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Adult spinal disorders are a significant cause of morbidity across the world and carry 
significant health and economic burdens. Genetic predispositions are increasingly 
considered for these conditions and are becoming understood. Advances in molecular 
technologies since the mid-1990s have made possible genetic characterizations of 
these diseases in many populations, and recent findings have provided insight into the 
underlying pathophysiologic mechanisms. These studies have made clear the genetic 
heterogeneity producing clinical phenotypes and suggest that individualized treatments 
are possible in the future. We review the genetics and heritability of cervical spondy-
lotic myelopathy and ossification of the posterior longitudinal ligament and perform 
a systematic review of the genetics of adult lumbar degenerative scoliotic deformity, 
highlighting recent discoveries and the potential for personalized future therapeutics for 
these patients.

Keywords: cervical spondylotic myelopathy, genetics, genome-wide association study, heritability, intervertebral 
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iNTRODUCTiON

Degenerative diseases of the spine affect the majority of individuals over a lifetime, causing pain 
and neurologic dysfunction, and presenting a significant challenge to physicians. These clinical enti-
ties develop from a complex interplay of genetic and environmental factors that are incompletely 
understood. Patients with a given disease may appear similar radiographically, yet outcomes may 
be disparate regarding disease progression and responses to medical, rehabilitative, or surgical 
interventions. Although there is a role for surgery in certain conditions, patient selection must be 
carefully considered, given the risks associated with surgery. Better stratification of patients is needed 
to guide treatments.

Advances in molecular technologies over the last 15  years have provided much insight into 
the genetics of numerous diseases, including those of the spine. Candidate gene approaches and 
genome-wide association studies have shed light on underlying pathophysiologic mechanisms at 
work in the development of such diseases. The potential application of these studies to patient care 
includes providing a clearer picture of who will benefit from surgical intervention. Furthermore, 
they offer an exciting opportunity for future therapies targeting specific genetic aberrations that 
predispose to disease.

Another article in this issue of Frontiers highlights the genetics of intervertebral disc (IVD) 
disease, which may play a partial role in almost all degenerative spine disorders and, therefore, 

Abbreviations: AIS, adolescent idiopathic scoliosis; CSM, cervical spondylotic myelopathy; DS, degenerative scoliosis; IVD, 
intervertebral disc; OPLL, ossification of posterior longitudinal ligament; SNP, single nucleotide polymorphism.
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is not discussed here. Alternatively, we review the genetics of 
several of the most common spinal disorders, including cervical 
spondylotic myelopathy (CSM), ossification of the posterior 
longitudinal ligament (OPLL), and adult scoliosis. Rather than 
enumerate specific single nucleotide polymorphisms (SNPs) 
and  other genetic anomalies, we highlight the overarching 
mechanisms uncovered by recent studies and discuss the poten-
tial for development of personalized approaches to treating these 
diseases in the future.

MeTHODS

Literature Review
We performed a systematic review of the literature to evaluate 
the contributions of current evidence on the genetics of adult 
degenerative scoliosis (DS). A recent systematic review that 
evaluated the genetic contributions for CSM and OPLL by 
Wilson et al. (1) was found and therefore was not performed in 
this study. The inclusion criteria included the studies comparing 
genetic variables in humans with this disease. Only studies in 
the English language were included. MEDLINE was queried 
with the terms “genetics” and “adult degenerative scoliosis” for 
articles published from 1966 to September 26, 2016. Studies 
focusing on other forms of scoliosis were excluded, as were those 
focusing solely on IVD degeneration. These queries returned 24 
studies. The citation information for each result was examined 
by two of the authors for relevant studies. Six potentially relevant 
studies were identified, and the abstracts (and, if necessary, full 
manuscripts) of these studies were reviewed. The references of 
all reviewed manuscripts were also reviewed to identify other 
potential studies. Six studies met the inclusion criteria and 
were the focus of the present study. The studies were published 
between 2011 and 2015. All of the studies represented Level III 
evidence (small, non-randomized case–control studies). Results 
of the included studies were extracted and interpreted by the 
two reviewing authors.

CeRviCAL SPONDYLOTiC MYeLOPATHY

Cervical spondylosis is a nearly ubiquitous finding that occurs 
with aging as IVD degeneration, ligamentous laxity, facet hyper-
trophy, and osteophyte formation contribute to narrowing of the 
spinal canal (2). CSM occurs when neural elements of the spinal 
cord are compressed. Nevertheless, many patients incidentally 
show radiographic evidence of spinal cord compression but 
remain clinically asymptomatic (3). Although the exact reasons 
for this remain unknown, a potential explanation relates to the 
dynamic nature of the cervical spine and cord, and that static 
compression does not correlate exactly with the micropathologi-
cal changes that occur in this disease (4).

Multiple human and animal studies have implicated various 
mechanisms in the acute and chronic pathophysiology of CSM 
(5). Direct mechanical forces result in static and dynamic injuries 
to neuronal and glial cells (6, 7). This injury is likely paralleled 
by ischemic changes seen in the disease caused by obstructed 
spinal cord perfusion and consequent microvascular changes 
(7–10). Several studies have also suggested a perpetuating cycle 

of ischemia related to blood–spinal cord barrier breakdown and 
dysregulation of the neurovascular unit (11, 12). Vascular per-
meability promotes edema through the release of inflammatory 
molecules and other potentially cytotoxic proteins into the cord 
parenchyma (13). This edema may potentiate neuronal damage 
and play an active role in the chronic degenerative component 
of the disease (14, 15). Additionally, glutamatergic toxicity (16), 
free radical-mediated cell injury (17, 18), and apoptosis (19) are 
also suggested as aggravating secondary injury pathways in the 
disease.

Heritability of CSM
An appreciation for the genetics of a disease is important for 
understanding how it is passed from one generation to the next. 
Although environmental factors undoubtedly play a role in the 
multifactorial pathogenesis, they allow providers and patients 
to assess the probability that the patient could develop the 
disease. Meaningful genealogy, however, is difficult to evaluate, 
and studies are limited (20). A study by Wilson et al. system-
atically reviewed the literature documenting the heritability 
of CSM and OPLL (1). Several authors have suggested genetic 
susceptibility of cervical spondylosis in twin–twin comparison 
studies (21–23). However, only one study has successfully used 
a population-based methodology to show inheritance patterns 
among non-twins (24). Patel et  al. examined a database of 2 
million Utah residents and found 486 patients with CSM and 
compared them with 1000 case controls (24). They used an 
index measuring genetic distance between pairs of patients to 
quantify familial clustering and found a statistically significant 
relationship related to the disease. Moreover, they identified a 
greater than five times relative risk of developing the disease 
among first-degree relatives. Studies corroborating these find-
ings in other populations need to be done, but the data suggest 
heritability among the studied individuals.

Genetics of CSM
As methods for evaluating genomics have evolved, SNPs and 
proteomics have become easier to evaluate, and the literature 
regarding their contributions to CSM has grown. Nevertheless, 
identifying individual components of CSM is difficult as different 
genes spur degenerative changes that lead to spondylosis but not 
necessarily myelopathy. For example, Wang et al. have associated 
two different genetic polymorphisms with CSM (25). First, they 
identified two polymorphisms of the vitamin D receptor gene 
(VDR), ApaI and TaqI, which are related to the presence of CSM 
and the magnetic resonance imaging–based severity of disease 
in Chinese patients (25). They also found a strong link between 
CSM and the tryptophan allele (Trp2) of the collagen 9A2 gene, 
as well as smoking exposure (26). These polymorphisms promote 
IVD degeneration independently (27–32), a process that can 
cause central canal stenosis. Neither of these studies delineated 
how these genetic changes compared in patients with cervical 
stenosis with and without myelopathy. This also underlines the 
putative effects of environmental stressors on pathogenesis.

Another genetic relationship has been drawn between 
apolipoprotein E, a protein that plays a critical role in the repair 
and regeneration processes of multiple central nervous system 
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diseases. Specifically, the ε4 allele of the apolipoprotein E gene 
is implicated in impairment of these repair mechanisms. In a 
study by Setzer and colleagues, 106 patients with radiographic 
cervical stenosis were collected prospectively, and the ε4 allele 
was strongly associated with the development of CSM, inde-
pendent of imaging findings, and other confounders (the allele 
was not related to the degree of stenosis) (33). The group showed 
that the allele also had negative effects on treatment outcomes 
in 60 of the patients who underwent surgical decompression 
(34). These results suggest that this genetic link portends a 
worse prognosis both for developing the disease and recovering 
from it. Large-scale studies evaluating the clinical usefulness of 
this association are necessary before its application can become 
widespread. Still, this knowledge may provide clues to the 
pathogenesis of the disease and potential therapeutic targets.

OSSiFiCATiON OF THe POSTeRiOR 
LONGiTUDiNAL LiGAMeNT

Ossification of the posterior longitudinal ligament is a condition 
of ectopic bone formation within the posterior longitudinal liga-
ment, typically occurring at the cervical spine levels. It was first 
described as a disease of aging in Asian populations, with a preva-
lence of approximately 1–4%, though the prevalence is reported 
to be as high as 1.7% in Caucasian populations (35). About 17% 
of individuals with OPLL present with cervical myelopathy, 
while 29% of asymptomatic OPLL patients go on to develop 
myelopathy over the next three decades (36). Additionally, OPLL 
adds complexity to the treatment of cervical spondylosis and, 
ultimately, affects the surgical approach to treating symptomatic 
patients (37). Studies of the natural history of OPLL are clouded 
by the common presence of other coexisting degenerative spinal 
pathologies.

Little is known about the exact pathophysiologic mechanisms 
underlying OPLL. Multiple factors are suspected to play roles in 
the ectopic bone formation, including numerous biomechani-
cally and metabolically mediated growth factors and cytokines 
(38). In vivo findings from human OPLL samples demonstrate 
degenerative elastic and cartilaginous fibers with metaplastic, 
hypertrophic cartilage cells (38, 39). Neovascularization, vascular 
endothelial growth factor-positive metaplastic chondrocytes, and 
abnormal collagen expression are thought to play a role in the 
spreading endochondral ossification front (38, 39). Additional 
studies are required to expand our understanding of OPLL and 
likely will be influenced by the wealth of genomic and proteomic 
results.

Heritability of OPLL
Several genetic studies have been performed to establish the 
heritability of OPLL. A study of 347 families of patients with 
OPLL found a 26% prevalence in parents and a 28% prevalence 
in siblings (40). In this study, the relative risk of first-degree 
relatives developing the disease was statistically significant and 
greater than five times that of the expected incidence in the 
general population. Another study looking at approximately 
100 patients and relatives with OPLL found a prevalence of 27% 
with a relative risk of seven times that of the general population 

(41). Although a high segregation rate among siblings and a high 
prevalence of disease in parents suggest an autosomal dominant 
pattern of inheritance, neither study showed autosomal domi-
nant (or recessive) inheritance on further analysis. Likewise, 
a polygene inheritance hypothesis was also rejected in these 
studies (40, 41). Altogether, these data suggest a high rate of 
heritability but not in a predictable fashion that would allow for 
practical genetic counseling.

Genetics of OPLL
Multiple genes have been targeted as possible contributors to the 
pathogenesis of OPLL. One of the first to be investigated was the 
ectonucleotide pyrophosphatase/phosphodiesterase (ENPP1) 
gene, a transmembrane metalloenzyme that regulates soft-
tissue calcification and bone mineralization via the production 
of inorganic pyrophosphate, a known inhibitor of calcification 
(42). ENPP1 was first implicated after studies in ttw mice showed 
altered gene expression causing tiptoe walking (43). The mice 
harbor a naturally recessive mutation that results in ectopic 
spinal ligament ossification and myelopathy that mirrors the 
disease traits in human OPLL (43). Several case–control studies 
in humans have examined SNPs in the ENPP1 gene, the main 
enzyme that controls inorganic pyrophosphate in osteoblasts and 
chondrocytes. The results have linked various polymorphisms to 
disease susceptibility, severity, and location, but the results have 
been inconsistent regarding which SNPs are involved (44–46). 
Nonetheless, these findings implicate ENPP1 as a possible thera-
peutic target. Further work needs to be done to elucidate the exact 
mechanisms by which it is modified in OPLL.

Collagen molecules have also received significant attention 
in the genetic research for OPLL. Mutations in type XI collagen 
within the COL11A2 gene are thought to affect the formation 
of fibril networks in the extracellular matrix and change the 
conformation of Type II collagen, which is responsible for bone 
and cartilage formation (38). Two large genome linkage studies 
found five different SNPs in COL11A2 that correlated with dis-
ease presence, and one was present in both reports (47, 48). Type 
VI collagen is also associated with multiple SNPs in chromosome 
21, localizing to the COL6A1 gene (49). Other studies have 
shown similar findings and linked this SNP to ossification of the 
ligamentum flavum and diffuse idiopathic skeletal hyperostosis 
(50, 51). However, a study of these COL6A1 SNPs in a Korean 
population revealed conflicting results (52). Although significant 
data support the two collagen molecules as contributing to the 
pathogenesis of OPLL, lack of data congruency has made reliable 
conclusions difficult to make, likely due to disease heterogeneity.

Bone morphogenetic proteins and transforming growth 
factor-β have been studied extensively due to their role in physi-
ological and pathological pathways of bone formation and metab-
olism. Several SNPs are associated with both of these proteins, 
specifically bone morphogenetic protein-2, bone morphogenetic 
protein-4, and transforming growth factor-β1 (53–58). Although 
fewer studies have focused on these molecules and replication 
studies still are needed, they present attractive targets for future 
research. Likewise, multiple other candidate genes have been 
investigated independently (Table 1) (43–51, 53–66). A full list of 
SNP associations is well summarized in other studies (1, 67, 68).
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TABLe 1 | Genetics of ossification of the posterior longitudinal ligament.

Gene Reference

Collagen VI Tanaka et al. (49), Tsukahara et al. (51), Kong et al. (50)
Collagen XI Koga et al. (59), Maeda et al. (48), Maeda et al. (60), Sakou 

et al. (47)
RXRβ Numasawa et al. (61)
Vitamin D receptor Shiigi et al. (62), Kobashi et al. (53)
ENPP1 Okawa et al. (43), Nakamura et al. (45), Koshizuka et al. 

(44), Tahara et al. (46)
BMRF Ogata et al. (54)
CTGF/Hcs24 Yamamoto et al. (55)
BMP-2 Kawaguchi et al. (56), Tanaka et al. (57), Kawaguchi et al. 

(58), Wang et al. (63)
TGFβ Kawaguchi et al. (56), Kamiya et al. (64), Horikoshi et al. (65)
Osteopontin Aiba et al. (66)

RXRβ, retinoic X receptor-β; ENPP1, ectonucleotide pyrophosphatase/
phosphodiesterase 1; BMRF, bone metabolism regulatory factor; CTGF, connective 
tissue growth factor; Hcs24, hypertrophic chondrocyte-specific gene product 24; BMP, 
bone morphogenetic protein; TGFβ, transforming growth factor β.
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The first genome-wide association study for OPLL identified 
26 SNPs on 3 chromosomes at 8p11.21, 8q23.1, 8q23.3, 12p11.22, 
12p12.2, and 20p12.3 that are considered to be significantly 
associated with OPLL. Six of those SNPs were confirmed in a 
replication test as highly susceptible gene loci for OPLL (69). 
Interestingly, their comparison with previously reported gene 
loci from prior studies uncovered no significant associations. 
Two of the genes, radial spoke head 9 homolog, RSPH9 (coding 
for a protein that composes cilia and plays a role in the hedgehog 
pathway of skeletal development), and serine/threonine kinase 38 
like, STK38L (a protein kinase that inhibits cell cycle progression), 
are believed to have a part in the pathobiology of OPLL through 
membranous ossification (69). Hydroxyacid oxidase 1, HAO1 
(encodes hydroxyacid oxidase 1, which oxidizes 2-hydroxyacid), 
R-spondin 2, RSPO2 (encodes R-spondin 2 protein that con-
tributes to osteoblastogenesis through Wnt/β-catenin signaling 
pathways), and coiled-coil domain containing 91, CCDC91 
(encodes a trans-Golgi network protein) have putative roles in the 
endochondral ossification process (69). A follow-up study by the 
same group focused on RSPO2 and further implicated it by evalu-
ating the putative SNP in vitro and how it affected the binding 
of a vital transcription factor, CCAAT-enhancer-binding protein 
β (C/EBPβ) (70). Macroscopically, these associations remain 
speculative at this time; nevertheless, the cumulative findings of 
these studies open the door for investigation of multiple new gene 
targets and provide insight into the novel mechanisms of OPLL.

DeGeNeRATive LUMBAR SCOLiOSiS

DS is a disease that occurs after skeletal maturity, typically after 
the third decade of life, and is a distinct entity from idiopathic 
scoliosis. It is associated with severe back and leg pain, which 
leads to spinal dysfunction and debilitation. Pain may result 
from asymmetric muscular loading, facet joint arthritis, or nerve 
root impingement/traction (71). A  Cobb angle of greater than 
10° in the coronal plane is considered diagnostic (72). Although 
it has been recognized for many decades as a significant cause 
of pain and disability, increasing clinical awareness has yielded 

a growing body of literature on treatment and greatly improved 
clinical outcomes.

Although interest in outcomes and surgical treatments has 
gained ground, little is known about the pathogenesis of DS. 
Multiple studies have implicated osteoporosis in DS. There is a 
high degree of overlap of these two pathologies; however, a causal 
relationship has not been established, and definitive correlations 
are lacking (73). Other studies suggest that asymmetric IVD 
degeneration is the cause, resulting in uneven loading forces that 
perpetuate the rate of asymmetric degeneration. Recent evidence 
suggests that cytokines and growth factors are differentially 
expressed within various locations of the IVD, likely creating 
regional discrepancies in the rates of cellular apoptosis, inflamma-
tion, and angiogenesis (74–76). Whether or not these differences 
are the result of other causative etiologies or are the instigating 
impetus behind the disease remains to be seen. Investigations 
into other sources of asymmetric spinal degeneration, such as 
myopathy and mechanical instability, are lacking and provide 
future directions for research (76, 77).

Heritability of DS
Few studies have been performed to examine the heritability 
of DS to date. Twin–twin and family-based comparison studies 
should be conducted to help identify patterns of inheritance. The 
paucity of data likely is due to the relatively recent attention to 
this disease since the mid-1990s. Unlike OPLL, which is found at 
particularly high rates in specific parts of the world, DS appears 
to show less geographic variation.

Genetics of DS
For adolescent idiopathic scoliosis (AIS), a number of investiga-
tions have been conducted to examine the genetic basis of disease. 
In 2010, Ward et al. performed a genome-wide association study 
that identified 53 SNPs that correlated with scoliotic curvature 
in Caucasian females (78). Using this genotype information and 
an initial Cobb angle, they devised an algorithm that calculated 
the risk of curvature progression in selected patients, which they 
commercialized under the name ScoliScore. This DNA-based 
predictive calculator theoretically enabled clinicians to forecast 
which individual patients were at low likelihood of curve pro-
gression (78). However, replication studies failed to demonstrate 
the same SNP associations in different geographically diverse 
populations (79–82). Nevertheless, this attempt at personalized, 
genome-based, clinical and outcome prediction exemplifies 
methods by which genetic outcomes could guide future treat-
ments for a multitude of diseases.

Comparatively, in DS, there have been fewer genetic incon-
gruities identified than in other degenerative spine diseases. 
It is thought that distinct genetic characteristics define these 
seemingly similar, but quite clinically different syndromes. Our 
systematic review identified six works in the literature (Table 2) 
(52, 83–87) that identified genetic contributions for DS. The qual-
ity of the data is relatively limited (Level III studies) but provides 
some insight into potential genetic mechanisms for disease 
pathogenesis that could potentially be used in future studies.

Proteomic analyses of the sera of patients with DS have 
identified 11 proteins that are differentially expressed in such 
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TABLe 2 | Review of studies identifying genetic contributions to adult 
degenerative scoliosis.

Reference Level of 
evidence

Genetic level of 
participation

Putative contributor(s)

Zhu et al. (83) III Proteomics CLU, Ficolin-3
Han et al. (84) III Proteomics PIAS2, NDUFA2, TRIM68
Shin et al. (85) III Copy number 

variation
TMEM163, ANKRD 11, 
NFATC1

Hwang et al. (86) III SNPs rs2276454 of collagen 
type II alpha 1

Kim et al. (87) III SNPs No SNPs of NMDA 
receptor genes associated

Kim et al. (52) III SNPs RIMS2

CLU, clusterin; PIAS2, protein inhibitor of activated STAT 2; NDUFA2, 
NADH:ubiquinone oxidoreductase subunit A2; TRIM68, tripartite motif containing 
68; TMEM163, transmembrane protein 163; ANKRD 11, ankyrin repeat domain 11; 
NFATC1, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1;  
SNPs, single nucleotide polymorphisms; NMDA, N-methyl-d-aspartate; RIMS2, 
regulating synaptic membrane exocytosis 2.
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patients, 2 of which were secondarily confirmed with Western 
blot analyses, CLU (also known as apolipoprotein J, testosterone-
repressed prostate message-2, SP 40-40, complement lysis 
inhibitor, gp80, glycoprotein III, and sulfate glycoprotein-2) 
and Ficolin-3 (also named Hakata antigen, thermolabile β-2 
macroglycoprotein, thermolabile substance, and H-ficolin) 
(83). Both of these proteins have been suggested to have roles 
in autoimmunity, although they both likely have multiple roles 
in the human body and their association is non-specific. This 
protein expression analysis does not definitively implicate them 
in the disease pathogenesis but suggests that they may serve as 
potential future biomarkers and potentially raises the question 
of whether an autoimmune component of DS exists. The same 
group also compared proteomic expression in cultured mesen-
chymal stem cells of DS patients (84). This comparison revealed 
differential levels of three proteins, protein inhibitor of activated 
STAT 2 (PIAS2), NADH:ubiquinone oxidoreductase subunit A2 
(NDUFA2), and tripartite motif containing 68 (TRIM68), none 
of which correspond to those elevated in the serum. All three 
of these proteins play various roles in biological processes and, 
therefore, pinpointing their roles may be difficult. Although the 
above proteomic analysis is helpful in identifying biomarkers 
of disease and drug targets, the proteins characterized in the 
analysis do not correlate exactly with genetic differences in the 
disease and are susceptible to environmental and other outside 
factors that change the genomic output via epigenetic influ-
ences. Consequently, much more work is required to tease out 
the meaning of these proteomic differences and reproduce these 
results with different patient populations.

One of the studies comparing genomic differences in DS 
examined copy number variations, which represent regional 
gene dosages of DNA segments 1  kb or larger (85). Of the 
260 copy number variations identified by microarray analysis, 
quantitative polymerase chain reaction validation identified 
three genes with significant differences from the control group. 
These genes included transmembrane protein 163, TMEM163, a 
gene coding for a transmembrane protein of unknown function; 
ankyrin repeat domain 11, ANKRD11, an ankyrin repeating gene 

implicated in autism spectrum disorder and skeletal formation; 
and nuclear factor of activated T cells, cytoplasmic, calcineurin-
dependent 1, NFATC1, a gene reportedly involved in bone 
mineral density (85). This novel study provided evidence that 
DS could be predisposed by inherent genomic differences rather 
than resulting from external environmental forces causing asym-
metric degeneration. Further work will be needed to expand on 
the biosignaling cascades by which these genes may affect disease 
pathogenesis.

Likewise, another area of gene-based research relates to 
SNPs associated with DS. Prior studies have given collagen mol-
ecules significant attention for similar diseases, including IVD 
degeneration and AIS (88). Collagen II has been investigated 
because of its structural role in stress-bearing of the spine (88). 
Investigators studied SNPs of COL2A1 and found a significant 
association of SNP (rs2276454) in COL2A1 to DS in Korean 
patients (86). Another study tested SNPs of glutamate receptors 
(N-methyl-d-aspartate receptors), given their role in controlling 
bone remodeling through stimulation, maturation, and differ-
entiation of osteoblasts and osteoclasts (87). Interestingly, they 
found no association with any of the SNPs investigated. A similar 
study found that one of the SNPs in regulating synaptic mem-
brane exocytosis 2, RIMS2, coding for a presynaptic active zone 
protein that regulates vesicle exocytosis of neurotransmitters, 
was significantly associated with DS (87). Therefore, glutamate, 
or other neurotransmitters, may still contribute to the disease 
progression of DS. The heterogeneity of these findings suggests 
that our insight into DS remains minimal; yet, these results lay 
the groundwork for further basic science in this area.

CONCLUSiON

Adult degenerative spinal disease has tremendous health costs on 
a global level. CSM, OPLL, and DS have gained significant atten-
tion from medical providers and researchers as disease entities 

TABLe 3 | Summary of cervical spondylotic myelopathy (CSM), 
ossification of the posterior longitudinal ligament (OPLL), and lumbar 
degenerative scoliosis (DS).

CSM
Complex disease with multiple degenerative processes contributing to 

underlying spondylosis
Studies support an inherited predisposition to the disease
Several genes have been implicated in CSM, but more studies are needed 

to confirm their genetic role in the disease
OPLL

Data support the heritability of OPLL, and first-degree family members are 
at a much higher risk than others

Col6A1 and Col11A2 are suggested by multiple studies to be associated 
with OPLL

Multiple SNPs have been implicated in OPLL, along with several new genes 
from a genome-wide association study, but more work is needed to 
confirm their involvement

DS
No studies have established any inherited predisposition to DS
Fewer studies examining genetic associations have been performed for 

DS compared to CSM and OPLL, but there appear to be genetic 
contributions to DS

More studies are required to identify participating genetic alterations in the 
disease pathogenesis
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