in the Section “Inflammatory Cytokines IL-1, IL-6, and 
TnF alpha” and Table 2, post-operative immune-competence can 
be routinely evaluated by measuring plasma levels of interleu-
kins (1β, 2, 6, 8, 10, 12), TNF-α, stress hormones, CRP, and the 
T-lymphocyte profile (62).

Current Perioperative Therapies: The 
Good, Bad and the Ugly

Cardiologists frequently advise on perioperative care 
for non-cardiac surgery and require guidance based on 
randomized controlled trials that are not discredited by 
misconduct or misreporting.

Nowbar et al. (250), p. 138

The goal of perioperative therapies is to reduce or prevent 
surgical “stressors” from developing and to accelerate recovery 
(251–253). Three major therapies that have attracted a lot of clini-
cal interest to improve perioperative protection are: (1) statins, 
(2) beta-adrenergic blockers, and (3) calcium-channel blockers.

Statins
Statins are hydroxymethylglutaryl (HMG)-CoA reductase 
inhibitors and powerful cholesterol-lowering agents (253). 
Perioperative interest comes from their pleiotropic ability to 
potentially decrease oxidative stress, inflammation and throm-
bosis via inhibition of G proteins and induction of transcrip-
tion factors (251, 254). The first line of evidence supporting 
statin therapy originated from a landmark, non-surgical Heart 
Protection Study involving over 20,000 high-risk patients with 
coronary artery disease or diabetes. In those patients who 
received 40 mg simvastatin daily there was a significant reduc-
tion in all-cause mortality (12.9 vs. 14.7%) from MI, stroke, 
and the need for coronary and non-coronary revascularization 

(255, 256). However, these data were challenged in a meta-
regression analysis of Robinson and colleagues who compared 
non-statin and statin trials between 1966 to October 2004 and 
concluded statins do not appear to contribute a cardiovascular 
benefit beyond their well proven lipid lowering abilities (257). 
More recently, in high-risk patients undergoing non-cardiac 
surgery, de Waal and colleagues concluded there is insufficient 
data to support final recommendations on perioperative statin 
therapy (258).

Despite the controversy, some groups argue that statins 
are underutilized during major surgery (253). For example, 
Paraskevas and colleagues concluded from Medline searches 
that statins reduce the incidence of postoperative and postpro-
cedural renal insufficiency and they assist in the earlier recov-
ery of kidney function in vascular patients (259). In another 
Medline search comparing any statin treatment before cardiac 
surgery, Liakopoulos and colleagues supported Paraskevas’ 
findings and further discovered that preoperative statin 
therapy reduced the risk of post-operative AF and shortened 
ICU and hospital stay (260). Sanders and colleagues examined 
Cochrane Central Register of Controlled Trials and reported 
that short-term statin therapy, commenced before or on the day 
of non-cardiac vascular surgery and continuing for at least 48 h 
afterward, improved patient outcomes but had no influence on 
the risk of MI, stroke, renal disease, pain, or length of hospital 
stay (261). In a prospective randomized trial of 418 consecutive 
patients undergoing CABG surgery, Ouattara and colleagues 
concluded that statin therapy was associated with a significant 
and dose-dependent reduction in adverse cardiovascular 
events such as heart failure, malignant arrhythmia, and cardiac 
death after surgery (262). However, they recommended more 
trials are required including an evaluation of patient tolerance 
to the therapy (262). Kulik and Ruel in a review of the Medline 
data (1987 to January 2009) concluded that the benefits of 
statin use seem to outweigh the risks in CABG surgery, both 
in the preoperative and postoperative period. In the absence 
of contraindications, they argued nearly all CABG patients are 
candidates for life-long statin therapy, which ideally should 
be started before surgery (263). Chopra and colleagues’ also 
undertook a meta-analysis and concluded perioperative statin 
treatment in statin-naive patients reduced atrial fibrillation, 
MI, and duration of hospital stay (264).

In summary, while statins appear to be well tolerated dur-
ing surgery, their use has largely come from retrospective and 
subgroup analysis of large studies from Medline searches. Statins 
themselves are diverse in their actions and some clinical trials 
have demonstrated potential benefits while others have not. For 
example, pravastatin appears to promote risk reduction in the 
occurrence of new onset diabetes, whereas atorvastatin, rosuvas-
tatin, and simvastatin increase the risk (265). Other questions on 
whether patients who are already on statin therapy should remain 
on statin therapy during surgery or those statin-naïve patients 
should continue after surgery are clinically important to answer 
(252, 266). Whether statins reduce mortality and morbidity after 
major surgery or not can only be answered by clear questions 
and performing properly designed, prospective, randomized, 
multi-center clinical trials.
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Beta-Adrenergic Blockers
β-Blockers have a long history of potential beneficial effects in 
patients with a cardiac risk profile. Some of the benefits include: 
(1) reducing sympathetic nervous system activity, (2) improving 
myocardial O2 supply/demand ratio from decreased heart rate, 
systolic blood pressure and myocardial contractility, and (3) 
having antiarrhythmic properties (267–269). There is also some 
evidence that beta-blockers may blunt the inflammatory response 
after injury by reducing the expression of cytokines IL-1, IL-6, 
and TnF-alpha and CRP (270). Beta-blockers have also been 
reported in animal and human studies to reduce myocardial 
ischemia, infarction, and death (269).

Non-Cardiac Surgery
Since the late 1990s, multiple retrospective analyses have sup-
ported perioperative benefits of β-blockers following surgery 
(271). However, after a literature search of eleven large databases 
up to October 2005, Wiesbauer and colleagues concluded that 
β-blockers did not reduce the incidence of MI, length of hospitali-
zation or mortality (272). They did report there was a trend toward 
reduced myocardial ischemia and perioperative arrhythmias. On 
the basis of retrospective analyses, and two small relevant clinical 
trials, the American College of Cardiology and American Heart 
Association (ACC/AHA) in 2007 published a set of guidelines 
recommending perioperative β-blockers for non-cardiac surgery 
(267, 273). In the following year, a number of groups argued 
against these guidelines claiming that they were premature and 
the ACC/AHA should “soften their advocacy” because past trials 
suffered from a high risk of bias (273).

Moreover, in 2008, the Perioperative Ischemic Evaluation 
(POISE) trial indicated that long-acting β-blocker metoprolol 
succinate increased mortality, ischemic stroke, hypotension, and 
bradycardia in patients at high risk of atherosclerotic disease 
(274). A possible weakness of the POISE trial was its fixed and 
relatively high-dose of metoprolol that was started shortly before 
surgery, and this strategy was not consistent with optimal cur-
rent practice (267, 269). However, despite differences in dose 
and timing of delivery compared to current practice, the take 
home message was clear. From retrospective analysis of larger 
trials and the POISE trial, Devereaux (co-principal investigator 
of POISE) argued that urgent attention is required to assess the 
safety and efficacy of perioperative β-blockers (267). The ACC/
AHA committee eventually yielded to the mounting pressure and 
softened their guidelines (269). More recent studies by Angeli and 
colleagues concluded that β-blockers reduced total mortality in 
patients who underwent high-risk non-cardiac surgery but not 
lower risk surgery (275). Indeed, the data suggests from low risk 
of bias trials, an increase in all-cause mortality and stroke with 
β-blocker use (276).

The controversy regarding perioperative β-blockers reached 
new heights after 2011 with the discovery of scientific misconduct 
and fabrication in the “Dutch Echocardiographic Cardiac Risk 
Evaluation Applying Stress Echocardiography (DECREASE)” 
trials. This was tragic news because the DECREASE family of 
studies provided much of the original evidence for prophylactic 
β-blockade use in non-cardiac surgery, and shaped the European 
Society Cardiology (ESC) Guidelines (250, 269). At the center 

of the controversy was Don Polderman, chairperson of the ESC 
guidelines and taskforce on “Pre-operative cardiac risk assessment 
and perioperative cardiac management in non-cardiac surgery.” 
Polderman lost his position at the Erasmus Medical Center in 
Rotterdam for scientific misconduct and the institution released 
a note of his dismissal on November 16, 2011 stating that he was:

“careless in collecting the data for his research. In one 
study it was found that he used patient data without 
written permission, used fictitious data and that two 
reports were submitted to conferences which included 
knowingly unreliable data”.

http://www.erasmusmc.nl/corp_home/corp_news-
center/2011/2011-11/ontslag.hoogleraar/?lang=en

In 2014, the European Society of Cardiology and European 
Society of Anesthesiology (ESC/ESA) released joint guidelines 
with new recommendations stating that β-blockers are not 
recommended in patients without clinical risk factors, given that 
the drugs do not decrease the risk of cardiac complications and 
“may even increase this risk” (276). Despite this warning, the 
guidelines continue to recommend β-blocker use as reasonable 
in patients with intermediate- or high-risk myocardial ischemia 
documented prior to surgery (class IIb, level of evidence C), 
and for those with three or more risk factors, such as diabetes, 
heart failure, or coronary artery disease. This “relaxing” of the 
guidelines appears to ignore the fact that the DECREASE family 
studies, on which many of the guidelines are based, were deemed 
“unreliable” and contained “fictitious data” (277). In 2013, Bouri, 
Francis, Cole, and colleagues argued that initiation of β-blockers 
in patients undergoing non-cardiac surgery increased the risk of 
mortality by 27%, potentially resulting in the deaths of as many 
as 10,000 patients per year in the UK alone (278).

Cardiac Surgery
In cardiac surgery, β-blockers are generally recommended to 
reduce postoperative atrial fibrillation (AF) and cardiovascular 
ischemic events and have been used for more than 40 years (269, 
271, 279). Ogawa and colleagues showed in 136 patients undergo-
ing off-pump CABG that administration of low-dose continuous 
infusion of ultra short-acting landiolol from the beginning of 
the operation until postoperative day 2, significantly reduced 
the incidence of postoperative atrial fibrillation by nearly 50% 
(19 vs. 37%) and also significantly suppressed systemic inflam-
mation during CABG from a reduced postoperative peak in 
CRP compared to the non-landiolol group (268, 280). Recently, 
Blessberger and colleagues concluded after examining 89 rand-
omized controlled trials with 19,211 participants that β-blockers 
in cardiac surgery can substantially reduce the high burden of 
supraventricular and ventricular arrhythmias following surgery 
(276, 281). However, they found that the influence of β-blockers 
on mortality, AMI, stroke, congestive heart failure, hypoten-
sion, and bradycardia in this setting remained unclear (276). In 
another meta-analysis with more than 100,000 study participants, 
Bangalore and colleagues warned against use of beta-blockers in 
post-MI patients because of a possible increase in the risk of heart 
failure and cardiogenic shock (282).
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As with statin use, it appears that the potential benefits of 
beta-blockers in cardiac or non-cardiac surgery has largely been 
filtered from retrospective and subgroup analysis of large studies. 
Well-designed, prospective, randomized clinical trials, with the 
appropriate statistical power and relevant primary endpoints 
such as perioperative MI, ischemic stroke, cardiovascular death, 
and all-cause death are urgently required.

Calcium-Channel Blockers
Calcium blockers were originally introduced in surgery to 
reduce intracellular Ca2+ loading and protect against myocardial 
ischemia and angina pectoris. Prior to 2004, Wijeysundera 
and colleagues undertook a meta-analysis involving forty-one 
clinical trials using Ca2+ blockers (e.g., amlodipine, nifedipine, 
nicardipine) and beta-blockers, and concluded that the short-
acting Ca2+ blockers dihydropyridines were associated with 
anti-ischemic effects and a trend toward reduced mortality after 
CABG surgery (283). Over the past decade, the safety and efficacy 
of Ca2+ channel blockers as a group has been controversial and it 
appears that they have little cardiac benefit in patients undergoing 
non-cardiac surgery or cardiac surgery (284). In 2008, Kertai and 
colleagues’ retrospective analysis of a large database showed that 
dihydropiridines were independently associated with increased 
30-day mortality in patients undergoing aortic aneurysm surgery 
than non-users (285).

Today, there appears to be a growing consensus that Ca2+ 
blockers may be harmful in the perioperative setting in 
patients undergoing major non-cardiac surgery. Of particular 
concern is peripheral vasodilation causing a reflex adrenergic 
activation resulting in an increase in heart rate, which may be 
associated with myocardial ischemia (284). Thus, in patients 
with unstable angina, dihydropyridines are contraindicated 
in the absence of beta-blockade (284). Unfortunately, there 
are few prospective randomized, prospective, trials that spe-
cifically examine hard outcomes associated with Ca2+ channel 
blockers and perioperative hemodynamics, because patients 
with different hemodynamic profiles may respond with differ-
ent outcomes (284).

where Do we Stand Today?
In those patients already on chronic β-blockers, statins and 
Ca2+ blocker therapies, the general consensus among anes-
thesiologists and surgeons is to continue their use before and 
after major surgery (286). With respect to patients not on these 
drugs and who require major surgery, the data are much less 
clear. In 2014 Francis, Cole and colleagues argued that the 
Guideline bodies should retract their recommendations based 
on fictitious data (278). To this end, Nowbar and colleagues 
examined 14 such recommendations and dismissed 11 of 
them based on lack of data or past associations with bias or 
misconduct. They concluded that there is insufficient evidence 
to recommend statins, beta-blockers or Ca2+ blockers without 
properly designed trials (250). Bouri, Francis, Cole and col-
leagues also proposed that: “any remaining enthusiasts might 
best channel their energy into a further randomized trial which 
should be designed carefully and conducted honestly” (278). 
The controversy continues.

Search for New Therapies from a 
Systems-Based Approach

What we anticipate seldom occurs; what we least expect 
generally happens. 

Benjamin Disraeli (1804-81) Henrietta Temple

Frontline Protection Begins before the  
First incision
For a Kuhnian revolution to occur in surgical protection, it is 
proposed that new drugs and treatment strategies must embrace 
the CNS control of whole body function. A highly reductionist 
approach leveled at single drug targets ignores the complexity 
of biological systems. Reductionism is important in breaking a 
system into its constituent parts for study, however, it does not do 
away with the system (287). Thus current practice of identifying, 
documenting and treating a single perturbation during or follow-
ing an operation, and then the next defect, and so on down the 
line, is not working and may result in what US surgeon William C. 
Shoemaker termed “an uncoordinated and sometimes contradic-
tory therapeutic outcome” (287, 288).

Protection should begin early before the first incision to 
prevent the body from overshooting its normal homeostatic 
tolerance limits. Drug targets include the regions of tissue injury, 
the CNS response to that injury and their systemic manifestations 
(Table 3). No drug or drug management strategy currently exists 
to effectively blunt or prevent these stressors and responders to 
major surgery.

Toward Stress-Free Surgery in the 21st Century: 
A working Hypothesis
It is proposed that targeting local tissue injury, the CNS response 
to that injury and systemic manifestations may improve patient 
outcomes by reducing surgical trauma and minimizing “sec-
ondary-hit” complications from neuroendocrine, inflammatory, 
coagulation, and metabolic imbalances. The key to maintaining 
or restoring cellular homeostasis is to provide material exchange 
between the blood and the tissues. As a working hypothesis, the 
four pillars of whole body resynchronization during surgical 
trauma are:

•	 CNS as central controller;
•	 Heart as pressure generator;
•	 Arterial supply venous capacitance as pressure/volume 

regulators;
•	 Vascular endothelium as the systemic integrator.

If imbalances or uncoupling occurs to any of these pillars 
beyond their normal design tolerances, perioperative complica-
tions may arise (Figure 4). This stress-induced mismatch is termed 
Central-CardioVascular-Endothelium (CCVE) uncoupling. If 
central and local control of CO and ventricular-arterial coupling 
are impaired, endothelial and micro-vascular function may be 
impaired and tissue O2 delivery compromised. A stress-induced 
sympathetic discharge results in loss of heart rate variability and 
changes to baroreceptor sensitivities, which profoundly impacts 
CO and hemodynamics and whole body function. If CO is 
reduced, and the ability of the arterial system to receive blood 
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TABLe 3 | Three potential perioperative targets for reducing the stress response to major surgery.

Target Stressor, crosstalk, and responder modulation

Tissue injury Reduce the local tissue damage signals released from the first incision.
Dampen pain signals to CNS via modulation of nerve afferents, pain receptors and mediators.
Inhibit tissue activation of immune and inflammatory cells, including the production of IL-1, IL-6 and TnF-alpha cytokine and their post-
translational pathways.
Protect the endothelium and localize the coagulation effects in response to injury.

CNS control Reduce the brain’s responsiveness to tissue damage signals.
Protect the blood brain barrier from becoming leaky and proinflammatory.
Reduce activation of the HPA axis and sympathoadrenal system (e.g., cortisol, catecholamines, and vasopressin).
Reduce medullary NTS sympathetic discharge in favor of parasympathetic outflow including activation of the anti-inflammatory reflex.
Place the body in a mild hibernating-like, hypotensive state.
Improve baroreceptor sensitivity and heart rate variability.
Optimize arterial resistance and tissue blood flow, including blunting catecholamine-induced changes to splanchnic blood reservoir and 
circulation to maintain venous return and cardiac output (CO).
Reduce gut ischemia and prevent or reduce the gut “cytokine storm”.

Systemic manifestations Promote cardiovascular-endothelial coupling and induce a high flow, hypotensive, vasodilatory state with maintained tissue O2 perfusion.
Reduce systemic inflammation and coagulopathy.
Protect the gut and liver from “overshooting” their immune functions.
Maintain systemic cellular immunity Th1/Th2 cytokine balance and prevent immunosuppression.
Reduce whole body energy demand.

from the heart is impaired, splanchnic venous capacitance may be 
diminished and venous return (and CO) will drop further leading 
to tissue hypoperfusion, endothelium damage, systemic inflam-
mation, and coagulopathy (Figure  4). Maintenance of cardiac 
preload thus depends on the ability of the CNS to control venous 
compliance and hence to redistribute blood volume between 
peripheral organs and the cardiopulmonary compartment.

Maintaining the health of the vascular endothelium is a key to 
reduce surgical stress because this “organ” is the master integrator 
and regulator of vascular tone, inflammation and coagulation, 
vascular permeability, blood fluidity, and lymphatic function 
(Figures  1–4) (289). Its vast surface area of up to 7000  m2 is 
lined with negatively charged 0.1–1  uM thick glycocalyx mesh 
of fibril projections made of proteoglycans and glycoproteins 
(290–294). When injured, the glycocalyx releases syndecan-1, 
hyaluronic acid, and heparan sulfate into the circulation and the 
endothelium becomes leaky and damage occurs to underlying 
tissues (291, 293, 295, 296). Once injured, there is evidence that 
the glycocalyx can repair itself quickly under the right conditions, 
which has great significance to surgery and recovery (110, 297). 
An underlying assumption of the CCVE hypothesis is that if the 
stress of surgery is controlled, the patient will do the recovery 
since every cell in the body is programed and working hard in 
that direction already.

Perioperative innovation: From Natural 
Hibernators to Heart Surgery

For a large number of problems there will be some 
animal of choice on which it can be most conveniently 
studied.

Krogh (298), p. 202

Cardiac Surgery
In 1998, the author (GPD) utilized the August Krogh principle 
and asked: “Could the human heart in cardiac surgery be pharma-
cologically manipulated to operate more like a heart of a natural 
hibernator?” (25). Natural hibernators are extraordinary animals 

and can become profoundly hypotensive and hypothermic with 
up to 98% reductions in body metabolism (25). In this “pilot-light” 
state, the hibernator does not flood its heart with high potassium, 
as is standard practice in cardiac surgery today. The objective 
was to arrest the human heart at its natural resting “polarized” 
potential of −80 mV by: (1) inhibiting the voltage-dependent Na+ 
fast channels responsible for the phase O upstroke of the action 
potential (AP) (lidocaine), and (2) simultaneously decreasing 
the AP duration assisted by opening K+

ATP channels (adenosine) 
(191). Magnesium was included to reduce Ca2+ entry and protect 
the heart from ischemia-reperfusion injury and post-operative 
arrhythmias.

Theoretically, this drug strategy should “flat-line” the heart at 
its natural “diastolic” membrane potential and confer protection 
by having fewer channels open, less Na2+ and Ca2+ loading, less 
inflammation (from a polarized potential), and less arrhythmias 
during reanimation (299). What emerged was the world’s first low 
potassium polarizing adenosine and lidocaine with Mg2+ (ALM) 
cardioplegia (299). Recently an Italian prospective, randomized 
trial showed that the new cardioplegia was superior to a Buckberg 
high potassium solution by demonstrating significantly lower 
perioperative troponin levels, improved post-operative cardiac 
function (arterial ventricular coupling), 50% less blood trans-
fusions, one full day less in ICU, and two days less in hospital 
(300). The key to this “polarizing” concept was that ALM at high 
concentrations arrests the heart, and at lower concentrations it 
resuscitates the heart. What follows are studies involving the 
lower, non-arrest ALM levels to rescue the heart following MI, 
hemorrhagic shock, cardiac arrest and sepsis, which may have 
applications to major surgery administered as an IV drip after 
anesthesia but before the first incision.

Possible Applications to Major Surgery
Our first set of in  vivo rat studies showed that AL infusion 
administered 5 min before severe regional myocardial ischemia 
from tying off the left anterior descending coronary artery for 
30 min led to 100% survival and a 92% reduction in ventricular 
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arrhythmias compared to 60% deaths in controls (301). We also 
showed using 31P NMR that AL led to improved ATP supply by 
lowering myocardial demand during insult (302). Our second set 
of studies showed that ultra-small volumes of an IV bolus of 7.5% 
NaCl ALM (~3% of shed volume) resuscitated the heart and raised 
mean arterial pressure (MAP) into the hypotensive range after 
severe 40–60% blood loss and shock, and it corrected coagulopa-
thy at 60 min in the rat model (303, 304) (305). In 2015, we showed 
that coagulation correction occurred in 5 min indicating that the 
coagulopathy was not consumptive because the clotting factors, 
post-shock platelets, and coagulation pathways were fully opera-
tional compared with controls (110, 306). We proposed that small-
volume ALM assisted the heart and the body to recover with the 
blood left in the circulation after severe loss without large volume 
fluid therapy. In addition, ALM has potent anti-inflammatory 
properties by reducing the priming and activation of neutrophils 

(307), reduces TnF-alpha (308) and reduces endothelial damage 
(306). We have also shown similar protection in the rat model of 
8 min asphyxial hypoxia where a small bolus of 0.9% NaCl ALM 
improved return of spontaneous circulation (ROSC), hemody-
namics, coagulation status and survival (108, 309).

Small-volume 7.5% NaCl ALM resuscitation has translated 
from rat to pig after 75% blood loss (310). Around 2 l of blood 
was removed from 40  kg pigs and only ~140  ml IV bolus of 
7.5% NaCl ALM (~7% return of shed volume) was administered 
(310). During 60  min hypotensive phase (MAP ~50  mmHg), 
the ALM group had a 1.8-fold increase in stroke volume, a 34% 
fall in blood lactate, and a 43% higher O2 delivery compared to 
controls which began decompensate (310). How can 140 ml of 
ALM fluid increase stroke volume by 1.8 times when added to 
only ~25% of the animal’s normal circulating blood volume? One 
possible explanation is that ALM improved the coupling between 

FiGURe 4 | A broad schematic of the Central-Cardiovascular-
endothelium (CCve) “uncoupling” hypothesis that may be 
responsible for the high mortality and morbidity after major surgery. 
Loss of whole body homeostatic control during surgical trauma may be 
leveled at: (1) the CNS, (2) the heart, (3) the vascular tree, and (4) the 
endothelium. There is an urgent need to develop a pharmacological therapy 
that supports a high flow (maintained cardiac output), hypotensive, 
vasodilatory state with endothelial protection and tissue oxygenation (287). If 
central and local control of cardiac output and ventricular-arterial coupling 
are improved, endothelial and micro-vascular function will be improved and 

tissue O2 delivery will be maintained. An uncoupling is reflected in increased 
stress hormones, sympathetic discharge, loss of baroreceptor sensitivity, 
and loss of heart rate variability (229, 230). Impaired sympathetic control and 
a loss of heart rate variability are two of the strongest predictors of death in 
critically ill patients (188), and promote a pro-inflammatory state with higher 
IL-1, IL-6, TnF-alpha, and CRP levels, and coagulopathy. A new whole body 
therapy is required to bolster the patient’s defense against the trauma of 
surgery and prevent “secondary hit” complications from ischemic and 
inflammatory cascades, coagulopathy, multiple organ failure, and 
immunosuppression.
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the heart and arterial supply venous capacitance system, and 
increased the mean systemic pressure (PMS) that was sufficient to 
increase venous return by 1.8-fold (see Figure 4). After 60 min, 
shed blood was returned and whole body O2 consumption fell, 
systemic vascular resistance increased 30%, and urine output 
in the ALM group increased threefold compared with controls 
(310). Lastly, the hypotensive cardiac rescue potential of 7.5% 
NaCl ALM in the pig model of 75% blood loss was further dem-
onstrated by Granfeldt and colleagues who showed that a 20 ml 
bolus (0.5 ml/kg) significantly reduced fluid requirement by 40% 
to reach a target MAP of 50 mmHg (311). Interestingly, when 
shed blood was returned a 10  ml bolus of 0.9% NaCl AL (no 
Mg2+) there was a significant drop in whole body O2 consump-
tion (27% fall) and improved cardiac and renal function (311).

The ALM drug therapy also appears to be protective against 
infection. We showed that a bolus and infusion of 0.9% NaCl 
ALM in the rat model of polymicrobial sepsis elicited a stable, 
hypotensive state and reduced lung edema compared to controls 
(312). The therapy also corrected coagulopathy due to the 
laparotomy itself which may have clinical implications (312). 
Importantly, IV infusion rates were kept low (1.0  ml/kg/h) to 
avoid “secondary hit” complications from fluid overload such as 
cardiovascular and endothelial dysfunction, inflammation and 
coagulopathy. These low volumes are consistent with human 
studies by Lamke and colleagues who showed that the basal 
evaporation rate and typical fluid losses in humans undergoing 
major abdominal surgery were ~0.5 ml/kg/h (313, 314). Today, 
high fluid volumes up to 3–4  l are common in major surgery 
and may amplify the stress response by shocking the body a 
second time (315–317). In the pig endotoxin model, we also 
showed that a bolus and infusion of 0.9% NaCl ALM induced 
a profound hypotensive, vasodilatory state (MAP ~47 mmHg) 
with maintained CO and tissue oxygenation for 5 h. This state 
was accompanied by improved ventricular-arterial coupling, 
a significant reduction in TnF alpha and reduced lung edema 
compared to LPS controls which began to decompensate (308).

To summarize, our work using a small-volume ALM bolus and 
infusion “drip” appears to induce a mild hibernating-like state in 
rat and pig models, and may find clinical utility in protecting 
the patient against the stress of major surgery. It is possible that 
an ALM bolus/drip may blunt the sympathetic discharge that 
accompanies surgical stress and improve the coupling between 
the CNS support of the cardiovascular system and endothelium 

to reduce the inflammatory and coagulopathy responses with 
reduced mortality and morbidity. Clinical safety trials are 
required to examine the effect of the ALM “drip” (0.25–0.5 ml/
kg/h) administered after anesthesia but before the first incision to 
reduce the stress response of major surgery.

Concluding Remarks

Major surgery elicits profound changes in the neuroendocrine, 
metabolic, inflammatory, and immune systems, which collectively 
constitutes the “stress response.” The stress response is normally 
self-limiting and resolving. However, during surgical stress, the 
system can quickly “overshoot” and result in potentially harmful 
outcomes such as cognitive and cardiac dysfunction, vascular 
instability, endothelial activation, inflammation, coagulopathy 
and possibly immunosuppression. Since cardiovascular function 
is key to a healthy endothelium, it is proposed frontline drugs 
that improve CNS control of CO and arterial supply venous 
return functions will help to maintain tissue oxygenation and 
improve perioperative outcomes. Improved endothelium func-
tion may reduce an overexpression of inflammatory, immune 
and complement discharges and reduce “secondary hit” com-
plications such as SIRS, MODS, and MOF. A systems-based 
approach to perioperative protection may also find wide utility in 
treating the critically ill or casualties in prehospital and military 
environments, and help stabilize the patient during transport to 
definitive care.
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