
December 2015 | Volume 2 | Article 661

Review
published: 23 December 2015

doi: 10.3389/fsurg.2015.00066

Frontiers in Surgery | www.frontiersin.org

Edited by: 
Radek Hart,  

General Hospital Znojmo,  
Czech Republic

Reviewed by: 
Konstantinos Markatos,  

University of Athens, Greece  
Philippe Merloz,  

CHU A Michallon Grenoble, France

*Correspondence:
Guoyan Zheng  

guoyan.zheng@istb.unibe.ch

Specialty section: 
This article was submitted to 

Orthopedic Surgery,  
a section of the journal  

Frontiers in Surgery

Received: 31 August 2015
Accepted: 07 December 2015
Published: 23 December 2015

Citation: 
Zheng G and Nolte LP (2015) 

Computer-Assisted Orthopedic 
Surgery: Current State and Future 

Perspective.  
Front. Surg. 2:66.  

doi: 10.3389/fsurg.2015.00066

Computer-Assisted Orthopedic 
Surgery: Current State and 
Future Perspective
Guoyan Zheng* and Lutz P. Nolte

Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland

Introduced about two decades ago, computer-assisted orthopedic surgery (CAOS) 
has emerged as a new and independent area, due to the importance of treatment of 
musculoskeletal diseases in orthopedics and traumatology, increasing availability of dif-
ferent imaging modalities, and advances in analytics and navigation tools. The aim of this 
paper is to present the basic elements of CAOS devices and to review state-of-the-art 
 examples of different imaging modalities used to create the virtual representations, of 
different position tracking devices for navigation systems, of different surgical robots, of 
different methods for registration and referencing, and of CAOS modules that have been 
realized for different surgical procedures. Future perspectives will also be outlined.
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1. iNTRODUCTiON

The human musculoskeletal system is an organ system that includes the bones of the skeleton and 
the cartilages, ligaments, and other connective tissues that bind tissues and organs together. The main 
functions of this system are to provide form, support, stability, and movement to the body. Bones, 
besides supporting the weight of the body, work together with muscles to maintain body position 
and to produce controlled, precise movements. Musculoskeletal disease is among the most common 
causes of severe long-term disability and practical pain in industrialized societies (1). The impact 
and importance of musculoskeletal diseases are critical not only for individual health and mobility 
but also for social functioning and productivity and economic growth on a larger scale, reflected by 
the proclamation of the Bone and Join Decade 2000–2010 (1).

Both traumatology and orthopedic surgery aim at the treatment of musculoskeletal tissues. Surgical 
steps, such as the placement of an implant component, the reduction and fixation of a fracture, liga-
ment reconstruction, osteotomy, tumor resection, and the cutting or drilling of bone, should ideally 
be carried out as precisely as possible. Not only will optimal precision improve the post-operative 
outcome of the treatment, but it will also minimize the risk factors for intra- and post-operative 
complications. To this end, a large number of pure mechanical guides have been developed for vari-
ous clinical applications. The pure mechanical guides, though easy to use and easy to handle, does 
not respect the individual patient’s morphology. Thus, their general benefit has been questioned [see, 
for example, Ref. (2)]. Additionally, surgeons often encounter the challenge of limited visibility of 
the surgical situs, which makes it difficult to achieve the intended procedure as accurately as desired. 
Moreover, the recent trend toward increased minimally invasive surgery makes it more and more 
important to gain feedback about surgical actions that take place subcutaneously. Just as a global 
position system (GPS)-based car navigation provides visual instruction to a driver by displaying the 
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FiGURe 1 | example of CT-based navigational feedback. These screenshots show a CT-based CAOS system during pre-operative planning (A) and 
intra-operative navigation (B) of pedicle screw placement (Courtesy of BrainLAB AG, Munich, Germany).
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location of the car on a map, a computer-assisted orthopedic sur-
gery (CAOS) module allows the surgeon to get real-time feedback 
about the performed surgical actions using information conveyed 
through a virtual scene of the situs presented on a display device 
(3, 4). Parallel to the CAOS module to potentially improve surgi-
cal outcome is the employment of surgical robots that actively or 
semi-actively participate in the surgery (5).

Introduced about two decades ago (3–5), CAOS has emerged 
as a new and independent area and stands for approaches that use 
computer-enabled tracking systems or robotic devices to improve 
visibility to the surgical field and increase application accuracy 
in a variety of surgical procedures. Although CAOS modules 
use numerous technical methods to realize individual aspects of 
a procedure, their basic conceptual design is very similar. They 
all involve three major components: a therapeutic object [(TO), 
which is the target of the treatment], a virtual object [(VO), 
which is the virtual representation in the planning and navigation 
computer], and a so-called navigator that links both objects. For 
reasons of simplicity, the term “CAOS system” will be used within 
this article to refer to both navigation systems and robotic devices.

The central element of each CAOS system is the navigator. 
It is a device that establishes a global, three-dimensional (3-D) 
coordinate system (COS) in which the target is to be treated and 
the current location and orientation of the utilized end-effectors 
(EEs) are mathematically described. EEs are usually passive sur-
gical instruments, but can also be semi-active or active devices. 
One of the main functions of the navigator is to enable the 
transmission of positional information between the EEs, the TO, 
and the VO. For robotic devices, the robot itself plays the role of 
the navigator; while for surgical navigation, a position tracking 
device is used.

For the purpose of establishment of a CAOS system through 
co-actions of these three entities, three key procedural require-
ments have to be fulfilled. The first is the calibration of the EEs, 

which means to describe the EEs’ geometry and shape in the 
COS of the navigator. For this purpose, it is required to establish 
physically a local COS at the EEs. When an optical tracker is used, 
this is done via rigid attachment of three or more optical markers 
onto each EE. The second is registration, which aims to provide a 
geometrical transformation between the TO and the VO in order 
to display the end-effect’s localization with respect to the virtual 
representation, just like display of the location of a car in a map 
in a GPS-based navigation system. The geometrical transforma-
tion could be rigid or non-rigid. In the literature, a wide variety 
of registration concepts and associated algorithms exist (see 
the next section for more details). The third key ingredient to a 
CAOS system is referencing, which is necessary to compensate 
for possible motion of the navigator and/or the TO during the 
surgical actions to be controlled. This is done by either attaching a 
so-called “dynamic reference bases (DRB)” holding three or more 
optical markers to the TO or immobilizing the TO with respect 
to the navigator.

The rest of the paper is organized as follows. Section 2 will 
review the state-of-the-art examples of basic elements of CAOS 
systems. Section 3 will present clinical fields of applications. In 
Section 4, future perspectives will be outlined, followed by con-
clusion in Section 5.

2. BASiC eLeMeNTS OF CAOS SYSTeMS

2.1. virtual Object
The VO in each CAOS system is defined as a sufficiently realistic 
representation of the musculoskeletal structures that allow the 
surgeon to plan the intended intervention, as exemplified in 
Figure 1A. Intra-operatively, it also serves as the “back-ground” 
into which the measured position of a surgical instrument can be 
visualized (see Figure 1B for an example). Though most of time 

http://www.frontiersin.org/Surgery/archive
http://www.frontiersin.org/Surgery/
http://www.frontiersin.org


FiGURe 2 | example of Fluoroscopy-based navigation. This screenshot shows the fluoroscopy-based navigation for distal locking of an intramedullary nail 
(Courtesy of BrainLAB AG, Munich, Germany).
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VO is derived from image data of the patient, it can also be cre-
ated directly from intra-operative digitization without using any 
medical image data. Below, detailed examples of different forms 
of VOs will be reviewed.

When the VO is derived from medical image data, these data 
may be acquired at two points in time: either pre-operatively or 
intra-operatively. About two decades ago, the VOs of majority 
CAOS systems were derived from pre-operatively acquired CT 
scans, and a few groups also tried to use magnetic resonance imag-
ing (MRI) (6, 7). In comparison with MRI, CT has clear advan-
tages of excellent bone–soft tissue contrast and no geometrical 
distortion despite its acquisition inducing radiation exposure to 
the patient. Soon after the introduction of the first CAOS systems, 
the limitations of pre-operative VOs were observed, which led 
to the introduction of intra-operative imaging modalities. More 
specifically, the bony morphology may have changed between 
the time of image acquisition and the actual surgical procedure. 
As a consequence, the VO may not necessarily correspond to 
the TO any more leading to unpredictable inaccuracies during 
navigation or robotic procedures. This effect can be particularly 
adverse for traumatology in the presence of unstable fractures. 

To overcome this problem in the field of surgical navigation, the 
use of intra-operative CT scanning has been proposed (8), but 
the infrastructural changes that are required for the realization 
of this approach are tremendous, often requiring considerable 
reconstruction of a hospital’s facilities. This has motivated the 
development of navigation systems based on fluoroscopic images 
(9–11). The image intensifier is a well-established device during 
orthopedic and trauma procedures but has the limitations that the 
images generated with a fluoroscope is usually distorted and that 
one-dimensional information gets lost due to image projection. 
To use these images as VOs, therefore, requires the calibration of 
the fluoroscope that aims to compute the image projection model 
and to compensate for the image distortion (9–11). The resultant 
systems are, therefore, known as “fluoroscopy-based navigation 
systems” in the literature (9–11). Additional feature offered by 
a fluoroscopy-based navigation system is that multiple images 
acquired from different positions are co-registered to a common 
COS established on the target structure via the DRB technique. 
Such a system can, thus, provide visual feedback just like the use 
of multiple fluoroscopes placed at different positions in constant 
mode but without the associated radiation exposure (see Figure 2 
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FiGURe 3 | Navigation using surgeon-defined anatomy approach. This virtual model of a patient’s knee is generated intra-operatively by digitizing relevant 
structures. Although a very abstract representation, it provides sufficient information to enable navigated high tibial osteotomy.
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for an example), which is a clear advantage. This technique is, 
therefore, also known as  “virtual fluoroscopy” (11). Despite the 
fact that in such a system only two-dimensional (2-D) projected 
images with low contrast are available, the advantages offered by a 
fluoroscopy-based navigation system preponderate for a number 
of clinical applications in orthopedics and traumatology.

In order to address the 2-D projection limitation of a 
fluoroscopy-based navigation system, a new imaging device 
was introduced (12) that enables the intra-operative generation 
of 3-D fluoroscopic image data. It consists of a motorized, iso-
centric C-arm that acquires series of 50–100, 2-D projections 
and reconstructs from them 13 cm × 13 cm × 13 cm volumetric 
datasets that are comparable to CT scans. Being initially advo-
cated primarily for surgery at the extremities, this “fluoro-CT” 
has been adopted for usage with a navigation system and has 
been applied to several anatomical areas already (13, 14). As a 
major advantage, the device combines the availability of 3-D 
imaging with the intra-operative data acquisition. “Fluoro-CT” 
technology is under continuous development involving smaller 
and non-iso-centric C-arms, “closed” C-arm, i.e., O-armTM design 
(15, 16), faster acquisition speeds, larger field of view, and also flat 
panel technology.

A last category of navigation systems functions without any 
radiological images as VOs. Instead, the tracking capabilities of 
the system are used to acquire a graphical representation of the 
patient’s anatomy by intra-operative digitization. By sliding the 
tip of a tracked instrument on the surface of a surgical object, the 
spatial location of points on the surface can be recorded. Surfaces 
can then be generated from the recorded sparse point clouds 

and used as the virtual representation of the surgical object. 
Because this model is generated by the operator, the technique 
is, therefore, known as “surgeon-defined anatomy” (SDA). It is 
particularly useful when soft tissue structures, such as ligaments 
or cartilage boundaries, are to be considered that are difficult to 
identify on CTs or fluoroscopic images (17). Moreover, with SDA-
based systems some landmarks can be acquired even without 
the direct access to the anatomy. For instance, the center of the 
femoral head, which is an important landmark during total hip 
and knee replacement, can be calculated from a recorded passive 
rotation of the leg about the acetabulum. It should be noted that 
the generated representations are often rather abstract and not 
easy to interpret as exemplified in Figure 3. This has motivated 
the developed of the so-called “bone morphing” techniques (18, 
19), which aim to derive a patient-specific model from a generic 
statistical forms of the target anatomical structure and a set of 
sparse points that are acquired with the SDA technique (20). 
As a result, a realistic virtual model of the target structure can 
be presented and used as a VO without any conventional image 
acquisition (Figure 4).

2.2. Registration
Position data that are used intra-operatively to display the cur-
rent tool location (navigation system) or to perform automated 
actions according to a pre-operative plan (robot) are expressed 
in the local COS of the VO. In general, this COS differs from the 
one in which the navigator operates intra-operatively. In order 
to bridge this gap, the mathematical relationships between both 
coordinate spaces needs to be determined. When pre-operative 
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FiGURe 4 | Bone morphing. Screenshots of different stages of an intra-operative bone morphing process. (A) Point acquisition; (B) calculation of morphed model; 
and (C) verification of final result (Courtesy of BrainLAB AG, Munich, Germany).
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images are used as VOs, this step is performed interactively by the 
surgeon during the registration, also known as matching. A wide 
variety of different approaches have been developed and realized 
following numerous methodologies (21).

Early CAOS systems implemented paired-point matching 
and surface matching (22). The operational procedure for 
paired-point matching is simple. Pairs of distinct points are 
defined pre-operatively in the VO and intra-operatively in the 
TO. The points on the VO are usually identified pre-operatively 
using the computer mouse, while the corresponding points 
on the TO are usually done intra-operatively with a tracked 
probe. In the case of a navigation system, the probe is tracked 
by the navigator; and for a robotic surgery, it is mounted onto 
the robot’s actuator (23). Although paired-point matching is 
easy to solve mathematically, the accuracy of the resultant 
registration is low. This is due to the fact that the accuracy 
of paired-point matching depends on an optimal selection 
of the registration points and the exact identification of the 
associated pairs which is error-prone. One obvious solution 
to this problem is to implant artificial objects to create easily 
and exactly identifiable fiducials for an accurate paired-point 
matching (23). However, the requirement of implanting these 
objects before the intervention causes extra operation as well 
as associated discomfort and infection risk for the patient 
(24). Consequently, none of these methods have gained wide 
clinical acceptance. The other alternative that has been widely 
adopted in early CAOS systems is to complement the paired-
point matching with surface matching (25, 26), which does 
not require implanting any artificial object and only uses the 
surfaces of the VO as a basis for registration.

Other methods to compute the registration transformation 
without the need for extensive pre-operative preparation utilize 
intra-operative imaging, such as calibrated fluoroscopic images 
or calibrated ultrasound images. As described above, a limited 
number of fluoroscopic images (e.g., 2 images) acquired at dif-
ferent positions are calibrated and co-registered to a common 
COS established on the target structure. A so-called “2-D–3-D 
registration” procedure can then be used to find the geometrical 
transformation between the common COS and a pre-operatively 

acquired 3-D CT dataset by maximizing a similarity measurement 
between the 2-D projective representations and the associated 
digitally reconstructed radiographs (DRRs) that are created by 
simulating X-ray projections (see Figures 5A,B). Intensity-based 
as well as feature-based approaches have been proposed before. 
For a comprehensive review of different 2-D–3-D registration 
techniques, we refer to Ref. (21).

Another alternative is the employment of intra-operative 
ultrasonography. If an ultrasound probe is tracked by a navigator 
and its measurements are calibrated, it may serve as a spatial 
digitizer with which points or landmarks on the surfaces of 
certain subcutaneous bony structures may be acquired. This 
is different from the touch-based digitization done with a 
conventional probe that usually requires an invasive exposure 
of the surfaces of the target structures. Two different tracked 
mode ultrasound probes are available. A-(amplitude-) mode 
ultrasound probes can measure the depth along the acoustic 
axis of the device. Placed on the patient’s skin, they can measure 
percutaneously the distance to tissue borders, and the resulting 
point coordinates can be used as inputs to any feature-based 
registration algorithm. The applicability of this technique has 
been demonstrated previously but with certain limitations that 
prevent its wide usage (27, 28). More specifically, the accuracy 
of the A-mode ultrasound probe-based digitization depends on 
how well the probe can be placed perpendicularly to the surfaces 
of the target bony structures, which is not an easy task when 
the subcutaneous soft tissues are thick. Moreover, the velocity 
of sound during the probe calibration is usually different from 
the velocity of sound when the probe is used for digitization 
as the latter depends on the properties of the traversed tissues. 
Such a velocity difference will lead to unpredictable inaccura-
cies when the probe is used to digitize deeply located structures. 
As a consequence, the successful application of this technique 
remains limited to a narrow field of application. In contrast to an 
A-mode probe, a B-(brightness-) mode ultrasound probe scans 
a fan-shaped area. It is, therefore, able to detect also surfaces 
that are examined from an oblique direction, though the errors 
caused by the velocity difference still persist. In order to extract 
the relevant information for the registration of pre-operative CT 
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FiGURe 5 | CT-Fluoro matching. Screenshots of different stages of a CT-Fluoro matching process. (A) Pre-registration for CT-Fluoro matching; and (B) results of 
CT-Fluoro matching (Courtesy of BrainLAB AG, Munich, Germany).
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scans, the resulting, usually noisy images need to be processed 
(29). As for the intra-operative processing of fluoroscopic 
images, the use of B-mode ultrasound for registration is not 
reliable in every case and consequently remains subject of CAOS 
research (30, 31).

It is worth to point out that if the VO is generated intra-
operatively, registration is an inherent process (21). This is due 
to the fact that since the imaging device is tracked during data 
acquisition, the position of any acquired image is recorded with 
respect to the local COS established on the TO. The recorded 
device position, together with the additional image calibra-
tion process, automatically establishes the spatial relationship 
between the VO and the TO during image acquisition, which is 
a clear advantage over the interactive registration in the case of 
pre-operative images servings as VOs. Therefore, registration is 
not an issue when using intra-operative CT, 2-D, 3-D fluoroscopy 
or O-arm, or the SDA concept.

Radermacher et  al. (32) introduced an alternative way to 
match pre-operative planning with the intra-operative situa-
tion using individual templates. The principle of individualized 
templates is to create customized templates based on patient-
specific 3-D bone models that are normally segmented from 
pre-operative 3-D data, such as CT or MRI scan. One feature 
about the individual templates is that small reference areas of the 
bone structures are integrated into the templates as the contact 
faces. By this means, the planned position and orientation of the 
template in spatial relation to the bone are stored in a structural 
way and can be reproduced intra-operatively by adjusting the 
contact faces of the templates until an exact fit to the bone is 
achieved. By integrating holes and/or slots, individualized tem-
plates function as tool guides, e.g., for the preparation of pedicle 
screw holes (32) or as cutting jigs used in total knee and hip 
replacement surgery (33–35).

2.3. Navigator
Registration closes the gap between VO and TO. The navigator 
enables this connection by providing a global coordinate space. 
In addition, it links the surgical EEs, with which a procedure 
is carried out, to the TO that they act upon. From a theoretical 
standpoint, it is the only element in which surgical navigation 
systems and surgical robotic systems differ.

2.3.1. Robots
For this type of CAOS technology, the robot itself is the navigator. 
Intra-operatively, it has to be registered to the VO in order to real-
ize the plan that is defined in the pre-operative image dataset. The 
EEs of a robot are usually designed to carry out specific tasks as 
part of the therapeutic treatment. Depending on how the EEs of a 
robot act on the patient, two different types of robots can be found 
in the literature. The so-called active robots conduct a specific 
task autonomously without additional support by the surgeon. 
Such a system has been applied for total joint replacement (5) 
but their clinical benefit has been strongly questioned (36). For 
traumatology applications, the use of active robots has only been 
explored in the laboratory setting (37, 38). One possible explana-
tion is that the nature of fracture treatment is an individualized 
process that does not include many steps that an active robot can 
repetitively carry out.

In contrast to active robotic devices, passive or semi-active 
robots do not carry out a part of the intervention autono-
mously, but rather guide or assist the surgeon in positioning 
the surgical tools. At present, there are two representatives 
of this class, both for bone resection during total knee 
replacement. The Navio system (Blue Belt Technologies Inc., 
Pittsburgh, PA, USA) (39) is a hand-held semi-active robotic 
technology for bone shaping that allows a surgeon to move 
freely in order to resect bone as long as this motion stays 
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FiGURe 6 | Dynamic reference base. A dynamic reference base allows a 
navigation system to track the anatomical structure that the surgeon is 
operating on. In the case of spinal surgery, this DRB is usually attached to the 
processus spinosus with the help of a clamping mechanism. It is essential 
that it remains rigidly affixed during the entire usage of the navigation system 
on that vertebra.
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within a pre-operatively defined safety volume. The MAKO 
system (40) is a passive robotic-arm system providing oriental 
and tactile guidance. Both the Navio and the MAKO systems 
require additional tracking technology as described in the 
next sub-section. During the surgical procedure, the system 
is under the direct surgeon control and gives real-time tac-
tile feedback to the surgeon. Other semi-active robots, such 
as SpineAssist (Mazor Robotics Ltd., Israel) can be seen as 
intelligent gages that place, e.g., cutting jigs or drilling guides 
automatically (41, 42).

2.3.2. Trackers
The navigator of a surgical navigation system is a spatial posi-
tion tracking device. It determines the location and orientation 
of objects and provides these data as 3-D coordinates or 3-D 
rigid transformations. Although a number of tracking meth-
ods based on various physical media, e.g., acoustic, magnetic, 
optical, and mechanical methods, have been used in the early 
surgical navigation systems, most of today’s products rely upon 
optical tracking of objects using operating room (OR) compat-
ible infrared light that is either actively emitted or passively 
reflected from the tracked objects. To track surgical EEs with 
this technology then requires the tools to be adapted with refer-
ence bases holding either light emitting diodes (LED, active) 
or light reflecting spheres or plates (passive). Tracking patterns 
with known geometry by means of video images has been sug-
gested (43, 44) as an inexpensive alternative to an infrared-light 
optical tracker.

Optical tracking of surgical EEs requires a direct line of sight 
between the tracker and the observed objects. This can be a criti-
cal issue in the OR setting. The use of electromagnetic tracking 
systems have been proposed to overcome this problem. This 
technology involves a homogeneous magnetic field generator 
that is usually placed near to the surgical situs and the attachment 
of receiver coils to each of the instruments allowing measuring 
their position and orientation within the magnetic field. This 
technique senses positions even if objects such as the surgeon’s 
hand are in between the emitter coil and the tracked instrument. 
However, the homogeneity of the magnetic field can be easily 
disturbed by the presence of certain metallic objects causing 
measurement artifacts that may decrease the achievable accuracy 
considerably (45–47). Therefore, magnetic tracking has been 
employed only in very few commercial navigation systems and 
with limited success.

Recently inertial measurement unit (IMU)-based naviga-
tion devices have attracted more and more interests (48–51). 
These devices attempt to combine the accuracy of large-console 
CAOS systems with the familiarity of conventional alignment 
methods and have been successfully applied to applications, 
including TKA (48, 49), pedicle screw placement (50), and 
periacetabular osteotomy (PAO) surgery (51). With such 
devices, the line-of-sight issues in the optical surgical naviga-
tion systems can be completely eliminated. Technical limita-
tions of such devices include (a) relatively lower accuracy in 
comparison with optical tracking technique and (b) difficulty 
in measuring translations.

2.4. Referencing
Intra-operatively, it is unavoidable that there will be relative 
motions between the TO and the navigator due to surgical 
actions. Such motions need to be detected and compensated to 
secure surgical precision. For this purpose, the operated anatomy 
is linked to the navigator. For robotic surgery, this connection 
is established as a physical linkage. Large active robots, such as 
the early machines used for total joint replacement, come with a 
bone clamp that tightly grips the treated structure or involve an 
additional multi-link arm, while smaller active and semi-active 
devices are mounted directly onto the bone. For all other tracker 
types, bone motion is determined by the attachment of a DRB to 
the TO (52), which is designed to house infrared LEDs, reflecting 
markers, acoustic sensors, or electromagnetic coils, depending on 
the employed tracking technology. Figure 6 shows an example of 
a DRB for an active optical tracking system that is attached to the 
spinous process of a lumbar vertebra. Since the DRB is used as an 
indicator to inform the tracker precisely about movements of the 
operated bone, a stable fixation throughout the entire duration of 
the procedure is essential.
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3. CLiNiCAL FieLDS OF APPLiCATiON

Since the mid-1990s when first CAOS systems were success-
fully utilized for the insertion of pedicle screws at the lumbar 
and thoracic spine and total hip replacement procedures 
(3, 4), a large number of modules covering a wide range 
of traumatological and orthopedic applications have been 
developed, validated in the laboratory and in clinical trials. 
Some of them needed to be abandoned, because the antici-
pated benefit failed to be achieved or the technology proved 
to be unreliable or too complex to be used intra-operatively. 
Discussing all these applications would go beyond the focus 
of this article. Thus, here we focus on a review of the most 
important applications with the most original technological 
approaches.

While there was clearly one pioneering example of robot-
assisted orthopedic surgery  –  ROBODOC (5), the first spinal 
navigation systems were realized independently by several 
research groups, almost in parallel (3, 4, 52–56). These systems 
used pre-operative CT scans as the VO, relied upon paired-points 
and surface matching techniques for registration, and were based 
on optical or electromagnetic trackers. Their initial clinical suc-
cess (57–59) boosted the development of new CAOS systems and 
modules. While some groups tried to use the existing pedicle 
screw placement systems for other clinical applications, others 
aimed to apply the underlying technical principle to new clinical 
challenges by developing highly specialized navigation systems 
(60, 61). With the advent of alternative imaging methods for the 
generation of VOs, the indication for the use of one or the other 
method was evaluated more critically. For instance, it became 
evident that lumbar pedicle screw insertion in the standard 
degenerative case could be carried out with fluoroscopy-based 
navigation sufficiently accurate; thus, avoiding the need for a 
pre-operative CT.

A similar development took place for total knee replace-
ment. Initially, this procedure was supported by active (36, 62) 
and semi-active or passive (39, 40) robots, as well as navigation 
systems using pre-operative CTs (63) but with a few exceptions 
the SDA approach (64) is today’s method of choice.

Fluoroscopy-based navigation still seems to have a large 
potential to explore new fields of application. The technology has 
been mainly used in spinal surgery (65). Efforts to apply it to total 
hip replacement (66) and the treatment of long bone fractures 
(67) have been commercially less successful. The intra-operative 
3-D fluoroscopy or O-arm has been explored intensively (13–16). 
It is expected that with the advent of the flat panel technology, the 
use of fluoro-CT as a virtual object generator will significantly 
grow (16).

Recently, computer-assisted surgery using individual tem-
plates has gained increasing attention. Initially developed for 
pedicle screw fixation (32), such a technique has been successfully 
reintroduced to the market for total knee arthroplasty (33, 68, 69), 
hip resurfacing (34, 70), total hip arthroplasty (35), and pelvic 
tumor resection (71, 72) (See Figure 7 for an example). It should 
be noted that most of the individual templates are produced using 
additive manufacturing techniques, while most of the associated 
implants are produced conventionally.

4. FUTURe PeRSPeCTiveS

Despite its touted advantages, such as decreased radiation 
exposure to the patient and the surgical team for certain surgical 
procedures and increased accuracy in most situations, surgical 
navigation has yet to gain general acceptance among orthopedic 
surgeons. Although issues related to training, technical difficulty, 
and learning curve are commonly presumed to be major barri-
ers to the acceptance of surgical navigation, a recent study (73) 
suggested that surgeons did not select them as major weaknesses. 
It has been indicated that barriers to adoption of surgical naviga-
tion are neither due to a difficult learning curve nor to a lack of 
training opportunities. The barriers to adoption of navigation are 
more intrinsic to the technology itself, including intra-operative 
glitches, unreliable accuracy, frustration with intra-operative 
registration, and line-of-sight issues. These findings suggest that 
significant improvements in the technology will be required to 
improve the adoption rate of surgical navigation. Addressing 
these issues from the following perspectives may provide solu-
tions in the continuing effort to implement surgical navigation in 
everyday clinical practice.

 •  2-D or 3-D Image Stitching. Long bone fracture reduction and 
spinal deformity correction are two typical clinical applica-
tions that frequently use the C-arm in its operation. Such a 
surgery usually involves corrective maneuvers to improve the 
sagittal or coronal profile. However, intra-operative estimation 
of the amount of correction is difficult, especially in longer 
instrumentation. Mostly, anteroposterior (AP) and lateral 
(LAT) fluoroscopic images are used but have the disadvan-
tage to depict only a small portion of the target structure in a 
single C-arm image due to the limited field of view of a C-arm 
machine. As such, orthopedic surgeons nowadays are missing 
an effective tool to image the entire anatomical structure such 
as the spine or long bones during surgery for assessing the 
extent of correction. Although radiographs, obtained either by 
using a large field detector or by image stitching, can be used 
to image the entire structure, they are usually not available 
for intra-operative interventions. One alternative is to develop 
methods to stitch multiple intra-operatively acquired small 
fluoroscopic images to be able to display the entire structure 
at once (74, 75). Figure 8 shows an image stitching example 
for spinal intervention. The same idea can be extended to 
3-D imaging to create a panoramic cone beam computed 
tomography (76). At this moment, fast and easy-to-use 2-D 
or 3-D image stitching systems are still under development 
and as the technology evolves, surgical benefits and improved 
clinical outcomes are expected.

 •  Image Fusion. Fusion of multimodality pre-operative image 
such as various MRI or CT datasets with intra-operative 
images would allow for visualization of critical structures 
such as nerve roots or vascular structures during surgical 
navigation. Different imaging modalities provide comple-
mentary information regarding both anatomy and physiol-
ogy. The evidence supporting this complementarity has 
been gained over the last few years with increased interest 
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FiGURe 8 | image stitching for spinal interventions. Several small field-of-view C-arm images are stitched into one big image to depict the entire spine.

FiGURe 7 | Patient-specific instrumentation for pelvic tumor resection surgery. These images show the application of patient-specific instrumentation for 
pelvic tumor treatment. Implant and template manufactured by Mobelife NV, Leuven, Belgium. (A) A pre-operative X-ray radiograph; (B) the implant; (C) the 
patient-specific guide; and (D) a post-operative X-ray radiograph (Courtesy of Prof. Dr. K Siebenrock, Inselspital, University of Bern, Switzerland).
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in the development of platform hardware for multimodality 
imaging. Because multimodality images by definition contain 
information obtained using different imaging methods, 
they introduce new degrees of freedom, raising questions 
beyond those related to exploiting each single modality 
separately. Processing multimodality images is then all about 
enabling modalities to fully interact and inform each other. 
It is important to choose an analytical model that faithfully 
represents the link between the modalities without imposing 
phantom connections or suppressing existing ones. Hence, 

it is important to be as data driven as possible. In practice, 
this means making the fewest assumptions and using the 
simplest model, both within and across modalities. Example 
models include linear relationships between underlying latent 
variables, use of model-independent priors, such as sparsity, 
non-negativity, statistical independence, low-rank, and 
smoothness, or both. Such a principle has been successfully 
applied to solving challenging problems in a variety of appli-
cations (77, 78). Despite the evident potential benefit, the 
knowledge of how to actually exploit the additional diversity 
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FiGURe 9 | example of statistical shape model-based 2-D–3-D reconstruction. Reconstruction of bone surface from two calibrated fluoroscopic images and 
a statistical shape model using deformable registration.
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that multimodality images offer is currently at its preliminary 
stage and remains open for exploration.

 •  Statistical Shape Modeling. Statistical shape modeling has been 
shown to be useful for predicting 3-D anatomical shape and 
structures from sparse point sets that are acquired with the 
SDA technique. Such a technique is heavily employed in the 
so-called “image-free” navigation systems that are commer-
cially available in the market, mainly for knee and hip surgery. 
However, with the availability of statistical shape models of 
other anatomical regions, the technique could be applied to any 
part of the skeleton. Such approaches bear significant potential 
for future development of computer navigation technology 
since they are not at all bound to the classical pointer-based 
acquisition of bony features. In principle, the reconstruc-
tion algorithms can be tuned to any type of patient-specific 
input, such as e.g., intra-operatively acquired fluoroscopic 
images (79) or tracked ultrasound (30), thereby potentially 
enabling new minimally invasive procedures. Figure 9 shows 
an example of bone surface reconstruction from calibrated 
fluoroscopic images and a statistical shape model. Moreover, 
prediction from statistical shape models is possible not only 
for the geometric shape of an object. Given statistical shape 
and intensity models, “synthetic CT scans” could be predicted 
from intra-operatively recorded data after a time-consuming 
computation (80). With more and more computations shifted 
from CPUs to graphics processing units (GPUs), it is expected 
that a whole statistical shape modeling-based techniques will 
be used in more and more CAOS systems.

 •  Biomechanical Modeling. Numerical models of human ana-
tomical structures may help the surgeon during the planning, 
simulation, and intra-operative phases with the final goal to 
optimize the outcome of orthopedic surgical interventions. 
The terms “physical” or “biomechanical” are often used. 
While most of existing biomechanical models serve for the 
basic understanding of physical phenomena, only a few have 
been validated for the general prediction of consequences of 
surgical interventions.

  The situation for patient-specific models is even more 
complex. To be used in clinical practice, ideally the exact 
knowledge of the underlying geometrical tissue configuration 
and associated mechanical properties as well as the loading 
regime is required as input for appropriate mathematical 
frameworks. In addition, these models will not only be used 
pre-operatively, but need to function also in near real-time in 
the operating theater.

  First attempts have been made to incorporate biomechanical 
simulation and modeling into the surgical decision-making 
process for orthopedic interventions. For example, a large 
spectrum of medical devices exists for correcting deformities 
associated with spinal disorders. Driscoll et al. (81) developed 
a detailed volumetric finite element model of the spine to sim-
ulate surgical correction of spinal deformities and to assess, 
compare, and optimize spinal devices. Another example was 
presented in Ref. (82) where the authors showed that with 
biomechanical modeling the instrumentation configuration 
can be optimized based on clinical objectives. Murphy et al. 
(83) presented the development of a biomechanical guidance 
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system (BGS) for PAO. The BGS aims to provide not only real-
time feedback of the joint repositioning but also the simulated 
joint contact pressures.

  Another approach is the combined use of intra-operative 
sensing devices with simplified biomechanical models. 
Crottet et al. (84) introduced a device that intra-operatively 
measures knee joint forces and moments and evaluated its 
performance and surgical advantages on cadaveric specimens 
using a knee joint loading apparatus. Large variation among 
specimens reflected the difficulty of ligament release and the 
need for intra-operative force monitoring. A commercial 
version of such a device (e-LIBRA Dynamic Knee Balancing 
System – Synvasive Technology, El Dorado Hills, CA, USA) 
became available in recent years and is clinically used [see, e.g., 
Ref. (85)]. It is expected that incorporation of patient-specific 
biomechanical modeling into CAOS systems with or without 
the use of intra-operative sensing devices may eventually 
increase the quality of surgical outcomes. Research activities 
must focus on existing technology limitations and models of 
the musculoskeletal apparatus that are not only anatomically 
but also functionally correct and accurate.

 •  Musculoskeletal Imaging. Musculoskeletal imaging is defined 
as the imaging of bones, joints, and connected soft tissues with 
an extensive array of modalities, such as X-ray radiography, 
CT, ultrasonography, and MRI. For the past two decades, 
rapid but cumulative advances can be observed in this field, 
not only for improving diagnostic capabilities with the recent 
advancement on low-dose X-ray imaging, cartilage imaging, 
diffusion tensor imaging, MR arthrography, and high-
resolution ultrasound, but also for enabling image-guided 
interventions with the introduction of real-time MRI or CT 
fluoroscopy, molecular imaging with PET/CT, and optical 
imaging into OR (86).

  One recent advancement that has found a lot of clinical 
applications is the EOS 2-D/3-D image system (EOS Imaging, 
Paris, France), which was introduced to the market in 2007. 
The EOS 2-D/3-D imaging system (87) is based on the Nobel 
prize-winning work of French physicist Georges Charpak on 
multiwire proportional chamber, which is placed between 
the X-rays emerging from the radiographed object and the 
distal detectors. Each of the emerging X-rays generates a 
secondary flow of photons within the chamber, which in turn 
stimulate the distal detectors that give rise to the digital image. 
This electronic avalanche effect explains why a low dose of 
primary X-ray beam is sufficient to generate a high-quality 
2-D digital radiograph, making it possible to cover a field 
of view of 175 cm by 45 cm in a single acquisition of about 
20-s duration (88). With an orthogonally co-linked, vertically 
movable slot-scanning X-ray tube/detector pairs, EOS has 
the benefit that it can take a pair of calibrated posteroante-
rior (PA) and LAT images simultaneously (89). EOS allows 
the acquisition of images while the patient is in an upright, 
weight-bearing (standing, seated, or squatting) position, and 
can image the full length of the body, removing the need for 
digital stitching/manual joining of multiple images (90). The 
quality and nature of the image generated by EOS system is 

comparable or even better than computed radiography (CR) 
and digital radiography (DR) but with much lower radiation 
dosage (89). It was reported by Illés et al. (89) that absorbed 
radiation dose by various organs during a full-body EOS 
2-D/3-D examination required to perform a surface 3-D 
reconstruction was 800–1000 times less than the amount of 
radiation during a typical CT scan required for a volumetric 
3-D reconstruction. When compared with conventional or 
digitalized radiographs (91), EOS system allows a reduction 
of the X-ray dose of an order 80–90%. The unique feature of 
simultaneously capturing a pair of calibrated PA and LAT 
images of the patient allows a full 3-D reconstruction of the 
subject’s skeleton (89, 92, 93). This in turn provides over 100 
clinical parameters for pre- and post-operative surgical plan-
ning (89). With a phantom study, Glaser et al. (94) assessed 
the accuracy of EOS 3-D reconstruction by comparing it with 
3-D CT. They reported a mean shape reconstruction accuracy 
of 1.1 ± 0.2 mm (maximum 4.7 mm) with 95% confidence 
interval of 1.7 mm. They also found that there was no signifi-
cant difference in each of their analyzed parameters (p > 0.05) 
when the phantom was placed in different orientations in the 
EOS machine. The reconstruction of 3-D bone models allows 
analysis of subject-specific morphology in a weight-bearing 
situation for different applications to a level of accuracy that 
was not previously possible. For example, Lazennec et al. (95) 
used the EOS system to measure pelvis and acetabular com-
ponent orientations in sitting and standing positions. Further 
applications of EOS system in planning total hip arthroplasty 
include accurate evaluation of femoral offset (96) and rota-
tional alignment (97). The low dose and biplanar information 
of the EOS 2-D/3-D imaging system introduce key benefits in 
contemporary radiology and opens numerous and important 
perspectives in CAOS research.

5. CONCLUSiON

About two decades have passed since the first robot and naviga-
tion systems for CAOS were introduced. Today, this technology 
has emerged from the laboratory and is being routinely used in 
the operating theater and might be about to become state-of-the-
art for certain orthopedic procedures.

Still we are at the beginning of a rapid process of evolution. 
Existing techniques are being systematically optimized and new 
techniques will constantly be integrated into existing systems. 
Hybrid CAOS systems are under development, which will allow 
the surgeon to use any combinations of the above-described 
concepts to establish virtual object information. New genera-
tions of mobile imaging systems, inherently registered will soon 
be available. However, research focus should particularly be on 
alternative tracking technologies, which remove drawbacks of the 
currently available optical tracking and magnetic devices. This in 
turn will stimulate the development of less or even non-invasive 
registration methods and referencing tools. Force sensing devices 
and real-time computational models may allow establishing a new 
generation of CAOS systems by going beyond pure kinematic 
control of the surgical actions. For key-hole procedures, there 
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is distinct need for smart EEs to complement the surgeon in its 
ability to perform a surgical action.

All these new techniques and devices need to be carefully 
evaluated first in the laboratory setting and then clinically. 
However, it may be hypothesized that the ultimate acceptance 
of robotic or navigated orthopedic surgery will be contributed to 
the proof of better long-term outcome of the respective interven-
tion. Furthermore, this will serve as a basis for reimbursement, 
a prerequisite for successful market penetration. Consequently, 
more prospective and retrospective studies comparing the 

outcome of CAOS vs. non-CAOS procedures with long follow-
up time such as the one reported in Ref. (98) will have to be 
conducted.
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