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Robotic systems for surgery of the inner ear must enable highly precise movement

in relation to the patient. To allow for a suitable collaboration between surgeon and

robot, these systems should not interrupt the surgical workflow and integrate well

in existing processes. As the surgical microscope is a standard tool, present in

almost every microsurgical intervention and due to it being in close proximity to the

situs, it is predestined to be extended by assistive robotic systems. For instance, a

microscope-mounted laser for ablation. As both, patient and microscope are subject

to movements during surgery, a well-integrated robotic system must be able to comply

with these movements. To solve the problem of on-line registration of an assistance

system to the situs, the standard of care often utilizes marker-based technologies, which

require markers being rigidly attached to the patient. This not only requires time for

preparation but also increases invasiveness of the procedure and the line of sight of

the tracking system may not be obstructed. This work aims at utilizing the existing

imaging system for detection of relative movements between the surgical microscope

and the patient. The resulting data allows for maintaining registration. Hereby, no artificial

markers or landmarks are considered but an approach for feature-based tracking with

respect to the surgical environment in otology is presented. The images for tracking are

obtained by a two-dimensional RGB stream of a surgical microscope. Due to the bony

structure of the surgical site, the recorded cochleostomy scene moves nearly rigidly. The

goal of the tracking algorithm is to estimate motion only from the given image stream.

After preprocessing, features are detected in two subsequent images and their affine

transformation is computed by a random sample consensus (RANSAC) algorithm. The

proposed method can provide movement feedback with up to 93.2 µmprecision without

the need for any additional hardware in the operating room or attachment of fiducials to

the situs. In long term tracking, an accumulative error occurs.

Keywords: tracking, feature-based, microscope, image-processing, inner ear, robotic surgery,

cochlea implantation
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1. INTRODUCTION

Otologic microsurgery requires the surgeon to work at the limit
of their visuo-tactile feedback and dexterity. The procedure
of a cochlea implantation, for example, consists traditionally
of a manually drilled, nearly cone-shaped access beginning
on the outer surface of the skull with a diameter of around
30mm and tapered to a 2mm narrow opening to the middle-
ear (posterior tympanotomy). After visualization of the round
window, the cochlea can be opened through the round window
or a cochleostomy, an artificial opening drilled by the surgeon.
The surgeon then has to move a 0.3–1mm thin electrode array
through the posterior tympanotomy in the even more narrow
cochlea. Robotic systems can exceed human precision in order
of multiple magnitudes. Therefore, it is obvious that otologic
microsurgery can highly benefit from robotic assistance.

When introducing novel technological robotic aids into
surgery, space is often a critical factor. The closer to the surgical
situs, the more important it is to keep the spacial obstruction to a
minimum. In microsurgical interventions, a surgical microscope
is always present. Therefore, mounting an assistive robotic
manipulator to a microscope’s optic unit poses high potential
for robotic support. This allows for bringing the robot into
close proximity of the situs while maintaining obstruction to the
surgeon on a similar level as in regular microsurgery.

While being widely established for ablation of soft tissue
(for example in ophthalmology), robotic laser surgery is gaining
increasing interest in ablation of bone. In otologic surgery
different kind of handheld lasers are used to penetrate the
footplate of the stapes and more recently robotic guided lasers
for interventions in the inner ear are taken into clinical trials
(1). Also ablation of larger volumes of bone tissue could be
demonstrated to be ready for clinical applications as for example
by AOT’s recent certification of CARLO (2), a laser osteotome
mounted on a collaborative robot arm. The latter is applied
in craniofacial surgery and provides cleaner cuts as well as
additional freedom in cut geometry. Also the research project
MIRACLE (3) aims on ablation of bone. However, in this case
a minimally invasive robotic approach is pursued to reduce
trauma. In addition, interventions at the inner ear are in focus
of laser ablation of bone (4–6). In combination with sensory
feedback about residual bone tissue, laser ablation provides a
precise tool for opening of the cochlea. Such robotic systems in
particular, could greatly benefit from integration into a surgical
microscope toward clinical translation.

However, integration into a movable microscope will pose the
challenge for the robotic system to maintain precise registration
to the patient. Modern microscopes provide robotic support
with position encoders as well as interfaces to marker based
registration systems (7). Still, registration may be interrupted
or become inaccurate by small, sudden movements, which
can occur due to unintended contact with the microscope or
movement of the patient. Compensating for such motions will
be a necessary skill for any microscope-mounted robotic system
manipulating tissue.

Modern surgical microscopes provide a magnified image of
the surgical scene and integrate cameras or adapters for camera

attachment. Often, the recorded images can be streamed to
monitors in the operation room (OR) by standardized interfaces.
Thus, the magnified image provides information available at no
additional cost of hardware. Utilizing these images to derive
movement information for a robotic system would thus be
integrateable without increased efforts. In addition, such an
image based tracking system would gain precision from the
microscopes magnification.

State of the art for tracking the surgical microscope (and other
tools or the patient) remain retro-reflective markers detected
optically by infrared (IR) cameras in combination with IR-LED
(7). Recent works have focused on using features based tracking
in microscopes images for augmentation and registration of
preoperative data. For example in (8), the pose of the cochlea
is augmented for navigation support. Here, Speeded Up Robust
Features (SURF) were used for maintaining the augmented
images registered. In (9), the tips of the instruments for
microsurgical intervention had to be colored green to allow for
pose estimation through the microscope’s image.

Extending the modification of tools or introduction of
fiducials, this work aims on processing the microscope images
based on natural features to gather information of the relative
movement between the microscope and the patient. These
tracking information can then be made available to enable
robotic assistance. Cochleostomy is used as an example for
a common and standardized intervention with high potential
for automation.

2. MATERIALS AND METHODS

2.1. Imaging Setup
The investigated method aims on interfering as little as possible
with the existing surgical workflow. This also means no
additional hardware should be introduced into the operating
room or, in particular, in proximity to the patient. Therefore, the
existing imaging capabilities of commercial surgical microscopes
should be utilized. To record microscope images, most
conventional microscopes are equipped with standardized
flanges to attach a camera as it is often used for documentation
in current practice. Here, a computer with a frame grabber
(DeckLink Recorder Mini 4K, Blackmagic Design Pty Ltd,
Victoria, Australia) is used to gain access to the image frames. The
processing computer is equipped with an Intel(R) Core(TM) i7-
8086K CPU and GeForce GTX 1080 Ti GPU. These components
are the only additional hardware, which could be easily
positioned outside of the OR.

2.2. Image Processing Pipeline
2.2.1. Framework
To facilitate data exchange and enable a connection to a future
robotic system the Robot Operation System (ROS, Distribution
Noetic) is used as a software framework. A ROS driver for the
frame grabber was developed to provide the images from the
microscope to ROS. The raw frames are submitted to the image
processing node on a ROS topic. For representation of pose
information, ROS’ dedicated data structure called TF-Three is
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FIGURE 1 | Overview of the proposed method. Two consecutive microscope image frames Fi and Fi+1 are processed to identify features, which are used to estimate

the transformation Ti and maintain an initial registration by updating position xi to xi+1.

FIGURE 2 | UML diagram of the proposed algorithm.

used. It represents pose information in a hierarchical structure
and is easily expandable and accessible in a network.

2.2.2. Scene Tracking
Due to the bony structure of the surgical site, the cochleostomy
scene is assumed to move rigidly and tissue deformations can be
neglected. Movement is tracked in 2D in the microscope image
plane, as illustrated in Figure 1. The proposed tracking algorithm
provides an estimate of the relative motion between the surgical
situs and microscope, given only the microscope’s image stream
and no further information. Motivated by microscope mounted
robotic systems, this information would be sufficient to allow
for compensation of unintended motion of either patient or
microscope. In the proposed method, two subsequent images are
compared and their affine transformation

T =





a00 a01 b0
a10 a11 b1
0 0 1



 (1)

is estimated. The algorithm consists of three main steps. The
flowchart in Figure 2 outlines the algorithm. First, a feature
detection algorithm (see section 2.2.4) identifies distinct natural
landmarks. Second, the identified features are matched. An
example of these identified features is displayed in Figure 3.
Third, a transformationmodel between the establishedmatches is
estimated. Additional preprocessing to detect reflection artifacts
in the images can increase tracking robustness for some surgical
scenes. Here, thresholding is used to confine illumination
artifacts in the field of view. The full image processing pipeline
is illustrated in Figure 2.
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FIGURE 3 | Two microscope images of a moving situs. In each frame, features detected by the proposed algorithm are marked.

2.2.3. Image Preprocessing
Lighting-dependent artifacts appear as pixels with distinctively
high color values in the microscope image. This delimits the
affected points from their neighboring points. Accordingly,
thresholding is a reasonable approach for reflection detection
(10). As reflections are often prone to wrongly serving as detected
features, thresholding is conducted before feature detection. It is
conducted for each pixel comprising a saturation S and intensity
I. If the statement in Equation (2) holds true, the pixel is added to
the mask.

I < τ1 · Imax ∪ S > τ2 · Smax (2)

Here, Imax is the image’s maximum intensity and Smax the image’s
maximum saturation. Parameters τ1 and τ2 are the respective
thresholds, which were iteratively identified and evaluated.
Sufficiently suitable values are given by τ1 = 0.8 and τ2 =
0.2. Preprocessing generates a mask, which excludes part of the
images from further processing.

2.2.4. Feature Detection
Themasked image is used to detect features utilizing theOriented
FAST and Rotated BRIEF (ORB) algorithm first presented by (11).
It was developed as an alternative to the patented Scale Invariant
Feature Transform (SIFT) algorithm (12). ORB is faster than SIFT
and other alternatives like SURF, while being more sensitive to
movements and more robust (13). The ORB feature detector is
invariant to translation, rotation and scaling of the image, as
well as robust against illumination changes and noise. The first
step of the ORB algorithm is the detection of keypoints. These
are generated by the Features from Accelerated Segment Test
(FAST), which are combined with an orientation measure. For
all keypoints found, a Binary Robust Independent Elementary
Features (BRIEF) descriptor is computed. The number k of
desired keypoints depends on the size of the obtained images.
For 1080p images, k is suggested to be set to 2,000 according to
the results by (14). Here, the ORB algorithm is implemented in
Python using the image processing library OpenCV (15).

2.2.5. Transformation Model
Natural landmark detection results in a set of keypoints and their
descriptors. Given two such sets obtained from images that share
image features, the next step in our tracking algorithm is to find
the corresponding matches between two images based on the
detected features. The found matches are then used to estimate
the affine transformation between these scenes. Since surgical
scenes do not vary significantly in color or features it is likely that
many keypoints are matched incorrectly despite the computed
descriptors. Thus, a model estimation algorithm that is robust
against a high ratio of mismatches (outliers) is required. The
Random Sample Consensus (RANSAC) algorithm (16) estimates
a model’s parameters based on a set of data D which contains
more points than are required for model description.

The desired model is the affine transformation T (see
Equation 1). The set D is formed by tuples of ORB features with
matching BRIEF descriptor in two subsequent images. Themodel
is estimated to approximate the best affine transformation with
respect to the translations of the features. For the developed
image processing software, the implementation of RANSAC
from the Python library scikit-images (17) was used. The affine
transformations Tn of each iteration n can be cascaded to
form an accumulated position Exn and the measured trajectory
(formed by all xi ∈ {1, . . . , n}) of the relative movement of situs
and microscope.

Exn = (

n
∏

Tn)





0
0
1



 (3)

The evaluated position is passed to the TF-tree in ROS to easily
be accessible by any connected robotic system.

2.3. Experimental Evaluation
For evaluation of the proposed algorithm, a robot is used
to create a precise reference movements of a specimen. The
trajectories are captured through the microscope and the
image processing pipeline estimates the movement. Comparing
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FIGURE 4 | Overview of the evaluation setup. A camera is attached to the side port of a surgical microscope. Below, the phantom is attached to a Stewart platform

(covered by drapes). The robot is used for generating precise reference movement data.

estimated movement and reference movement allows for
determination of a tracking error.

The setup for evaluation consist of a commercial surgical
microscope (OPMI Pro Magis/S8, Carl Zeiss AG, Oberkochen,
Germany). A camera (Canon EOS 100D) is attached to the side
port of the microscope, recording a video stream. The video
stream is captured by the frame grabber card in the processing
computer. Below the microscope the surgical scene is set up on a
Stewart platform (M-850, Physik Instrumente GmbH, Karlsruhe,
Germany) that allows for defined control of precise reference
movement with a repeatability of 2µm. The robot is controlled by
the processing computer using ROS. The complete experimental
setup is depicted in Figure 4.

To evaluate the presented tracking pipeline on several levels
of realism and allow for comparison between different domains,
three specimens are evaluated:

1. A temporal bone phantom (TBP) (PHACON GmbH,
Leipzig, Germany) comprising only of bone-like material (see
Figure 5A)

2. A temporal bone phantom comprising of bone-like material
covered with multilayered skin-like material (TBPs)

(PHACON GmbH, Leipzig, Germany). The skin incision
is held apart by self-retaining retractors to facilitate good
visualization (see Figure 5B)

3. A cadaveric temporal bone (CTP). The skin incision is
held apart by self-retaining retractors to facilitate good
visualization (see Figure 5C).

All models and phantoms have been prepared to represent the
last surgical phase before opening the cochlea. Therefore, a skin
incision, mastoidectomy and posterior tympanotomy have been
previously performed. The microscope is set up to provide a view
similar to visualization during a surgical intervention.

The Stewart platform provides 6 degrees of freedom motion,
however only translation movement along its x- and y-axes
are used for reference motion (compare Figure 4). For data
recording, the x-axis and y-axis of the robot are aligned manually
to the image axes.

Motion of the patient is then simulated by driving the
robot along a predefined trajectory. First, linear translational
movement in x- and y-directions are evaluated. To also cover
combinations of x- and y-motion in the 2D image space, we
additionally evaluated spiral motion of the robot. The processing
of the image data, as well as the control of the robot and sampling
of reference data were conducted on the same computer to
allow for data synchronization. The data was recorded for later
evaluation as rosbag, ROS’ data recording format. Equations (4)
and (5) define the waypoints for the chosen trajectories. As
soon as one waypoint was reached by the robot, the next one
was passed to the robot’s controller. In between the waypoints,
the used controller interpolates a linear trajectory. The robot
conducted the movement with its maximum speed of 2mm/s.
Linear translations in x- and y-directions (i.e., cross-shape) are
defined by the waypoints

Eclin,n ∈

{ (

0
0

)

,

(

0
10

)

,

(

0
−10

)

,

(

0
0

)

,

(

10
0

)

,

(

−10
0

)

,

(

0
0

) }

.

(4)
The spiral trajectory is defined by the waypoints

Ecspir,n =

(

10 n
50 sin

(

4 · 2π n
50

)

10 n
50 cos

(

4 · 2π n
50

)

)
∣

∣

∣

∣

∀

n = [0, 25] ∈ N. (5)
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FIGURE 5 | The three specimens evaluated, representing different levels of realism: (A) temporal bone phantom (TBP), (B) temporal bone phantom with skin-like

material (TBPs), (C) cadaveric temporal bone (CTP).

FIGURE 6 | Error (EE) distribution for the evaluated scenes. The top row displays 2D-errors for the linear trajectories on TBP (A), TBPs (B), and CTP (C). The bottom

row displays 2D-errors for the spiral trajectories on TBP (D), TBPs (E), and CTP (F).

3. RESULTS

3.1. Frame to Frame Precision
To evaluate the precision of the algorithm, for two consecutive
frames the estimated affine transformations is compared to
the reference transformation of the robot. For the evaluated
trajectories the translation error EE is calculated by Equation (6)
from the translations given from the algorithm 1ExORB and
reference from robot 1Exrobot.

EE = 1ExORB − 1Exrobot (6)

For each trajectory (linear and spiral), EE is calculated for all
two consecutive frames. This results in an error distribution,
which is plotted for each inner ear model. Error distributions are
presented for the linear trajectories (Figures 6A–C), and spiral
trajectories (Figures 6D,E).
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The mean absolute error distance µ is derived from the n sets
of consecutive frames by

µ =
1

n

n
∑

‖EEn‖. (7)

Table 1 summarizes the mean errors of the tracked motion and
their standard deviations for each specimen.

Error distributions in Figure 6 show that the x and y locations
of the error correlate with the number of trajectory sections with
a constant orientation. Execution of linear trajectories in x- and
y-directions results in error aggregation around x = 0 and

TABLE 1 | Summary of the tracking precision results.

TBP TBPs CTP

Mean Std Mean Std Mean Std

Linear 93.9 118.4 135.8 114.3 110.1 112.6

Spiral 98.7 79.0 97.2 85.9 93.2 80.0

For each sample and each tested trajectory the mean error for the tracking error of two

consecutive frames and their standard deviation are presented (all values in µm).

y = 0. The spiral trajectories result in error aggregation along
distinct angles.

3.2. Trajectories
A set of affine transformation is estimated from the image
stream. Cascading these transformations and applying them to
the initial pose, results in an estimation of the current pose. The
translational information of these poses can be displayed as the
scenes full trajectory. This trajectory allows for comparison to
the reference trajectories as executed by the Stewart platform.
Figures 7A–C show reference trajectories (blue) and the image
based trace of motion (red) for linear trajectories for each
inner ear model (i.e., TBP, TBPs, and CTP). Figures 7D–F show
reference trajectories and the image based trace of motion for the
spiral trajectories for each scene.

The tracked linear trajectories (i.e., cross-shape) display
an offset to the reference path but returns to its original
starting point for all three models. For the spiral trajectories
the accumulating pose error results in a total error of the
final position.

3.3. Performance
The average duration of each algorithmic step in the process is
listed in Table 2. These values refer to the runtime per image

FIGURE 7 | Linear (A–C) and spiral (D–F) trajectories for TBP (A,D), TBPs (B,E), and CTP (C,F).
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TABLE 2 | Results of performance evaluation.

Step
Runtime mean ± standard deviation in ms

1,920×1,080 960×540

Feature detection 74 ± 9 18 ± 1

Matching 16 ± 3 12 ± 8

Model estimation 246 ± 77 234 ± 11

Preprocessing 36 ± 9 17 ± 5

Approximate total time 327 281

Runtime for 1,920×1,080 (Full HD) and 960×540 images are compared.

for images of size 1,920×1,080 and 960×540 px. The runtime is
measured using 30 random images of the surgical site. The total
runtime is listed for the implemented algorithm using scikit’s
RANSAC implementation, which was used for model estimation
in this work.

4. DISCUSSION

The precision result exhibit few deviations between the phantoms
(TBP, TBPs) and the human model (CTP). This leads to
the conclusion, that the proposed method is well-suited for
application in surgery independent of the specific domain.

The smallest tissue manipulation necessary for the
intervention of cochlea implantation is the 2,000 µm opening to
the middle-ear. The average translational error for all trajectories
and scenarios (93.2–135.8µm) is more then one magnitudes
below. Therefore, the frame to frame tracking proves suitable for
supporting the localization of an assistive robotic system.

In the error distribution diagrams in Figure 6 a strong
correlation between the error and the direction of movement
can be observed. For the linear trajectories erroneous motion
only occurred along the x- and y-axes. The respective error
distributions exhibit errors along the x- and y-axes. This leads to
the conclusion, that the presented algorithm can determine the
direction of a translation with significantly higher precision than
the magnitude of the same translation. For the spiral trajectories
the errors are distributed more evenly. The observation of
aggregation along distinct angles (i.e., creating the star-like
error distribution), can also be explained by the conclusion of
higher angular precision. As the spiral trajectory is interpolated
by linear sections, translation occurs section-wise linearly and
for each section errors aggregate in the respective direction
of translation.

The presented algorithm for reconstruction of the trajectory
incrementally traces the current relative pose of microscope to
patient. Position information only relies on the last increment
of the pose as it is derived from the last two consecutive
images. Therefore, it suffers from typical loss in precision
over time as errors accumulate. For linear trajectories along
x- and y-directions this effect is sufficiently small. However,
when combining translation in multiple directions in the
spiral trajectories, the accumulated error increases over time.

The latter displays an accumulating overall position error in all
three inner ear models. Presumably, this observation is caused
by the aforementioned uncertainty in distance exceeding the
angular uncertainty.

Despite the relatively high pose error after conduction of the
spiral trajectories, the proposed method is suitable for extension
by initial registration of the scene, which may be marker based or
manually conducted. The trajectories evaluated in this work have
a longer duration (44 s for the linear, 30 s for the spiral) compared
to a shock caused by unintended motion in the OR. Thus, more
iterations evaluated, which increase the accumulative error, in
contrast to a real surgical scenario. In a robotic intervention
such as motivated in section 1, global registration is likely to
be considered a necessary prerequisite anyway. As an example,
we envision a manual registration of an ablation laser spot
before the ablation process. This could for example be conducted
by manual input through a joystick. Extending this with the
presented method represents a reliable safety measure against
short unintended motion of patient or microscope.

The current algorithm and used hardware allows for
processing of the microscope images in real-time with
approximately 3Hz. The major limitation is given by the
RANSAC algorithm. Here scikit’s implementation was used
as it offers greater flexibility in implementation however
in preliminary studies also an openCV implementation’s
runtime was evaluated and resulted in a significant reduction
in the exection of RANSAC from an average of 246ms
down to 4ms. This demonstrates the high potential software
as well as hardware optimization offers for increasing the
frame rates.

The presented method is limited to tracking an initially
conducted registration and compensate for small errors
occurring over short periods of time. The initial registration is
outside the scope of this work as several methods have previously
been presented. Initial registration methodologies strongly
depend on the intervention and the applied robotic system. The
presented method is prone to long term drifts of the pose due to
accumulation of errors. As the scene can be expected to display
only small and fast changes in pose. A suggested improvement
may be to compare the current frame not only to the most recent
one but also to past image data like a user defined initial frame
or images captured multiple iterations earlier. The estimated
transform from these frames can be used to correct a global drift
of the tracked pose.

For appropriate integration to a robotic system, a frame
rate suitable to the robotics kinematics needs to be reached by
optimizing hardware, image resolution and implementation. For
high speed (short term) tracking of relative pose changes, the
here presented method could be extended by the use of inertial
measurement units. However, these would require integration
into the robotic system as well as attachment to the patient.

The presented method has been evaluated for feature-based
tracking of inner ear models in two dimensions only. Here, we
assume planar motion of surgical situs in the microscope image.
To extend this method to covering full 6D pose estimation, i.e.,
three translations and three rotations, the estimated model needs
to be expanded to a 3D-Transformation, as in
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T3 =









a00 a01 a02 b0
a10 a11 a12 b1
a20 a21 a22 b2
0 0 0 1









(8)

For application in clinical intervention the surgical scene might
become less rigid for example due to moving instruments
(robotic or manual). The same issue is likely to occur for
manipulations of the surgical field, obstructions by blood or
residual tissue from drilling. If these artifacts only cover small
areas of the field of view they are likely to be filtered by
the RANSAC algorithm. Future work could investigate the
robustness of the presented algorithm against such artifacts.
Further approaches could research the masking of instruments
and residual tissue in the image before feature detection to avoid
falsely using features on the tools instead of the situs for tracking.
This challenge could be solved by semantic segmentation of
the instruments prior to executing the tracking algorithm, as
demonstrated in Bodenstedt et al. (18) for laparoscopic scenes.
With sufficient training data, typical instruments are masked
from the scene and only the situs’ image information are utilized
for tracking.

5. CONCLUSION

A method for feature-based tracking of the inner ear for
compensation of unintended motion was proposed. It is
motivated by its use as safety feature enabling microscope
mounted medical robotic assistance. Aiming for application
in various fields of microsurgery, the application in cochlea
implantation was regarded exemplary. Images from a surgical
microscope are processed to derive pose changes between patient
and microscope. These information can serve as input for
compensating motion of a microscope mounted robotic system.
Two consecutive images are analyzed for ORB features, which
are matched and an affine transformation is estimated by a

RANSAC algorithm. The transform is published in the Robot
Operating System for integration into robotic systems. Making
use of existing hardware in the OR during microsurgery, the
microscope image stream is available for processing without
introduction of additional hardware. This potentially allows for
simple clinical translation of the proposed method. Evaluation
showed sub-millimeter accuracy for frame to frame pose
changes but revealed increasing offset in absolute pose due to
accumulating errors. Application as shock countermeasure seems
promising, however, clinical translation will require extension to
3D tracking and optimized performance.
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