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Preventing surgical flaps necrosis remains challenging. Laser Doppler imaging and

ultrasound can monitor blood flow in flap regions, but they do not directly measure

the cellular response to ischemia. The study aimed to investigate the efficacy of

synergistic in-vivo electroporation-mediated gene transfer of interleukin 10 (IL-10) with

either hepatocyte growth factor (HGF) or vascular endothelial growth factor (VEGF) on

the survival of a modified McFarlane flap, and to evaluate the effect of the treatment on

cell metabolism, using label-free fluorescence lifetime imaging. Fifteen male Wistar rats

(290–320 g) were randomly divided in three groups: group-A (control group) underwent

surgery and received no gene transfer. Group-B received electroporation mediated

hIL-10 gene delivery 24 h before and VEGF gene delivery 24 h after surgery. Group-C

received electroporation mediated hIL-10 gene delivery 24 h before and hHGF gene

delivery 24 h after surgery. The animals were assessed clinically and histologically. In

addition, label-free fluorescence lifetime imaging was performed on the flap. Synergistic

electroporation mediated gene delivery significantly decreased flap necrosis (P= 0.0079)

and increased mean vessel density (P = 0.0079) in treatment groups B and C compared

to control group-A. NADH fluorescence lifetime analysis indicated an increase in oxidative

phosphorylation in the epidermis of the group-B (P = 0.039) relative to controls.

These findings suggested synergistic in-vivo electroporation-mediated gene transfer

as a promising therapeutic approach to enhance viability and vascularity of skin flap.

Furthermore, the study showed that combinational gene therapy promoted an increase

in tissue perfusion and a relative increase in oxidative metabolism within the epithelium.

Keywords: cell metabolism, flap survival, gene delivery, HGF, IL-10, in-vivo electroporation, label free fluorescence

lifetime imaging, VEGF
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INTRODUCTION

Post-surgical flaps necrosis remains a challenge for the surgeons
(1). The promising results of recent studies demonstrate the
importance of growth factors in aiding tissue repair and
regeneration (1, 2). Application of novel techniques like non-
viral gene therapy could further increase the effectiveness by
providing sustained therapeutic level of growth factors locally
at the skin flap (1, 3). Among various gene delivery methods,
nonviral electroporation mediated technique has been shown to
be safe and effective for prolonged transgene expression (4–6).
In-vivo electroporation is based on the principle of enhanced
plasma membrane permeability of the tissue upon application
of short electric pulses of high voltage, resulting in enhanced
DNA uptake (7). Previous preclinical studies by others and us
have successfully shown promising results of growth factors like
Hepatocyte growth factor (HGF), Vascular endothelial growth
factor (VEGF), and Interleukin 10 (IL-10) in attenuating graft
necrosis (4–6, 8, 9). Prolonged amelioration of acute rejection
in rat lung transplant model using IL-10 and HGF has been
demonstrated (10). However, their combined effect on skin
graft survival, necrosis, and vascularity has not been reported.
Also, Laser Doppler imaging, ultrasound, and fluorescence
angiography have been used tomonitor blood flow in flap regions
(6, 11, 12), but they could not directly measure cellular response
to ischemia. Multiphoton microscopy is well-suited for non-
invasively monitoring skin metabolism through the intrinsic
fluorescence of NADH. Through fluorescence lifetime imaging
(FLIM), the protein binding status of NADH can be assessed by
measuring the time between excitation and emission (13–15).

In the current study, we investigated the synergistic effects
of in vivo electroporation-mediated gene transfer of IL-10
with either VEGF or HGF on reduction of skin flap necrosis.
Furthermore, the effect of treatment on cell metabolism, using
label-free fluorescence lifetime imaging was evaluated.

MATERIALS AND METHODS

Plasmids
Plasmid encoding humanVEGF165 isoform (pVEGF) was kindly
provided by Prof. Richard Heller (Old Dominion University,
Norfolk, VA 23508, USA). The plasmid dissolved in 0.9% saline
was commercially prepared (Aldevron, Fargo, ND, USA) to
ensure quality. The human pVEGF165 with a pVAX1 backbone
and a hEF1-HTLV promoter as described (4). Furthermore, the
full-length sequence of humanHGF (hHGF) was kindly provided
by Prof. Toshikazu Nakamura, Osaka, Japan. The plasmid was
constructed by inserting hHGF cDNA (2.1 kb) into the backbone
of pCik, driven by the human cytomegalovirus early promoter
enhancer (pCikhHGF) between the NotI and NheI sites as
described (16). In addition, plasmid pCik IL-10 was constructed
by inserting hIL-10 c DNA (537 bp) into a unique backbone of
pCIk driven by human CMV early promoter enhancer at Not 1
and Nhe 1 site (17). The plasmids were purified and produced in
the quantity required at (Plasmid Factory Gmbh & Co, Bielefeld
Germany). All plasmids were dissolved in endotoxin free water
for application.

Animals
Fifteen male Wistar rats (290–320 g) were used in this study
protocol and were obtained from Charles River Laboratories
(Sulzfeld, Germany). The rats were kept in individual cages in a
temperature-controlled and light-controlled animal facility and
standard food and water were provided ad libitum.

Study Groups
The animals were randomized into three groups. As the
electroporation alone (without gene transfer) did not provide any
effect on the outcome in the previous studies (5, 10, 18), the
control group A (n = 5) underwent the surgery and received no
treatment as described previously (4). In the current study we
did not include the groups with single gene transfer since the
data related to single gene transfer has already been published
before hHGF, hIL 10, and hVEGF (6, 9, 19). Group B received
electroporation mediated IL-10 gene delivery 24 h before and
hVEGF gene delivery 24 h after the surgery (n= 5) (IL-10/VEGF
group). Group C received hIL-10 gene delivery 24 h before
and hHGF gene delivery 24 h after the surgery (n = 5) (IL-
10/HGF group). Animals were sacrificed seven days later as
described below.

Electroporation Mediated Gene Transfer to
the Flap
For gene delivery, the plasmid was suspended in endotoxin- free
water at concentration of 1 µg/µl. Total of 100 µg of plasmid
(100 µL solution) was injected intradermally (one midline
longitudinal injection 1.5 cm away from the edge of the flap)
using a 25-gauge needle, at this place usually the necrosis and
rejection occurs predominantly (4, 6). After injection of plasmid
in-vivo electroporation-mediated gene transfer was performed
at the site of plasmid injection (midline: 1.5 cm from the edge
of the flap) with a series of eight pulses of 200 V/cm, for
10ms, using a stainless tweezertrode Electrode, 10mm diameter.
NEPA 21electroporator, Sonidel Japan). The distance between the
electrodes was 5mm; the flap was held in between the tweezer
electrode and gentle constant pressure was applied during the
electroporation procedure to hold the flap (6, 9).

Surgical Procedure
For the surgical model, a modified McFarlane flap, skin flap on
the dorsum of the rat, was used as the surgical model in the
current study as described previously (6, 20).

Evaluations
Skin Flap Survival Assessment (Planimetry)
Flap necrosis was quantified by measuring the percentage flap
survival, 7 days after surgery. Regions of pink and pliable soft
skin with evidence of new hair growth were considered healthy,
while regions of thickened, contracted, hard, and dark-colored
tissue without new hair growth were considered necrotic for
planimetric analyses as described before (21). Image J Software
(NIH, Bethesda, MD, USA) was used to calculate the percentage
of flap necrosis after analyzing the digital images of each skin flap
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as previously described (4, 22):

Percentage of necrosis (%) =
Area of necrosis

Area of the whole flap× 100

Tissue Collection Histology and

Immunohistochemistry
At day 7, the animals were sacrificed by intraperitoneal injection
of 50 mg/kg of pentobarbital. After resection of the skin flap
with the underlying tissue, transverse segments (5× 5mm) were
taken 12.5–17.5mm (cranial part) and 72.5–77.5mm (caudal
part) from the cranial margin of the flap. Furthermore, a
third segment was taken from the necrosis-survival margin
(intermediate part). Additionally, in order to assess possible
side effects of gene transfer, kidney and liver samples were also
taken from each animal. Histologic examination was performed
on tissue fixed in 10% buffered formalin, routinely processed
and subsequently embedded in paraffin. Sections were stained
with hematoxylin and eosin (H&E). Additionally, to assess
angiogenesis, immunohistochemical staining using anti-CD31
antibody (Biorbyt Ltd., UK) as a marker for neovascularization
on the endothelial surface of skin vasculature as reported
previously (6, 23). In each section, a total of 10 different fields in
one flap section at 400× magnification were randomly selected,
and the vessel number were counted. The vessel density was
calculated as number of vessels per square millimeter field (0.55
mm2 each field), and the mean was reported for each animal
(6, 23).

Double immunohistochemistry for IL-10/VEGF and IL-
10/HGF was performed using the BOND-III fully automated
IHC and ISH stainer (Leica Biosystems, USA) according to
the manufacturer’s instructions. In brief, paraffin-embedded
tissue sections were first dewaxed and rehydrated, followed
by epitope retrieval (epitrope-retrieval solution 2; Leica). They
were then incubated with the primary anti-hIL-10 antibody
(Thermo Scientific) at 1:100 dilution for 15min, followed by
a post-primary-IgG-linker and a Poly-AP-IgG reagent (Bond
Polymer Refine Red Detection System, Leica). Sections were then
developed in Fast Red substrate chromogen (Leica). Then the
stained sections of IL-10/VEGF and IL-10/HGF groups were
incubated with anti-hVEGF antibody (Abcam, USA) and anti-
hHGF antibody (R&D Systems, UK) at 1:100 dilution, for 15min,
respectively. This step was followed by a post-primary-IgG-linker
and a Poly-AP-IgG reagent (Bond Polymer Refine Red Detection
System, Leica, Germany). The second staining of the sections
were developed in 3,3-diaminobenzidine (DAB), according the
manufacturer’s instructions (Leica, Germany).

Fluorescence Lifetime Imaging of NADH in ex vivo

Sections
To evaluate the effect of treatment on cell metabolism, label-
free fluorescence lifetime imaging (FLIM) was performed on
unstained, unfixed frozen sections (20µm) of the healing
epithelium. Fluorescence lifetime is a measure of the time
between fluorescence excitation and emission, and can
distinguish between free and mitochondrial-bound NAD (14).
Fluorescence lifetime data was acquired with a multi-photon

microscope (Bruker Ultima Investigator; Middleton, Wisconsin)
equipped with a Becker and Hickl SPC-150 card (Becker and
Hickl, Berlin) and a Ti:Sapphire laser (Mai Tai, Spectra-Physics;
Santa Clara, California). All images were acquired with a 20×,
1.0 NA water immersion objective (Olympus; Tokyo, Japan) at
512x512 pixel resolution (584 × 584µm). NADH fluorescence
was isolated using a 460 (±20) nm filter (Chroma, ET460/40m-
2p) and 755 nm excitation, and a fluorescence lifetime decay
histogram was generated at each pixel through time-correlated
single photon counting over a 2-min integration time.

Phasor Analysis of Bound/Unbound NADH
To analyze the NADH fluorescence lifetime decay curves, a
phasor analysis approach was employed as previously described
(13, 14). Phasor analysis allows for a simple cluster visualization
of fluorophores that contain different molecular species or
binding states, such as bound and unbound NADH (13). Using
custom-written MATLAB code, fluorescence lifetime decays
from each pixel were transformed into respective cosine and sine
components to create G and S phasor coordinates plotted within
the unit circle designated by S= (G(1–G))1/2 (13, 14). Using this
transform, each pixel of the FLIM image can be mapped to a
phasor coordinate (G, S), where (1, 0) corresponds to a lifetime of
0, and (0,0) corresponds to∞. The instrument response function
was measured using second harmonic generation of 1.0M
urea crystals, and deconvolved from the measured fluorescence
lifetime decay to improve the accuracy of phasor coordinates
at each pixel (24). The epithelium was manually traced from
each FLIM imaged, and the average (G, S) coordinates from the
epithelial pixels in each image were computed. Higher values ofG
correspond to epithelia with shorter NADH lifetimes (more free
NADH), while lower values of G correspond to longer lifetimes
(more protein-bound NADH).

Statistical Analysis
Analyses were conducted using the GraphPad Prism version 6.01
(GraphPad Software, Inc., USA) and JMP Pro 13 (SAS Institute,
USA). Descriptive statistics were presented for the animals in
mean ± SD. Mann–Whitney test was used to detect differences
between groups. Differences in phasor coordinates, G and S,
were assessed using a one-way ANOVA and post-hoc Dunnett’s
test. The ANOVA design considered individual tissue sections
as a random effect nested within each rat. All p-values relate to
two-sided tests with an alpha level of 0.05.

RESULTS

Efficacy of Combined in vivo

Electroporation-Mediated Gene Transfer
on Flap Necrosis
Clinical assessment of the animals 7 days after the surgery showed
skin ischemic necrosis only in the distal portion of the skin
flaps. Combined electroporation mediated IL-10 and HGF gene
delivery decreased flap necrosis percentage compared to the
control group significantly (Flap necrosis percentage: 25.49 ±

1.65% vs. 35.23± 3.90%; p= 0.0079, respectively). Furthermore,
application of electroporation mediated IL-10 and VEGF gene
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FIGURE 1 | (a) Comparison of tissue necrosis among control group, IL-10/ VEGF group, and IL-10/ HGF group. (b) Significantly, reduced necrosis was detected in

the experimental groups compared to the control group. Data are presented as mean with SEM *p = 0.0079.

FIGURE 2 | (a) CD 31+ vessels in the experiment group-streptavidin/alkaline phosphatase staining; 400× magnification. (b) Significantly higher vessel density was

detected in the experimental groups compared to the control group. Data are presented as mean with SEM *p = 0.0079.

transfer caused a significant improvement of the flap survival
(Flap necrosis percentage: 18.34 ± 9.70 vs. 35.23 ± 3.90%; p =

0.0079, respectively; Figure 1).

Histology Analysis of Skin Flap and Safety
Assessment
Caudal sections (more healthy zone) showed a regularly-
stratified epithelium with ordinary developed hair follicles.
Cranial sections (necrotic zone) were similar in the control

and experimental groups and showed an inflammation with
monocytes and neutrophils.

Furthermore, a significantly higher mean vessel density
was detected in the group B (IL10/HGF) and group C (IL-
10/VEGF) compared group A (control group) (Mean vessel
density (/mm2): 4.52 ± 0.78 and 4.21 ± 0.82 vs. 1.73 ±

0.62; p = 0.0079, respectively; Figure 2). Additionally, double
immunohistochemistry staining showed relevant protein levels
as the product of the delivered genes (Figure 3).
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FIGURE 3 | Double immunohistochemistry staining showed protein expression of the delivered genes in the flap. Right: IL-10/ HGF double staining- Primary Ab:

anti-hHGF antibody (brown) and anti-IL-10 antibody (Red) 400× magnification. Left: IL-10/ VEGF double staining- Primary Ab: anti-hVEGF antibody (brown) and

anti-IL-10 antibody (Red) 400× magnification.

FIGURE 4 | Phasor analysis of NADH fluorescence lifetime in the healthy region of the flap indicates increased oxidative phosphorylation in the epithelium of treated

groups. (A) Phasor plots demonstrate the NADH lifetime at every pixel in each image. Color regions correspond to the fluorescence lifetime from the epithelium. (B)

Average phasor coordinates of the epithelium in each rat indicate that treated flaps contain less free NADH, suggesting less glycolysis than control rats. (C) A

significant difference in the average phasor coordinate (G) was identified between IL-10/VEGF treatment and control samples.

In the clinical evaluation 7 days after the surgery, no skin
damages were observed following electroporation mediated gene
delivery. Furthermore, assessment of liver and kidney samples by
the veterinary pathologist did not show any significant histologic
findings in the therapeutic groups compared to control animals.

Metabolic Imaging of NADH Fluorescence
Lifetime
Through phasor analysis of the NADH fluorescence lifetime
decay, two molecular lifetime species of NADH were inferred
based on the variability in coordinate positions along one axis
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(Figure 4). Relative to the control group, the epidermis of IL-
10/VEGF treated skin had a lower G coordinate (p = 0.039).
IL-10/HGF treatment had a similar, but not significant, effect on
the phasor coordinates (p = 0.055). The lower G coordinates in
the treated samples indicates a longer lifetime of NADH, which is
consistent with a shift towardmoremitochondrial-boundNADH
in the epidermis. An increase in bound NADH has generally
been taken as an increase in oxidative phosphorylation relative
to glycolysis (13–15).

DISCUSSION

In the current study, a combined in vivo electroporation-
mediated gene transfer for one gene (IL-10) before the surgery
and second (VEGF or HGF) after the surgical procedure is shown
as a novel approach for management of ischemic skin flap. This
synergistic effect resulted in reduction of necrosis, improvement
of neovascularization and acceleration of wound healing process.
Moreover, no significant adverse findings were recorded in the
skin, kidney or liver of the treated animals.

Protective effect of IL-10 gene transfer on survival of skin flaps
is due to the fact that overexpression of IL-10 recapitulates fetal-
like scar less wound healing capability in postnatal tissue (25).
In addition, further beneficial effects of IL-10, such as regulation
of the extracellular matrix, attenuation of the inflammatory
response, induction of hyaluronan production, improvement of
fibroblast function, and increase in endothelial progenitor cells
can further justify anti-fibrotic and anti- necrotic effect of IL-
10 (25–29). As demonstrated before, application of combined
gene transfers of growth factors to wounds can enhance the
rate of healing (30). VEGF (Vascular endothelial growth factor)
gene therapy (mediated by various viral and non-viral gene
delivery methods) has been shown to improve the survival
of various skin and muscle flaps (31–33), related to actions
like VEGF induced vasodilation, endothelial cell proliferation,
neovascularization, apoptosis and increase of glucose transport
across the endothelial cell membrane (2, 8, 34–39). Furthermore,
HGF (Hepatocyte growth factor) as a potent angiogenic factor
can stimulate the production of vessels by promotion of vascular
smooth muscle cells migration and endothelial proliferation (40–
42). Since wound healing is a complex process, dynamic approach
is required to enhance healing and tissue remodeling; therefore
combinatorial effect of the gene transfer before and after surgery
demonstrated promising results by synergistic and supportive
biological mechanisms.

The effects of pro-angiogenic factors may be detectable
through NADH FLIM imaging. In an ischemic environment, the
lack of sufficient oxygen leads to aerobic glycolysis, producing
an increase in free NADH and an overall decrease in NADH
fluorescence lifetime (13, 15). Through FLIM imaging of frozen
tissue section, an overall increase in NADH lifetime with
treatment was observed in the epidermis of the flaps, which
is indicative of a shift from glycolytic to oxidative metabolism.

These shifts toward oxidative metabolism with treatment may
be the result of increased neovascularization. Future work will
explore whether in vivo NADH FLIM imaging may be able to
provide an early marker of flap necrosis and treatment efficacy.

Although no adverse effects related to the therapy were
detected among the study animals, we have not evaluated the
long-term effect of synergistic gene transfer. Since this is a
feasibility study small sample size of the animals were studied
and different therapy combinations could not administered and
evaluated. Nevertheless, the results of the current pilot study
demonstrated the feasibility of the electroporation mediated
combined gene transfer as a simple and safe local treatment
strategy to improve skin flap survival. However, future studies
using a bigger animal model are required to assess the
mechanism, efficacy and safety of this method in more details
before clinical translation of this promising system.
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