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Glioblastoma (GBM) is the most devastating brain tumor, with associated poor prognosis. 
Despite advances in surgery and chemoradiation, the survival of afflicted patients has not 
improved significantly in the past three decades. Immunotherapy has been heralded as 
a promising approach in treatment of various cancers; however, the immune privileged 
environment of the brain usually curbs the optimal expected response in central nervous 
system malignancies. In addition, GBM cells create an immunosuppressive microen-
vironment and employ various methods to escape immune surveillance. The purpose 
of this review is to highlight the strategies by which GBM cells evade the host immune 
system. Further understanding of these strategies and the biology of this tumor will pave 
the way for developing novel immunotherapeutic approaches for treatment of GBM.
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inTRODUCTiOn

One of the challenges scientists face in the treatment of glioblastoma (GBM) is suboptimal responses 
to immunotherapy (1, 2). GBM is the most common adult brain tumor and patients usually succumb 
to the disease in <2 years. Despite significant improvement in chemo- and radiotherapy approaches 
for treatment of GBM, the median survival of one and a half years has not seen a significant change 
in the past few years (3, 4). Stagnation in the treatment of GBM is attributable to different challenges 
in therapy and our poor understating of both tumor biology and interactions with its microenviron-
ment. Due to infiltrative growth, local microscopic metastases, and sometimes presence of multiple 
lesions at the time of diagnosis (5), complete surgical excision of the tumor is practically impossible 
and there is a strong need for new and effective therapies. With the introduction of immunotherapy 
as a novel and promising approach to cancer treatment, new hopes are raised for the management 
of brain tumors. However, as far as GBM is concerned, immunotherapeutic strategies so far have 
not been able to prompt a great change in survival. This article aims to review the mechanisms 
employed by GBM cells to suppress and evade the body’s immune responses. The collection of differ-
ent molecules and mechanisms discussed in this review are summarized in Table 1 and a schematic 
representation of the GBM tumor cell interaction with the surrounding immune environment can 
be found in Figure 1.

CenTRAL neRvOUS SYSTeM AnD THe iMMUne SYSTeM

The central nervous system (CNS), and more specifically the brain, has been historically presumed as 
the “immune privileged” organ of the body due to an intact blood–brain barrier (BBB). Absence of a 
usual lymphatic system and paucity of antigen-presenting cells (APCs) in brain tissue have also fueled 
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TABLe 1 | Summary of mechanisms employed by GBM to evade the immune system.

Categorya Molecule/
mechanism

Major source effect Reference

Central nervous 
system

Blood–brain barrier CNS anatomy Prevents entry of immune cells (6, 7)
Glymphatic system CNS anatomy Carries immune cells and macromolecules (8, 9)
FasL/CD95L Astrocytes Induces T-cell apoptosis (10, 11)

Microenvironment IL-6 Microglia/TAMs Suppresses immune effector cells (12–14)
IL-10 Microglia/TAMs Enhances tumor growth, inhibits production of IFN-γ and TNF-α, down-regulates 

expression of MHC class II in monocytes, induces anergy in infiltrating T-cells
(15–20)

TGF-β Microglia/TAMs Blocks T-cell activation and proliferation, inhibits IL-2 production, suppresses 
natural killer cell activity, promotes Treg activity, promotes tumor growth and 
invasion

(21–24)

PGE2 Microglia/TAMs Transforms DCs into regulatory phenotype (25–29)
IL-1 Microglia/TAMs Promote tumorigenesis (12–14)
bFGF Microglia/TAMs Promote tumorigenesis (12–14)
CD70 GBM cells Mediates T-cell apoptosis through interaction with CD27 (30, 31)
Gangliosides GBM cells Induces T-cell apoptosis (30, 31)
FasL Microglia/TAMs Induces cytotoxic T-cell compromise and apoptosis (32, 33)
Hypoxia Inappropriate 

vascularization/
excessive oxygen 
consumption by GBM 
cells

Activation of Tregs through STAT3 (34–36)

Immune 
checkpoints

PD-L1 GBM cells, microglia/
TAMs

Suppresses cytotoxic T-cell proliferation and function and activated Tregs by 
binding to PD-1

(37–43)

CTLA-4 GBM cells Modulates T-cell activation (44, 45)
Regulatory T-cells CCL22 GBM cells Attracts Tregs to the tumor site by binding to CCR4 (46–48)

CCL2 GBM cells Attracts Tregs to the tumor site by weakly binding to CCR4 (46–48)

Tumor-associated 
macrophages

CSF-1 Microglia/TAMs Polarizes TAMs toward M2 phenotype (36, 49, 50)
TGF-β1 Microglia/TAMs Polarizes TAMs toward M2 phenotype (36)
MIC-1 Microglia/TAMs Polarizes TAMs toward M2 phenotype (36)
IL-10 Microglia/TAMs Polarizes TAMs toward M2 phenotype (36)
S100B GBM cells Inhibits production of pro-inflammatory cytokines by TAMs through STAT3 pathway (51)
EGF Microglia/TAMs Promotes tumor invasion and migration (49, 52, 53)
IL-6 Microglia/TAMs Promotes tumor invasion and migration (54)
Metalloproteinases Microglia/TAMs Promotes tumor invasion and migration (55)
VEGF Microglia/TAMs Promotes tumor growth and vascularity (56–58)

Human 
cytomegalovirus

cmvIL-10 Infected GBM cells Impairs mononuclear cell proliferation, inhibits DC maturation and antigen 
presentation, suppresses inflammatory cytokine production, promotes TGF-β 
production, down-regulates MHC expression, prompts monocytes differentiation 
into M2 macrophages, upregulates PD-L1 on tumor cells

(59–63)

aThe section on antigen presentation is not given a separate category as the respective pieces of information are represented in other sections of the table.
CNS, central nervous system; IL, interleukin; IFN-γ, interferon-gamma; TNF-α, tumor necrosis factor-alpha; TGF-β, transforming growth factor beta; PGE2, prostaglandin E2; bFGF, 
basic fibroblast growth factor; DCs, dendritic cells; TAMs, tumor-associated macrophages; Tregs, regulatory T-cells; STAT3, signal transducer and activator of transcription 3; PD-L1, 
programed cell death ligand-a; PD-1, programed cell death protein-1; CTLA-4, cytotoxic T-lymphocyte antigen 4; CCL, CC chemokine ligand; CCR4, CC chemokine receptor 4; 
CSF-1, colony-stimulating factor-1; MIC-1, macrophage inhibitory cytokine-1; EGF, endothelial growth factor; VEGF, vascular endothelial growth factor.
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this notion (6, 7). This assumption has been questioned in light 
of recent discoveries. The CNS possesses a functional “glymphatic 
system” located within the walls of dural sinuses and connected to 
the deep cervical lymph nodes capable of carrying immune cells 
and macromolecules (6, 8, 9). Immune cells can migrate into the 
brain parenchyma by chemotaxis, in which interferon-gamma 
(IFN-γ) and integrins play a major role (64, 65). Antigens can 
pass through walls of cerebral arteries and enter cervical lymph 
nodes through the Virchow–Robin perivascular spaces (66). By 
attaching to FcRn, a receptor found on a variety of body tissues, 
immunoglobulins are also able to cross the BBB via carrier-
mediated transport (67, 68). APCs are present in many areas of 
the brain, including leptomeninges, ventricles, and perivascular 

spaces (69, 70). Via the rostral migratory stream, dendritic cells 
(DCs) can travel outside the brain and present antigens to T-cells 
located in the cervical lymph nodes (71). Peripheral immune cells 
can migrate to the CNS perivascular spaces but not into the brain 
parenchyma, thanks to the BBB. Tight junctions between foot 
processes of astrocytes form the physical BBB between perivas-
cular spaces and parenchyma, while FasL/CD95L, expressed on 
these processes, induces apoptosis of T-cells that express the Fas 
receptor (10, 11). In disease states however, the integrity of the 
barrier is compromised, enabling immune cells to migrate past 
the BBB (72). During clinical trials for DC vaccines in patients 
with brain tumors, tumor-infiltrating lymphocytes have been 
observed in GBM samples (73, 74).
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FiGURe 1 | Schematic representation of the GBM tumor cell interaction with surrounding immune environment. Tumor-associated macrophages (TAMs) 
and microglia release immunosuppressive and pro-tumorigenic cytokines into the GBM microenvironment. They also induce cytotoxic T-cell (CTL) apoptosis via 
PD-L1, CTLA-4, and FasL. GBM cells, through interaction of S100B protein with receptor for advanced glycation end products (RAGE), inhibit production of 
immunostimulatory cytokines by TAMs and microglia. CMV-infected GBM cells secrete cmvIL-10 into their microenvironment with a range of immunosuppressive 
properties. Through interaction of CC chemokine ligand 22 (CCL22) and the weaker CC chemokine ligand 2 (CCL2) with CC chemokine receptor 4 (CCR4), GBM 
cells attract regulatory T-cells (Tregs) to the tumor site. Interaction of PD-L1 on GBM cells with PD-1 on Tregs promotes immunoregulatory functions of these cells. 
Immunosuppressive signals (black) could be distinguished from tumorigenic signals (blue) and signals that are both immunosuppressive and tumorigenic (purple).
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MiCROenviROnMenT

Functional immunosuppression in the GBM microenvironment 
is characterized by production of immunosuppressive cytokines, 
inhibition of T-cell proliferation and effector responses, activa-
tion of FoxP3+ regulatory T-cells (Tregs), and tissue hypoxia. 
Immunosuppressive cytokines, including interleukin (IL)-6, 
IL-10, transforming growth factor-beta (TGF-β), and prosta-
glandin E2 (PGE2), as well as tumor-promoting cytokines, IL-1, 
and basic fibroblast growth factor (bFGF), are present in the 
GBM microenvironment and dampen the antitumor immune 
response (12–14). TGF-β promotes immunosuppression in GBM 
by blocking T-cell activation and proliferation, inhibiting IL-2 
production, suppressing natural killer cell activity, and promot-
ing Tregs (21). In addition, TGF-β has been shown to promote 
tumor growth and invasion by supporting GBM stem cells and 
enhancing angiogenesis (22–24).

Generally known as an immunosuppressive cytokine, IL-10 is 
found at high levels in a variety of neoplasms (15, 16). This cytokine 
is secreted by various immune cells (mainly macrophages, but 
also helper and cytotoxic T-cells, DCs, B-cells, monocytes, and 

mast cells) as well as GBM cells (16, 17). IL-10 associated with 
GBM is shown to enhance tumor growth (18), inhibit produc-
tion of IFN-γ and tumor necrosis factor-alpha (TNF-α) by the 
immune system, downregulate expression of MHC class II in 
monocytes, and, via the co-stimulatory CD28-CD80/86 pathway, 
induce anergy in infiltrating T-cells (19, 20).

PGE2 is known to promote regulatory immune response in 
cancers and stimulate tumor cell growth (25). Together with 
TGF-β, it transforms DCs into a regulatory phenotype that sup-
presses T-cell proliferation (26, 27). In the GBM microenviron-
ment, however, the concentration of PGE2 is not found to be high 
enough to suppress T-cell functions on its own (28, 29).

The GBM microenvironment also mediates immunosuppres-
sion via mechanisms that increase T-cell propensity to apoptosis 
through a cooperative interaction between CD70 and ganglio-
sides (30, 31). CD70, through interaction with CD27, a member 
of TNF receptor family proteins, mediates apoptosis in T-cells. 
Inhibition of gangliosides, components of the plasma membrane 
that modulate signal transduction events, causes GBM cells to 
be significantly less efficient at inducing T-cell apoptosis. It has 
been shown that blocking both CD70 and ganglioside function 

http://www.frontiersin.org/Surgery/archive
http://www.frontiersin.org/Surgery/
http://www.frontiersin.org


March 2016 | Volume 3 | Article 114

Razavi et al. Immune Evasion Strategies of Glioblastoma

Frontiers in Surgery | www.frontiersin.org

produces an additive effect on provoking T-cell apoptosis (31). 
Programed cell death protein-1 ligand (PD-L1, B7-H1, or CD274), 
a potent immunosuppressive molecule, is expressed on microglia. 
The expression of PD-L1 on microglial cells is increased when in 
proximity to GBM cells that can induce T-cell apoptosis (37–39). 
The role of PD-L1 as an immune checkpoint is discussed further 
in the respective section. Another immunoinhibitory molecule 
expressed on tumor-associated microglia is FasL, which can 
induce cytotoxic T-cell compromise and apoptosis. Inhibition of 
FasL has resulted in an increased number of immune cells within 
the tumor (32, 33).

Lack of oxygen in the GBM microenvironment is the result 
of morphologically inappropriate neovascularization, irregular 
blood flow, and excessive consumption of oxygen from rapidly 
proliferating tumor cells. Hypoxia is a strong stimulus for expres-
sion of genes involved in tumor cell growth and angiogenesis (34). 
Specifically, the hypoxic GBM microenvironment activates signal 
transducer and activator of transcription 3 (STAT3), an immuno-
suppressive pathway and potent regulator of anti-inflammatory 
responses, which triggers the synthesis of hypoxia-inducible 
factor-1α (HIF-1α) that subsequently induces activation of Tregs 
and production of vascular endothelial growth factor (VEGF) 
(34). Tregs are modulators of the immune response, and VEGF 
is known for its immunosuppressive effects. Additionally, the 
hypoxic microenvironment triggers CNS macrophages to trans-
form into tumor-associated macrophages (TAMs), which then 
adopt immunosuppressive and tumor-supportive phenotypes 
(M2). This transformation, via the STAT3 pathway, induces 
TAMs to promote angiogenesis and tumor cell invasion (35). 
Additionally, it has been shown that TAMs are modulated by GBM 
cancer stem cells (gCSCs) through induction of an immunosup-
pressive phenotype via the STAT3 pathway (36). Furthermore, 
since HIF-1α promotes gCSCs, hypoxia likely causes a feed-
forward mechanism in tumor-mediated immunosuppression.

AnTiGen PReSenTATiOn

Despite tremendous research, the mechanisms involved in 
developing tumor-sensitized immune effector cells are not well 
understood. Antigens from dead tumor cells are collected and 
processed by APCs and “cross-presented” on MHC class I to 
cytotoxic T-cells (75). Whether this antigen presentation for 
GBM occurs mainly in the brain or in the periphery is a subject of 
ongoing research (76). Microglia are the major myeloid immuno-
competent cells of the brain, and scientists have elaborated their 
ability to present antigens to cytotoxic T-cells within the CNS 
(77, 78). However, the immunosuppressive microenvironment 
of GBM down-regulates MHC expression and compromises the 
antigen-presenting ability of microglia (79–83). GBM cells also 
stimulate secretion of IL-10 and inhibit production of TNF-α 
by microglia, further promoting suppression of the immune 
response (84). In fact, studies suggest that tumor-infiltrating 
DCs have a bigger part in GBM antigen presentation. In a 2008 
study, Beauvillain et  al. discovered that tumor-infiltrating DCs 
were more efficient than neonatal microglia in priming cytotoxic 
T-cells with exogenous antigens and could trigger higher levels 
of IL-2 and IFN-γ secretion by these cells (85). Presence of 

tumor-infiltrating DCs in the brain alongside microglia would 
prompt a better immune response in the CNS (77). Both glioma-
associated antigen-pulsed and tumor-lysate-pulsed DCs have 
been successful in eliciting T-cell response in GBM patients 
(73, 74, 86). Wilms’ tumor 1 (WT1)-pulsed DC vaccine could 
improve neurological findings and shrink the tumor in a recent 
study (87). Nonetheless, tumor microenvironments would also 
blunt the action of tumor-infiltrating DCs and further investiga-
tion is needed to optimize this therapeutic technique (14, 20).

Macrophages are the major population of immune cells infil-
trating solid tumors and GBM (88, 89). These cells are involved 
in antigen presentation, immune induction, cytotoxicity, removal 
of debris, regulation of inflammatory response, and thrombosis. 
Macrophages derived from monocyte precursors polarize into 
two distinct categories based on signals from the environment: 
M1, with a pro-inflammatory cytokine profile, and M2, with 
overall anti-inflammatory properties. Exposure to IFN-γ or bac-
terial lipopolysaccharide polarizes monocytes toward M1 mac-
rophages. An alternate activation process happens by exposure 
to IL-4, resulting in the M2 category (90, 91). TAMs are believed 
to be of the latter population as they share many functions and 
surface proteins with M2 macrophages. While TAMs are known 
to be capable of cross-presenting tumor antigens to T-cells and 
prime antitumor immune response (92) due to limitations in 
histologic differentiation of TAMs from microglia, there is no 
definite answer to their importance in tumor antigen presenta-
tion in the brain (93, 94).

While mainly involved in humoral immune response, B-cells 
can also act as APCs and directly present antigens to T-cells via 
both MHC class I and II (95–97). Interaction of GBM cells with 
tumor-infiltrating B-cells has not been thoroughly investigated. 
Candolfi et  al. studied the role of B-cells in a GBM murine 
model. After treatment of mice with intratumoral adenovector 
and immunostimulatory cytokines, B-cells were found to have 
remnants of tumor antigens in their cytoplasm and the ability to 
stimulate T-cell proliferation in vitro (98).

Tumor antigen presentation can also occur in peripheral 
lymph nodes. Activated T-cells have been found in the cervical 
lymph nodes of murine GBM models (99). Evidence exists that 
CNS antigens can move out of the CNS through perivascular 
spaces and be collected by resident DCs in cervical lymph nodes 
(100). Immunosuppressive cytokines secreted by GBM cells do 
not have a high enough systemic concentration to justify impair-
ment of peripheral immune cell functions (101, 102). Engineered 
CTLs targeting IL-13 receptor 2 have shown promise in GBM 
in  vivo models (103). Regardless of the underlying cause, viti-
ated cell-mediated immunity in GBM patients can compromise 
antigen presentation and T-cell activation even in the peripheral 
lymphatic tissue, adding to the challenges of immunotherapeutic 
efforts.

iMMUne CHeCKPOinTS

Immune checkpoint molecules, a group of co-stimulatory and 
co-inhibitory pathways that limit the function of immune system, 
have recently been targets for extensive research. By inhibi-
tion of immune checkpoints, researchers were able to reverse 
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immunoresistance of cancer cells and activate the immune cells 
against tumors (104).

A major immune checkpoint molecule implicated in GBM 
immune evasion is PD-L1. Modulated by the PI(3)K–Akt–mTOR 
pathway (38), PD-L1 suppresses proliferation and function of 
cytotoxic T-cells and promotes Tregs activity by binding to pro-
gramed cell death-1 (PD-1) (40). Expression of PD-L1 on tumor 
cells and T-cells is correlated with tumor grade (41) and poor sur-
vival of GBM patients (42). Microglia and TAMs are also known 
to express PD-L1 on their surface and at the same time promote 
PD-L1 expression on GBM cells (37, 43, 105). Collectively, these 
findings have made this immune checkpoint a prime target for 
GBM immunotherapy. Pre-clinical studies have been promising 
(106, 107) with plans for clinical trials on GBM patients currently 
under way.

Another immune checkpoint molecule, cytotoxic 
T-lymphocyte antigen 4 (CTLA-4) expressed on activated T-cells 
and Tregs could play a role in GBM immune evasion. Targeting 
CTLA-4 in GBM models might be able to enhance antitumor 
activity by T-cells (44, 45). Immune checkpoint inhibitors as 
targeted cancer therapeutics have shown promise in recent years 
with researchers trying to find new checkpoints as immunothera-
peutic targets.

ReGULATORY T-CeLLS

Tregs, a small population of CD4+ T-cells that specifically express 
FoxP3 transcription factor, are a group of circulating lympho-
cytes with suppressive effects on various immune cells (108, 109). 
Other markers that help distinguish Treg subpopulations are 
CD25 (high-affinity IL-2 receptor), CTLA-4, and glucocorticoid-
induced tumor necrosis factor receptor (110). Tregs can be 
divided into two major subpopulations based on their origin. 
Thymus-derived Tregs, developed from naïve CD4+ cells after 
antigen presentation in the thymus, express high levels of FoxP3. 
By contrast, under IL-10 and TGF-β signaling in the periphery, 
conventional CD4+ T-cells differentiate into peripherally 
induced Tregs with negligible FoxP3 expression (109). Tregs are 
commonly known to regulate immune response against tumor 
cells and to shift the tumor cytokine milieu toward immunosup-
pression. The presence of Tregs in GBM patients was described 
years ago (111), but their intricate function and interaction 
with other cells is a matter of ongoing investigation. A higher 
population of Tregs is demonstrated in GBM patients, reported to 
comprise up to 25% of tumor-infiltrating lymphocytes, and their 
abundance is associated with poor prognosis (112–114). Studies 
have revealed that glioma-associated Tregs are mostly of thymic 
origin rather than tumor-derived (115), suggesting that the abun-
dance of Tregs in GBM is a result of chemotactic attraction of the 
thymus-derived subpopulation rather than local differentiation 
in the tumor (116). The CC chemokine ligand 22 (CCL22) and 
the weaker CC chemokine ligand 2 (CCL2) are among the first 
molecules revealed to attract Tregs to the tumor site by binding 
to CC chemokine receptor 4 (CCR4) (46, 47). Further studies 
revealed that blocking this receptor cannot completely abrogate 
Treg infiltration into GBM tumor mass, suggesting involvement 
of other secretory molecules in Treg chemoattraction (48). 

Peripherally derived Tregs are not believed to be the major 
population of Tregs in GBM, but presence of IL-10 and TGF-β at 
high levels in the GBM microenvironment suggests the possibly 
noticeable role of these cells in immune evasion of the tumor (14, 
109). Further studies are needed to reveal the holistic picture of 
Tregs recruitment mechanisms into GBM.

TUMOR-ASSOCiATeD MACROPHAGeS

Involvement of macrophages in GBM progression is a question 
to be further investigated. Recent studies provide significant 
evidence in contextual response of macrophages in tumor 
progression, highly modulated by the tumor microenvironment 
and tumor response to conventional treatments. Distinguishing 
TAMs from microglia in the brain is still a challenge for research-
ers. While TAMs are found to have a high expression of CD11b 
and CD45 compared to microglia, which have high expression of 
CD11b but low expression of CD45, there is still disagreement 
over a universally accepted histological marker that distinguishes 
the two cell types (117, 118).

Tumor-associated macrophages are usually linked to acceler-
ated disease progression and poor outcome in cancer patients 
(119–121). Recently, several approaches have been investigated to 
abrogate tumor progression through ablating TAMs. Modulating 
the routes involved in macrophage polarization has provided 
insight into the regulatory effect of these cells in the GBM micro-
environment (122).

Innate immunosuppressive properties of gliomas are derived 
from the regulatory cross-talk between M2 phenotype mac-
rophages and tumor cells (93). Macrophages and microglia as 
dominant populations of tumor-infiltrating immune cells are, to 
a great extent, regulated by glioma initiating cells. Upon chemoat-
traction into the tumor environment (47, 49, 123, 124) with a 
high concentration of colony-stimulating factor-1 (CSF-1), TGF-
β1, macrophage inhibitory cytokine-1 (MIC-1), and IL-10, TAMs 
are polarized toward the M2 phenotype, subsequently inhibiting 
their phagocytic ability and enhancing their capacity to inhibit 
cytotoxic T-cell proliferation and increase the effect of Tregs (36). 
Inhibiting the CSF-1 receptor can shift the polarization of TAMs 
away from M2, hinder their tumor-promoting functions, and 
increase survival of the GBM-bearing mice (50). Another protein 
recently found on GBM cells to induce innate immune suppres-
sion is S100B. Through interaction of S100B with receptor for 
advanced glycation end products (RAGE) on macrophages, GBM 
cells induce the STAT3 pathway in TAMs and inhibit the produc-
tion of IL-1β, TNF-α, and other pro-inflammatory cytokines by 
these cells (51).

Tumor-associated macrophages and microglia can also play 
a role in GBM growth, invasion, and angiogenesis. Endothelial 
growth factor (EGF), CSF-1, TGF-β1, IL-6, and metalloprotein-
ases originating from TAMs and microglia are instrumental for 
glioma invasion and migration (49, 52, 54, 55, 125). Inhibition 
of the EGF receptor (EGFR) on GBM cells has been associated 
with antiangiogenic and proapoptotic effects on the tumor (53). 
Inhibition of VEGF signaling in TAMs and microglia leads to 
decreased GBM growth and vascularity (56), but addition of 
anti-VEGF-A antibody to standard treatment has not improved 
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patient survival (57, 58). Other populations of cells from myeloid 
lineage have been found in gliomas, including tumor-associated 
neutrophils, angiogenic monocytes, and immunosuppressive 
myelomonocytic cells, the importance of which is yet to be 
elucidated (126).

HUMAn CYTOMeGALOviRUS inFeCTiOn

Human cytomegalovirus (HCMV) is a β-herpesvirus implicated 
in GBM pathogenesis. Different studies have found HCMV 
genome in most tested GBM samples with no trace of the virus 
in surrounding brain tissue (59, 60). The role of HCMV in GBM 
development and pathogenesis is not yet clarified. What is clear 
though is that HCMV infection could play a role in immunosup-
pression in the context of GBM microenvironment.

Human cytomegalovirus genome encodes an IL-10 homolog 
(cmvIL-10)  –  a product of UL111A gene  –  that could impair 
mononuclear cell proliferation, inhibit DC maturation and 
antigen presentation, suppress inflammatory cytokine produc-
tion, and down-regulate MHC expression (61, 62). Moreover, 
it has been demonstrated that cmvIL-10 prompts monocytes 
to differentiate into M2 macrophages and up-regulates the 
immunoinhibitory PD-L1 protein on GBM cells. Additionally, 

monocytes treated with cmvIL-10 produce TGF-β, augmenting 
the immunosuppressive microenvironment (63).

SUMMARY AnD FUTURe PROSPeCTS

The interaction of GBM with the immune system is intricate 
at every level. Any of the various mechanisms employed by 
this tumor to evade and suppress the immune response could 
be targeted with immunotherapy. To date, trials of immuno-
therapeutic modalities for GBM have not been as successful as 
promised. As different mechanisms of GBM immune resistance 
are revealed, scientists could have a better understanding of the 
pitfalls in GBM immunotherapy. GBM strategies for immune 
evasion are diverse and the key to successful immunotherapeu-
tic treatment seems to be in targeting several pathways at the 
same time.
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