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The ability of mesenchymal stem cells (MSCs) to transdifferentiate into a desired cell lin-
eage has captured the imagination of scientists and clinicians alike. The limited ability for 
chondrocytes to regenerate in chondral injuries has raised the concept of using MSCs 
to help regenerate and repair damaged tissue. The expansion of cells in a laboratory 
setting to be delivered back to the patient is too costly for clinical use in the present 
tough economic climate. This process is slow with due to the complexity of trying to 
imitate the natural environment and biological stimulation of chondral cell replication and 
proliferation. Bone marrow aspirate concentrate (BMAC) has the potential to provide 
an easily accessible and readily available source of MSCs with key growth factors that 
can be used in treating chondral injuries. This review summarizes the underlying basic 
science of MSCs and the therapeutic potential of BMAC.
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inTRODUCTiOn

The development of techniques to harvest and amplify specific cell lines using mesenchymal stem 
cells (MSCs) has generated huge interest in trauma and orthopedic surgery due to its potential for 
tissue repair and regeneration (1).

Historically, chondral defects in the young patient have been treated with microfracture and 
mosaicplasty. The resulting fibrocartilage production, rich in type I collagen is structurally inferior 
to the hyaline cartilage in joints but may delay the onset of osteoarthritis (2). We have state-of-the-art 
arthroplasty options to those patients who develop end-stage osteoarthritis. However, there is a clear 
demand for regenerative techniques to slow or even reverse this disease process.

Stem cells have been of interest to the reconstructive surgeon, as they have the potential for differ-
entiation into the cell lineage of interest (3). Embryonic stem cells are perhaps the holy grail of stem 
cells, as they are totipotent and have the potential to differentiate into any cell lineage (3). However, 
there are considerable ethical issues and considerations, as they require harvest from embryonic 
tissue. Adult stem cells show some level of differentiation and develop into cells that support the 
tissue of origin, which is the logical sequence as these stem cells can help repair and regenerate tissues 
in their vicinity (3). These cells can be stimulated to irreversibly change their cell lineage in a process 
termed transdifferentiation, where cells transform into a different cell type (3, 4). Bone marrow 
aspirate (BMA) with its relative ease of harvest provides a less controversial source of MSCs with the 
required properties for use in regenerative orthopedics. Our aim is to review this literature regarding 
the basic science of bone marrow-derived stem cells and the therapeutic potential of bone marrow 
aspirate concentrate (BMAC) in the regeneration and repair of chondral injuries.

ARTiCULAR CARTiLAGe

Articular (hyaline) cartilage is designed to allow low-friction articulation and to resist repetitive 
loading of the joint. It consists of extracellular matrix with water, collagen, and proteoglycans 
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surrounded by chondrocytes (5). It has a unique structure with 
differing orientation of fibers that alter the physical properties. 
The superficial horizontal fibers help to resist shear forces, while 
the deeper vertically orientated fibers resist compressive forces 
through the joint (5, 6).

Hyaline cartilage has very little regenerative capacity in part to 
the avascular nature of the hyaline cartilage and that it relies on 
diffusion from synovial fluid for nutrition (7). In partial-thickness 
injuries, the avascular nature of the cartilage prevents the repair 
and healing process (7). Thus, even small cartilage lesions can 
remain, accelerate wear due to increased point loading and propa-
gate. In full-thickness injuries, there is stimulation of blood flow 
from the underlying subchondral bone allowing the formation of 
fibrocartilage at the injury site (7, 8). The fibrocartilage may slow 
degeneration but as the biomechanical properties are inferior to 
hyaline cartilage it may still lead to established osteoarthritis and 
joint degeneration (9).

TRADiTiOnAL TReATMenT STRATeGieS

Treatment strategies are frequently age dependent. As we age 
the population of MSCs decreases and hence reduces the repair 
and healing potential of the elderly (10). This combined with 
the already limited regenerative capacity of chondrocytes means 
that elderly patients are most frequently treated conservatively 
with the aim of relieving symptoms with the use of analgesics 
and physiotherapy-guided exercise programs. This can buy 
time until the requirement of joint replacement surgery. In 
the younger active population, cartilage damage is primarily 
treated surgically. Techniques, such as microfracture, aim to 
stimulate local blood flow by penetrating subchondral bone 
to allow MSCs to exit and access the focal chondral defect 
to aid healing (11). Mosaicplasty is the autologous harvest of 
an osteochondral graft from a non-weight bearing area and 
transfer to the primary defect (12). This ultimately produces 
a mixture of hyaline and fibrocartilage (13). The fibrocartilage 
is biomechanically inferior to the native hyaline cartilage (2). 
Hence, there is a demand for a more physiological repair process 
to enable patients to avoid the degenerative sequelae associated 
with chondral damage.

Autologous chondrocyte implantation (ACI) was initially 
thought to be very promising, using chondrocytes from non-
weight bearing areas of the joint, expanding them in culture, and 
delivering them back to the area of damage. However, it comes 
at the financial cost of cell expansion and requiring a two-stage 
procedure alongside the donor site morbidity and the production 
of hyaline-like cartilage (14). This process has not shown clear 
benefit when compared with either microfracture or mosaic-
plasty in the short term, with Lim et al. finding no difference at 
1 year (15). A Cochrane review in 2010 by Vasiliadis and Wasiak 
reviewed six small randomized control trials that compared 
ACI with either mosaicplasty or microfracture (16). The study 
found no conclusive evidence ACI was superior to mosaicplasty 
or microfracture (16). A 2012 systematic review of 14 articles 
by Rodriguez-Merchan also found no difference between ACI, 
microfracture, and mosaicplasty (17). However, contrary to the 
earlier reviews, Bentley et al. have shown that ACI was superior to 

mosaicplasty with reduced failure rates and better outcomes long 
term (>10 years) (18). This work has been supported by Biant 
et al. in 2014 reporting favorable results of ACI for large chronic 
chondral and osteochondral defects of the knee with 10-year 
follow-up (19). Biological augmentation with MSCs may help 
improve long-term outcomes.

MeSenCHYMAL STeM CeLLS

Mesenchymal stem cells are found not only in bone marrow but 
also in many other mesenchymal tissues, including adipose, bone, 
synovium, and blood (20). However, although MSCs from these 
different mesenchymal tissues have a similar phenotype, they 
differ in their differentiation potential and this is likely to reflect 
their host tissue (21). They are formed from colony-forming 
units, which are phenotypically fibroblast like (CFU-F) (22, 23).

The MSCs’ ability to transdifferentiate into the desired cell 
lineage is fundamental to the regenerative process, but these cells 
also have very important local paracrine affects to alter their local 
microenvironment to conditions favorable for regeneration and 
repair (24). Cell-to-cell communication is integral to the normal 
wound-healing response and allows recruitment and migration 
of MSCs into the required area due to upregulation of specific 
cell-surface receptors (25). Once in the vicinity, the exact inter-
play of MSCs to the local environment is not fully understood, 
but it is clear that the MSCs are able to modulate all stages of 
the normal wound-healing response (26). This is due to down-
regulation of the inflammatory cytokines, including interleukin 
1 (IL-1), interleukin 6 (IL-6), interferon-γ, and tumor necrosis 
factor alpha (TNF-α) (26, 27). Aggarwal and Pittenger found an 
increase in anti-inflammatory cytokines interleukin-10 (IL-10) 
and interleukin-4 (IL-4) when human MSCs were cultured with 
immune cells (28). As the bone marrow-derived MSCs are innate, 
they have the appropriate host major histocompatibility complex 
(MHC) allowing them to avoid destruction by the immune 
system (27).

iSOLATiOn AnD eXPAnSiOn OF MSCs

Isolation of MSCs has traditionally been done by utilizing a 
unique feature of these cells in that they are adherent to plastic 
surfaces (29). Although this seems useful, unfortunately, it does 
allow some cellular contamination with cells that do not have the 
same propensity to differentiate and undergo clonal expansion 
(30). The International Society for Cellular Therapy states that 
MSCs must express the surface markers CD105, CD73, and CD90 
and lack CD45, CD34, CD14, CDIIb, CD79α, or CD19 (20).

In order to identify and select MSCs that can undergo clonal 
expansion and differentiate, surface markers have been used. 
Many of the recognized markers for MSCs from the International 
Society for Cellular Therapy have been targeted using monoclo-
nal antibodies. There is now established monoclonal antibod-
ies to CD73 (31), CD105 (32), CD90, and STRO-1 (33). The 
development of monoclonal antibodies specific to MSC markers 
have allowed separation of MSCs from other hematopoetic 
cells. However, the markers are not specific enough to different 
subpopulations of MSCs, and indeed, there is no single specific 
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marker (29, 30, 33). As no technique has been completely success-
ful, it represents the heterogeneity of bone marrow-derived MSCs 
and shows the complexity of the signaling and regulation of these 
cells for differentiation (33, 34).

These techniques have allowed crude identification of 
bone marrow-derived MSCs. There is great clinical interest in 
understanding the molecular biology of MSCs, so that it can be 
manipulated for clinical use. Of great importance is the ability 
of MSCs to differentiate and proliferate in vitro. This has great 
potential as cells from the individual could be expanded and 
reimplanted to avoid immunological activation (23).

Mesenchymal stem cell differentiation is regulated by inter-
play with a number of growth factors and pathways, including 
the fibroblast growth factors (FGFs), insulin-like growth fac-
tors (IGFs), and the wingless-type (WNT) signaling pathway 
(35). However, the most dominant factor is the transforming 
growth factor-beta (TGF-β). These TGF-β ligands bind to their 
specific serine/threonine kinase-linked cell-surface receptors. 
This causes a downstream cascade of SMAD protein phospho-
rylation, generating a heterocomplex of phosphorylated SMAD 
proteins. This complex can enter the cell nucleus, promoting 
the generation of transcription factors involved in chondrocyte 
differentiation (35).

The key transcription factor for chondrogenesis is the sex-
determining region Y-box 9 (SOX-9) protein (36). This is the 
end result of the mitogen-activated protein kinase (MAPK) 
pathway, which is activated by the extracellular signal-related 
kinases (ERKs), the C-june-NH2-terminal kinases (JNKs), and 
the P38 MAPK pathway (35). Downstream signaling results in 
the phosphorylation of SOX-9, and its transfer to the nucleus to 
promote chondrogenesis.

The proliferation of MSCs is primarily under the control 
of the canonical WNT/β catenin signaling pathway (37). The 
signaling pathway involves WNT-protein binding to frizzled 
(Fz) receptors initially, which leads to the inhibition of glycogen 
synthase kinase-3β (GSK-3β) allowing β-catenin translocation to 
the nucleus to induce gene expression and subsequent cellular 
proliferation (38). In vitro expansion of MSCs does have some 
inherent drawback, including loss of stem characteristics and 
chondrogenic differentiation potential (39). However, there is 
now evidence that manipulation with FGF-2 and inhibition of 
WNT signaling during differentiation can help increase prolifera-
tion rates and promote chondrogenesis, respectively (39, 40).

There has been interest in manipulating specific growth fac-
tors or signaling molecules in these pathways to help develop 
bone marrow-derived MSCs in  vitro. Gene therapy has been 
used to manipulate favorable conditions for chondrocyte differ-
entiation (41). The growth factor IGF-1 has proven particularly 
useful to promote differentiation and chondrogenesis but has a 
short-lived effect due to rapid and effective clearance (2). This 
has been overcome by Frisch et al. using recombinant viral vec-
tors to human bone marrow cell in  vitro to provide sustained 
IGF-1 locally and facilitate differentiation and chondrogenesis 
(2). This process has also been used with TGF-β and SOX-9 
using recombinant adeno-associated virus (rAAV) vectors (42). 
In vitro culture of MSCs with bone morphogenetic proteins 
(BMPs), FGF-1, and IGF-1 have all enhanced chondrogenesis 

in a laboratory setting (43). However, none of this has transferred 
to the clinical arena.

The clonal expansion and proliferation of cells in vitro comes 
at a financial cost that may render it unfeasible in the tough 
economic climate and the endless cost cutting of today’s health-
care system. BMA has been studied as a low-cost source of MSCs 
that may augment the repair and regeneration of musculoskeletal 
tissue.

iSOLATiOn AnD PRePARATiOn OF BMA

To overcome the considerable financial cost of in  vitro cell 
expansion, unprocessed BMA has been used as a source of bone 
marrow-derived MSCs (44). There are a number of potential 
areas to harvest BMA. Hyer et al. compared the iliac crest, tibia, 
and calcaneus and assessed the number of MSCs (45). The iliac 
crest provided a higher mean concentration of MSCs when 
compared with the other sites. However, with increasing age, 
there is reduction in absolute number of MSCs with a reduced 
proliferation capacity, which may have implications in treating 
the elderly population (46, 47).

Batinic et al. reviewed the number of MSCs from the first 1 ml 
and subsequent samples from the iliac crest (48). In subsequent 
samples, the nucleated cell population and CFU level were 
3 and 10× lower than the first 1  ml of aspirate (48). Muschler 
et al. showed that as the volume of aspirate from the iliac crest 
increases from 2 to 4 ml, the number of MSCs decreases by 50% 
(49). A recent study by Peters and Watts in horses has shown that 
needle advancement of 5 mm up to three times can increase the 
proportion of MSCs, although subsequent passes did not provide 
additional benefit (50). This is likely due to hemodilution with 
aspirated blood.

Approximately 0.001% of nucleated cells from BMA are MSCs 
(51). In an attempt to increase the proportion of MSCs, the aspi-
rate is concentrated to produce BMAC. This is most commonly 
performed by centrifuging the aspirate (22). Hernigou et al. has 
shown a direct correlation between increased concentration of 
MSCs and increased rates of healing in 60 patients with estab-
lished non-unions of the tibia (52).

BiOLOGiCAL CeLL SCAFFOLDS

There have been many studies looking to augment the delivery 
of BMAC and MSCs to the area of concern. Biological scaffolds 
have been explored to primarily fill a defect and provide a stable 
microenvironment and framework in which new tissue can 
develop (53). These scaffolds can be biologically engineered to 
enhance the microenvironment, such as carrying specific growth 
factors to promote chondrogenesis (54).

Scaffolds can be natural or synthetic in various forms either 
solid in fibers, sheets, mesh, or powder or a semi-solid gel, 
hydrogel, or glue form (53, 55). The most frequent naturally 
occurring materials are hyaluronic acid, collagen, agarose, 
alginate, and fibrin, whereas polylactides are the most commonly 
used synthetic material (53, 55). These scaffolds can be delivered 
through mini-open procedures, although most are performed 
arthroscopically.
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Kon et  al. reviewed 305 scaffold-based procedures up to 
2013 with 127 studies in clinical trials (56). There were a huge 
variation in different combinations of cells with scaffolds and 
scaffolds alone. This highlights there is no clear consensus of 
what the optimum method is. It is clear that the scaffold needs 
to be cost-effective, reproducible, and provide an environ-
ment that allows cellular differentiation and integration with  
the host.

PReCLiniCAL AnD CLiniCAL OUTCOMeS 
OF BMAC in CHOnDRAL inJURieS

There are a number of established animals’ models using expanded 
bone marrow-derived MSCs and a biological scaffold as a vector 
to augment chondrogenesis with good results (57, 58). This work 
has been extended in studying BMAC in the animal model.

Fortier et al. reviewed 12 horses with 1.5 cm2 full-thickness 
cartilage defects treated with microfracture and microfracture 
plus BMAC (59). At 8 months, there was improved defect filling, 
type II collagen production and integration in the BMAC group 
compared with microfracture alone (59). McIlwraith et al. found 
similar results in 10 horses with 1 cm2 defects in 2 knees treated 
with microfracture (60). At 1 month, one of the knees was injected 
with BMAC. At 12 months, the knee injected with BMAC showed 
better macroscopic repair and raised concentration of aggrecan 
(the main proteoglycan in articular cartilage) (60).

Current clinical studies have shown that BMAC have been 
useful for the treatment of small lesions with various scaffolds 
to augment delivery. Enea et  al. studied patients undergo-
ing microfracture covered with a resorbable composite of 
natural hyaluronan matrix and synthetic polyglycolic acid with 
BMAC  (61). At 12  months, the lesions were macroscopically 
normal with hyaline-like tissue production and MRI confirm-
ing defect filling (61).

Gobbi et  al. treated 15 patients with grade IV cartilage 
lesions with BMAC on a collagen matrix with 2-year follow-
up (62). There were improvements in the International Knee 
Documentation Committee (IKDC), Visual Analog Scale, Knee 
injury and Osteoarthritis Outcome score (KOOS), Lyshold, 
Marx, SF-36, and Tegner scores. Biopsy of these patients revealed 
hyaline-like tissue at repeat arthroscopy at 2  years (62). Gobbi 
et al. also studied the effect of BMAC with a hyaluronan-based 
scaffold in patients less than and greater than 45  years of age 
(63). Functional outcome scores were not significantly different 
between the two groups, highlighting the potential in treating 
defects in older patients. Histological analysis yielded hyaline-
like tissue (63). Giannini et al. used BMAC on a hyaluronic acid 
membrane to treat osteochondral defects of the talus (64). This 
was compared with open and arthroscopic ACI. All three groups 
improved in American Orthopedic Foot and Ankle Society 
(AOFAS) score with no statistical difference between groups and 

evidence of hyaline-like tissue. BMAC had the advantage of being 
an arthroscopic, single-step procedure (64).

Biological grafts have also been trialed to augment delivery of 
BMAC. Krych et al. used BMAC on a demineralized bone graft 
to treat cartilage defects of the knee compared with platelet-rich 
plasma (PRP) on the same scaffold (65). The BMAC group had 
improved cartilage maturation and filling of the defects as shown 
on MRI (65). Centeno et al. has studied BMAC with and without 
an adipose tissue grafts in knee arthritis (66). Both groups had 
improved numerical pain scores and lower extremity functional 
scale scores, but unfortunately, there was no apparent benefit 
from the adipose graft itself (66).

Skowroński et al. (67) has demonstrated beneficial effects of 
BMAC on large (4–12 cm2) chondral lesions in the knee in 54 
patients. At 1 year, there was an average improvement of 25 points 
on the KOOS and 35 points on the Lysholm score.

The success of BMAC in large chondral defects has led to 
investigation into BMAC in the treatment of osteoarthritis. 
Kim et al. has shown that the size of the lesion and age of the 
patients are important considerations for treatment with BMAC 
(68). The study found a smaller chondral defects (up to 6  cm) 
and patients <60 years of age had better outcomes when admin-
istrating BMAC for knee osteoarthritis (68). This is in keeping 
with MSC decline with age (69). Although defect size and age 
are important, Kim et al. has shown that simple joint injection 
with BMAC improved functional quality of life scores in elderly 
patients (mean 60.7 years and range 53–80 years) with established 
knee osteoarthritis (70). The scores included the IKDC, KOOS, 
SF-36, and the Lysholm score that were all improved at 3, 6, and 
12  months postoperatively. Thus, highlighting the potential of 
BMAC in slowing the time required for arthroplasty.

COnCLUSiOn

The long-term outcomes of traditional treatment modalities 
versus treatment with bone marrow-derived MSCs in the form 
of BMAC need to be reviewed alongside the relative cost- 
effectiveness of each. However, it is clear that BMAC has great 
potential in the repair and regeneration of chondral damage. 
There is clear need for further investigations to establish the best 
way to isolate, prepare, and deliver BMAC to the chondral injury. 
This should allow standardization in the use of BMAC to provide 
the best possible outcomes for patients.
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