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Direct electrical stimulation of the brain is the gold standard technique used to define

functional-anatomical relationships during neurosurgical procedures. Areas that respond

to stimulation are considered “critical nodes” of circuits that must remain intact for the

subject to maintain the ability to perform certain functions, like moving and speaking.

Despite its routine use, the neurophysiology underlying downstream motor responses

to electrical stimulation of the brain, such as muscle contraction or movement arrest, is

poorly understood. Furthermore, varying and sometimes counterintuitive responses can

be seen depending on how and where the stimulation is applied, even within the human

primary motor cortex. Therefore, here we review relevant neuroanatomy of the human

motor system, provide a brief historical perspective on electrical brain stimulation, explore

mechanistic variations in stimulation applications, examine neurophysiological properties

of different parts of the motor system, and suggest areas of future research that can

promote a better understanding of the interaction between electrical stimulation of the

brain and its function.
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INTRODUCTION

The use of direct electrical stimulation (DES) of the human brain to define functional-anatomical
relationships dates back to the very beginnings of modern neurosurgery (1). Currently, it is the
gold standard technique used to map the brain’s somatotopy and reduce the rate of postoperative
neurological deficits in glioma and epilepsy surgeries (2). Areas of the brain that produce a
response upon stimulation are considered gateway “critical nodes” into cerebral circuits that control
functional movement and language. Although DES is used in neurosurgical procedures across the
world (3–5), when a response is generated, the pathway from stimulus to effect is generally poorly
understood. The neurophysiology of underlying how an electrical stimulus interacts with a given
population of neurons can vary widely. Specifically, within the motor cortex, when stimulation
induces local action potentials, the circuit modulation and downstream effects can result in silence,
muscle activation, or motor inhibition. Over the course of the last century and a half, much
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has been learned about the mechanisms and neurophysiological
properties of the motor system, cortical circuitry, and motor
control. Despite these advances, there is still a limited
understanding of how stimulation responses vary across
individuals, pathologies, and stimulation parameters. Therefore,
here we review relevant neuroanatomy of the human motor
system, provide a brief historical perspective on electrical
brain stimulation, explore mechanistic variations in stimulation
applications, examine neurophysiological properties of different
parts of the motor system, and suggest areas of future research
that can promote a better understanding of the interaction
between electrical stimulation of the brain and its function.

MANUSCRIPT

A Brief History of Direct Electrical Brain
Stimulation
Direct electrical stimulation of cortical structures to investigate
anatomical function has been used since the second half of the
19th century in animals (6). Although the technology at the
time was somewhat crude [i.e., the intensity of the stimulation
was measured by subjective sensation when applied to the
experimenter’s tongue (7)], it was not long before translation
to the first trial of cortical stimulation of a human by Robert
Bartholow in 1874 (8). In this famous case of a patient with
basal cell carcinoma and exposed brain, Bartholow inserted
electrodes into parenchyma [likely Brodmann area 7 bilaterally
(9)] and elicited contralateral muscle contractions reliably from
both sides of the brain. Around the turn of the 20th century,
this knowledge was put to practical neurosurgical applications by
Horsley, Bidwell, Krause, and Cushing (1, 10–12), who continued
to use this technique to expand the understanding of brain
function over many years.

Initially, there was debate among scholars as to which areas
of the cortex contributed to motor and sensory function and
which areas did not. Some firmly believed motor and sensory
function to be combined as one sensorimotor region, while others
believedmotor localization to be distinct and belong purely to the
region anterior to the central sulcus (13, 14). A significant shift in
theory was noted after the work of Grünbaum and Sherrington
(13), which led to more a concrete model of an anatomically
distinct pre-Rolandic motor cortex and post-Rolandic sensory
cortex (15). Their work, along with contributions from Krause,
was among the first to illustrate a somatotopic map of the motor
cortex (12). Cushing reported using DES in his anesthetized
patients (1) as early as 1902 (16), and soon after progressed
to using the technique on awake patients, allowing him to
interpret sensory information in the post-central gyrus as well
(Figure 1).

In the mid-twentieth century, Penfield described the density
of cortical organization through the visual representation of the
sensorimotor homunculus (13). His work alongside Rasmussen
continued to examine localization of cortical functions (17),
and his work with Welch expanded knowledge of planning of

Abbreviations: DES, direct electrical stimulation; SMA, supplementary motor

area; EMG, electromyography; NMR, negative motor response; NMA, negative

motor area; PMR, positive motor response.

motor function in the anterior supplementary motor area (SMA),
defining a region involved in complex movements and initiation
of movements (18).

When Penfield and Rasmussen reported negative effects (e.g.,
inhibition and muscle relaxation) upon stimulating certain areas
of the motor cortex, the nature of Brodmann area 6 began to be
questioned once again (17). This finding led some to think motor
planning and inhibition may also be involved in this region.
Along the way, the model of the motor cortex began to evolve
from a simplistic, positive response area whereby “a chain of
neurons is activated and an effective impulse passes out to the
periphery” (13), to include areas of planning and areas of negative
responses resulting in motor inhibition (which will be further
described later in this paper).

In sum, DES of the cortex has been the primary tool
used to define cerebral anatomical-functional relationships
(19) from Penfield’s work on sensorimotor systems (20) to
Ojemann’s studies on language (21). In addition to its use as an
investigational tool, it has also been a critical surgical tool used
to outline functional-anatomical somatotopy and predict and
minimize post-operative deficits. Throughout the 20th century
and beyond, DES has become standard of care for patients
undergoing resections of brain tumors (22) and epilepsy lesions
(23) in eloquent motor and/or language systems (24–38).

Relevant Anatomy of the Human Primary
Motor System
Neuronal cell bodies located in layer 5 of the primary motor
cortex have axons that project down the corticobulbar and
corticospinal tracts to either synapse directly ontomotor neurons
or interneurons of the brainstem and spinal cord (Figure 2)
(39). Layer 5 neurons also have connections with other cortical
and subcortical structures, ranging from association fibers to
the somatosensory cortex to outputs to the direct and indirect
pathways of the basal ganglia (40–42). Because of this complex
network of connections, the sum of direct output from the
primary motor cortex is not exclusively excitatory. Other nearby
anterior motor regions, such as the SMA and premotor areas, as
well as some posterior parietal regions, have been shown to be
linked to generating intent to perform an action and ordering
complex motor movements later effectuated by the motor cortex
(18, 43–46). Additionally, there is evidence that themore anterior
“planning regions” may have their own direct influence on the
spinal cord (47), perhaps in parallel to the corticospinal tract (48).
This evidence is consistent with primate experiments supporting
a model where primary motor cortex neurons more directly
encode muscle activity, or kinetics, to a greater extent than limb
position or velocity, or kinematics (49). While the concept of
these “anterior planning regions” is generally accepted, this is not
a strict, linear hierarchy, as other frontal and parietal areas have
been shown to participate in subcortical motor networks (48).

The primary motor cortex has been described as a discrete
functional-anatomical interface along a unimodal gradient (50),
meaning it is a cortical region with a somatotopic organization
where movement intention is translated into action. This
unimodal network gradient description may account for the
more homogeneous, reproducible results of direct electrical
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FIGURE 1 | First sketch mapping motor and sensory responses during an awake craniotomy. Reprinted from Cushing H., A note upon the faradic stimulation of the

postcentral gyrus in conscious patients, Brain, 1909;32(1):44–53 by permission of Oxford University Press.

FIGURE 2 | Some motor cortex neurons terminate on spinal cord interneurons, while others terminate directly on motor neurons. The primary motor cortex (M1) is in

red, and primary somatosensory cortex (S1) is in blue. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature

Reviews: Neuroscience, Motor cortex—to act or not to act? Christian Laut Ebbesen, et al., 2017.

stimulation on the motor system (51) when compared with
more transmodal networks like emotion and cognition, for
example (50). However, studies of motor connectivity have

shown both interindividual variability and plasticity in recovery
from deficits (52), suggesting a neural network model that can
modulate function in a dynamic fashion (19). This has been
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demonstrated specifically in the primary motor cortex in patients
with infiltrating tumors (53, 54). In other words, in a static model,
input A may always lead to output B; however, in a dynamic
model, input A may lead to output B, or may lead to output
C, depending on inputs from other systems. Stimulation of the
motor cortex to induce plasticity has also begun to be explored,
showing that durable plastic changes in themotor cortexmay also
be artificially constructed for therapeutic applications (55).

Modern Neurostimulation Techniques and
Related Neurophysiology
DES predominantly affects axons (56) by inducing a modulation
in membrane potential through a directly applied electric current
(57) that triggers a response. The downstream result of this
stimulation can vary significantly and depends on a number of
factors. Modifiable factors include the stimulating parameters
(i.e., pulse type, width, frequency, and intensity) (58), probe
configuration (i.e., monopolar or bipolar) (4), and anatomical
location. Alterations in these variables can affect which cells are
stimulated, to what extent they are stimulated, and what their
response to that stimulation might be.

Stimulation Parameters

The effect of varying stimulation parameters on downstream
motor function has not been systematically tested in humans to
our knowledge. However, many studies do provide some insight
into how certain stimulation parameters effect downstream
effects. For example, stimulation amplitude can alter how cells
behave by inducing hyperpolarization from large current delivery
(59), and, as the current spreads from an electrode and charge
drops over distance, the net effect may be hyperpolarization in
the immediate vicinity of the electrode and initiation of action
potentials at greater distances. Independent of current amplitude,
inhibitory effects may also be induced through indirect signal
propagation through cortical interneurons (60).

In addition to current amplitude, changing the frequency
of stimulation has been shown to modulate neuronal activity.
One study (58) found that lower frequency stimulation (i.e., 10–
50Hz) was more likely to cause neuronal suppression, whereas
higher frequency stimulation (i.e., 100–200Hz) was more likely
to lead to neuronal activation. The authors of this study proposed
that lower frequency stimulation may activate passing axons,
whereas higher frequency stimulation activates cell bodies, thus
accounting for the difference. It should be noted, however,
that the neuronal activation measured in this study was high
frequency activation [HFA] of neurons, not downstream motor
function (i.e., hand movement or speech activation).

Environmental factors may also alter the interface through
which the current is delivered. For example, the pia matter
itself has significant resistance and capacitance that can alter
stimulation, which changes over the amount of time exposed
to air (61). In theory, these changes could lead to the delivery
of different currents over the duration of an operation despite
using the same stimulation parameters at the same location.
While the intention may be to stimulate a focal region only, the
end result may be the stimulation of “an unknown number and

unknown kinds of cells at unknown locations in the vicinity of
the electrode” (59).

Bipolar vs. Monopolar Stimulation

The original technique introduced by Penfield involving bipolar
stimulation at a frequency between 50–60Hz delivered in long
trains (1–4 s) of biphasic pulses remains the gold standard in
neurosurgical practice (24, 35, 62). More recent developments
include a monopolar technique first described by Taniguchi
et al. in 1993 that instead uses a train of 5–10 short pulses
(10–18ms) at higher frequencies of 250–500Hz (63, 64). Also
known as the “train-of-five,” this technique has been popularized
in recent years by Szelényi et al. (64) and Bello et al. (65), as
it has shown higher sensitivity in identifying motor pathways
(64, 66–68) with equal safety and efficacy when compared to
bipolar stimulation techniques (69). Some surgeons have chosen
to combine both bipolar stimulation, for maximal definitive
resolution, with monopolar stimulation, for sensitivity and
estimation of distance to motor pathways, to maximize the
advantages from both modalities (64, 66), and the addition of
concurrent motor evoked potential monitoring has been termed
“triple motor mapping” (66).

While traditional DES implies cortical surface stimulation, the
advent of subcortical mapping in the late 20th century has also
proven quite useful (26, 27, 30, 33, 48, 62, 70, 71). Subcortical
mapping evaluates for white matter involvement throughout the
duration of the surgery, and allows the surgeon to safely resect
tissue deep to the cortex without violating irreparable tracts. A
recent method introduced by Yamaguchi et al. (72) utilizes a
neuronavigated bipolar stimulator with needle-tipped electrodes
that can be inserted directly into subcortical tissue. This
stimulator aims to minimize conduction through heterogenous
tissue which may alter delivery of the stimulation current. The
stimulator was coupled with plastic tubes which could be left in
situ as “fence post markers” to aid in establishing neuronavigated
and stimulation-confirmed white matter borders prior to brain
shift from tumor resection.

Variable Downstream Motor Effects
Motor effects can be monitored by visual observation of motor
end phenomenon or continuous electromyography (EMG)
monitoring (73). Patients must not be chemically paralyzed to
observe end motor phenomenon, and anesthetic agents and
doses can play a role in the sensitivity and success of motor
mapping (74–77).

Historically, responses to direct stimulation of the cortex
have been divided into two broad categories, as described by
Duffau (19):

1) A “positive motor response” (PMR), in which a neurologic
downstream effect is actuated in a resting state, such as a sum
excitatory signal causing muscle contraction.

2) A “negative motor response” (NMR), in which there is
inhibition of an intended action, such as induced aphasia or
arrest of a repeated action.

When DES results in an NMR, or inhibition of movement
without loss of consciousness, this stimulated cortical region
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is referred to as a negative motor area (NMA) (78). This
phenomenon is distinct from activation and contraction of an
opposing muscle group, which would still be considered a PMR.
While NMAs were previously thought to be either distributed
widely along the lateral aspect of a given cortical hemisphere
(79–81) or somatotopically located in the inferior frontal gyrus
(82), more recent work shows NMAs to be more reliably located
in several areas within the precentral gyrus (83), although not
exclusively (84). In general, NMAs appear to localize in two
main regions, a more medial region which includes the SMA and
pre-SMA regions, and a more lateral region which includes the
inferior frontal gyrus and the premotor cortex (80). Additional
NMAs with clinical relevance include those in the parietal lobe,
stimulation of which can lead to hand apraxia (85), for which
specific hand-motor tasks can be monitored during DES to avoid
post-operative deficits (86).

The mechanism by which NMRs are generated is not yet
understood, and there are different viewpoints represented in
the literature. Mikuni et al. (79) suggests these NMRs represent
external disruption of physiologically excitatory pathways. A
similar mechanism has been proposed by Duffau et al., who
categorized these NMRs as a “second intermediate level” of
functional disturbance due to DES, namely that the task
inhibition is due to disruption of a subcircuit network (19).
Others have postulated the NMRs represent activation of
naturally encoded inhibitory pathways within, or relating to,
the motor cortex (87). This has been supported by fMRI
studies which have shown motor region activation patterns
for muscle relaxation to be similar to activation patterns for
muscle contraction (88), with accompanying evidence that these
processes are driven by an excitatory, active process as opposed
to neuronal suppression (89, 90).

In addition to underlying anatomical physiology, widespread
heterogeneity in how DES has been applied may account
for some differences in results. In Mikuni et al.’s study, for
example, stimulation was performed at 50Hz in square waves
of alternating polarity with 0.3ms duration for 1 to 5 s between
subdural electrodes with intensity ranging between 2 and 15mA.
They found regions where a low stimulation intensity would
trigger a NMRs, while higher intensity stimulation in the same
region could then induce a PMR (79). More recent studies
by Rech et al., however, only stimulated at lower intensities
(on the range of 2mA) due to time constraints at 60Hz with
biphasic current and 1ms pulse width for 4 s via a bipolar
electrode with tip width set at 5mm, finding no NMAs that
eventually produced a PMR (83). This may be due to modulation
of the neuronal population recruited in the NMA based on
electrophysiological response or could alternatively be explained
by a wider recruitment field including PMR-controlling neurons
with higher intensity, as increased current travels over larger
distances. Ultimately, the gap in understanding the effects of
varying stimulation parameters in certain anatomical locations
on downstream motor systems outlines the need for future
studies in this area.

Translation to Clinical Practice
While DES is undeniably the goal standard to intraoperatively
map functional-anatomical somatotopy of the motor system,
current DES techniques vary widely. Controversies include awake
vs. asleep mapping, complex tasks (i.e., apraxia) vs. simple
motor response mapping, bipolar vs. monopolar stimulation,
high vs. low frequency stimulation, continuous motor evoked
potentials vs. repeated intraoperative stimulation, length and
type of stimulus pattern, and gray vs. subcortical mapping. As
discussed above, there is a general movement to combine these
modalities into more nuanced mapping/resection strategies, as
opposed to using one vs. the other. While bipolar stimulation
at 50–60Hz has been the most widely employed method
for mapping the motor cortex, advantages to high frequency
monopolar stimulationmay include fewer intraoperative seizures
and increased sensitivity (64, 66–68). While there is evidence to
support this claim, it has not yet been widely adopted as a cortical
stimulation technique. When performing subcortical stimulation
in descendingmotor pathways, the use of a train ofmultiple high-
frequency monopolar stimulation pulses at 250–500Hz may
afford the surgeon similar advantages. In one series, the addition
of monopolar stimulation to standard bipolar stimulation for
the subcortical regions increased identification of descending
motor pathways from 30 to 86.4% (66), similar to Szelényi et al.’s
work which improved sensitivity from 54% using bipolar to 92%
using monopolar stimulation (65). As mentioned prior, some
have chosen to combine bipolar and monopolar stimulation with
concurrent motor evoked potential monitoring, termed “triple
motor mapping” (66).

Advantages to awake intraoperative mapping include
surgeon confidence in the patient’s neurological status, fewer
intraoperative technical nuances obscuring the meaning of signal
loss, and the ability to map more complex motor, cognitive,
sensory, and speech-language systems. Disadvantages include
patient discomfort and false negative exam responses due to,
for example, development of an intraoperative SMA syndrome
leading to a smaller extent of resection. Multiple studies have
sought to evaluate outcome differences in awake vs. asleep
motor mapping; however, the amalgamation of the available
evidence does not support one technique over the other.
Ultimately, decisions on how to intraoperatively map the motor
system across neurosurgical operating rooms will depend on
the specifics of case, including surgeon experience, patient
goals and abilities, and other necessary functional assessments
(i.e., language). The authors do generally advocate a trend
toward using bipolar stimulation on the cortex, high frequency
monopolar stimulation on the subcortical white matter, and
continuous motor evoked potentials during resection wherever
possible. Also, for pure motor cases, the authors generally prefer
asleep mapping to prevent false positive exam changes from
phenomenae such as SMA syndrome that might prematurely
conclude the surgery, with the caveat of trending toward awake
mapping when more complex task monitoring is needed (i.e.,
apraxia and/or speech-language).
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CONCLUSION

Systematic stimulation parameter testing in the motor cortex
is needed. Additionally, there is much discrepancy in both
the definition and locations of NMAs, and developing more
objective ways of measuring and detailing motor function and
inhibitory effects during stimulation would make this type of
testing more broadly applicable. Also, the application of more
chronic types of stimulation in ambulatory patients and their
potential to modulate neuronal circuits are becoming more
widely available (91). With the development of FDA-approved,
chronically implanted devices that can both sense neuronal
signals and stimulate the cortex, new ambulatory recordings and
stimulation-plasticity induction techniques may follow (92, 93).
Additionally, progress is being made in non-invasive techniques
of cortical stimulation, specifically with navigated transcranial
magnetic stimulation (TMS), which is being used in certain
centers to augment and/or predict DES findings (94).

DES is an important tool to investigate anatomical-functional
relationships in neurosurgical practice. Electrical stimulation of
the motor cortex in the literature is heterogeneously applied,
and care must be taken in interpreting results as differences
in stimulation techniques, anatomical applications, underlying
pathologies, and patient populations may impact the results.

As described above, stimulation parameters, recruitment of
nearby cells, membrane potential changes, and the parts of the
cell stimulated can all change the functional outcomes of a

given stimulated region. Furthermore, motor circuits are not
a simple unimodal hierarchy of neurons. DES may effectuate
inhibitory subcortical interneurons, modulation circuits, or
spinal interneuron circuits as well as corticospinal tracts. Lastly,
stimulation can induce both positive and negative motor
responses, depending on both the stimulation location and input
parameters. Variance in a multitude of these parameters may
lead to alterations in downstream motor outcome, which may
also change over time due transitory changes in connectivity
across multiple neural networks. Therefore, the motor cortex
may be best described as “an input gate into a large-scale
network” (95), rather than as an isolated discrete functional site.
Future studies systematically varying stimulation parameters,
anatomical locations, and downstream effects are needed.
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