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Hounsfield unit for assessing
asymmetrical loss of vertebral
bone mineral density and its
correlation with curve severity in
adolescent idiopathic scoliosis
Yunzhong Cheng†, Honghao Yang†, Yong Hai*, Aixing Pan,
Yaoshen Zhang and Lijin Zhou*

Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing,
China

Background: Low bone mass concomitantly occurs in patients with adolescent
idiopathic scoliosis (AIS) and can persist until skeletal maturity. The purpose of
this study was to assess the asymmetrical loss of vertebral bone mineral density
(vBMD) and its correlation with curve severity in patients with AIS using
Hounsfield unit (HU) values measured from computed tomography scans.
Methods: A total of 93 AIS patients were retrospectively recruited. The
HU values of the vertebral body (VB-HU) and pedicle screw trajectory
(PST-HU) were measured from four vertebrae above (Apex− 4) to four below
(Apex + 4) the apical vertebra (Apex) of the major curve. The VB-HU and
PST-HU at the upper end vertebra, Apex, and lower end vertebra within the
concave and convex sides of the major and minor curves and stable
vertebrae were obtained.
Results: A significant correlation was found between the Cobb angle and
VB-HU at the periapical levels of the major curve. VB-HU and PST-HU at
periapical levels were significantly greater within the concavity than the
convexity of both major and minor curves. The asymmetric ratios of VB-HU
and PST-HU were significantly correlated with the major curve Cobb angle,
peaked at the apex, and gradually diminished from the apex to the end
vertebrae. The asymmetrical loss of vBMD aggravated with the progression
of curve severity, presenting as VB-HU, significantly decreased within the
convexity and insignificantly decreased within the concavity of the major curve.
Conclusion: The asymmetrical loss of vBMD was associated with the
progression of curve severity in AIS. For patients with severe AIS, the
distraction of the pedicle screws at the concave side should be a priority in
correcting the major curve, and supplemental anchors and larger-sized
screws should be placed within the convex side around the apex of the
major curve to reduce the risk of screw loosening after surgery.
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Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional

spinal deformity affecting children aged 10 years to maturity (1).

AIS can manifest as a disturbed self-image, deformity

progression, early back degeneration, and cardiopulmonary

compromises (2). Therapeutic options include a brace and

specific exercises for mild scoliosis and surgical instrumentation

and spinal fusion for severe or rapidly progressive curves (3).

Low bone mass concomitantly occurred with the spinal

deformity and could still exist after skeletal maturity (4). The

prevalence of low bone mass in AIS was 25%–31% and was the

culprit for curve progression and implant loosening (2, 5–7).

A dual-energy x-ray absorptiometry (DXA) scan is the gold

standard for measuring bone mineral water density (BMD) and

diagnosing osteopenia or osteoporosis in clinical practice (8).

However, DXA could not discover BMD fluctuations between

cancellous and cortical bone, which would impact the

accuracy of bone quality evaluation (9). Meanwhile, vertebral

rotation by scoliosis could make the outcome of DXA-based

BMD evaluation unreliable (10). Although quantitative

computed tomography (QCT) can accurately focus on the

cancellous bone area and accommodate vertebral rotation by

setting slicing planes, it is impractical to apply this technique

in many clinical settings due to the high-cost equipment and

need for rigorous training (11).

Hounsfield unit (HU) measured from CT scans has been

widely reported as a valuable technique for evaluating

vertebral bone mineral density (vBMD) in recent years, and it

is closely correlated with standard BMD and compressive

strength (12). A CT scan is a routine preoperative

examination for AIS, and practitioners can easily obtain

additional information on areal bone mineral density at no

extra cost. However, no previous studies have investigated

vBMD using HU measurements for patients with AIS.

The purpose of this study was to assess the asymmetrical

loss of vBMD and its correlation with curve severity in AIS

patients.
Methods

Subjects

A retrospective consecutive case review was performed to

identify patients with AIS between January 2014 and December

2020 in our hospital. The inclusion criteria were as follows:

(i) age from 10 to 20 years; (ii) the main thoracic curve (MTC)

was the major curve (Lenke 1–4); (iii) full-spine posterior–

anterior radiography; and (iv) full-spine CT scan for HU

measurement. The exclusion criteria were as follows: (i) history

of spinal surgery; (ii) spinal infections or metabolic disease; and
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(iii) other pathogenesis of scoliosis (e.g., congenital). A total of

93 patients met both the inclusion and exclusion criteria.
Data collection

The demographic data, including age, sex, and body mass

index (BMI), were recorded. The Cobb angle of the major

curve and the two minor curves, the proximal thoracic curve

(PTC) and thoracolumbar/lumbar curve (TLC), were

evaluated based on full-spine posterior–anterior radiography.

The BMD of the L4 vertebra was examined by a DXA scan,

and a T-score≤−2.0 was used to distinguish low bone mass

from normal bone density (13).
HU measurement

Full-spine CT scans were performed in the supine position

with the following parameters: 320 mAs, 120 kVP, and 5 mm

thickness. All Digital Imaging and Communications in

Medicine (DICOM) data were analyzed using Horos software

(Horos; v3.3.1@horosproject).

The HU values of each vertebral body (VB-HU) were

measured using the method described by Wang et al. (14),

with some modifications. The slicing plane was parallel to the

superior vertebral end plate on coronal and sagittal planes

and through the midpoint of the posterior edge of the spinal

canal and the anterior edge of the vertebral body on the

transverse plane (Figure 1). The region of interest (ROI) was

placed on the coronal images of the vertebral body. The VB-

HU was obtained at three locations on the coronal plane:

immediately posterior to the anterior vertebral cortex, in the

middle of the vertebral body, and immediately anterior to the

posterior vertebral cortex. The ROI was rectangular, as large

as possible, excluding the cortical margins to prevent volume

averaging (12). Then, the VB-HU within the concave and

convex sides were obtained separately (Figure 2). The VB-HU

measured from the three slicing planes was averaged to

calculate the mean HU for each vertebral body.

The HU values of each pedicle screw trajectory (PST-HU)

were measured using the methods described by Ishikawa et al.

and Zhang et al. (15, 16). The slicing plane was adjusted

along the PST on the transverse plane. The rectangular ROI

was placed on the sagittal and transverse images of the

pedicle screw trajectory inside the cortical shell (Figure 3).

The size of the ROI was selected as follows: 25 or 30 mm ×

4.0 or 4.5 mm from T1 to T5; 30 or 35 mm × 4.0 or 4.5 mm

from T6 to T9; 30 or 35 mm × 4.5 or 5.0 mm from T10 to

T12; 35 or 40 mm × 5.0 or 5.5 mm from L1 to L5 (17). The

HU values measured from the sagittal and transverse planes

were averaged to calculate the mean PST-HU for each pedicle

screw trajectory.
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FIGURE 1

Schematic diagram of the sagittal slicing plane (A), the transverse slicing plane (B), and the coronal slicing plane (C).

FIGURE 2

Schematic diagram of VB-HU measurement; three measurement locations were set on the sagittal plane (A): immediately posterior to the anterior
vertebral cortex, in the middle of the vertebral body, and immediately anterior to the posterior vertebral cortex. The VB-HU of the whole vertebra (B)
and the VB-HU within concave and convex sides (C) were obtained on the coronal plane.
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VB-HUandPST-HUweremeasured from four vertebrae above

(Apex− 4) to four below (Apex + 4) the apical vertebra (Apex) of

the major curve. The data at the upper end vertebra (UEV),

upper stable vertebra (USV), lower end vertebra (LEV), and lower

stable vertebra (LSV) were also obtained. For the minor curves,
Frontiers in Surgery 03
the VB-HU and PST-HU at the apex, UEV, and LEV were

measured. All parameters were measured by two independent

observers and averaged for statistical analysis. The asymmetric

ratios of VB-HU and PST-HU were calculated by HU values

within the concave side/HU values within the convex side.
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FIGURE 3

Schematic diagram of PST-HU measurement: the PST-HU was obtained on the sagittal plane (A) and the transverse plane (B).
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Statistical analysis

All statistical analyses were performed utilizing SPSS version

25.0 (Chicago, IL, USA). Continuous variables were presented as

the mean ± standard deviation. The difference in HU values

between the concave and convex sides within the target vertebral

level was analyzed using a paired t-test. The asymmetric HU ratio

among subgroups was compared using one-way ANOVA. The

Pearson correlation coefficient was calculated to evaluate the

correlation between the Cobb angle of the major curve and HU-

VB as well as the asymmetric HU ratio. Differences were

considered statistically significant when P < 0.05.
Results

Characteristics of the subjects

Among the 93 patients recruited in the current study, 35 were

males and 58 were females, with a mean age of 14.6 ± 2.4 years.

The mean BMI was 21.9 ± 2.3 kg/m2. The mean Cobb angle of

MTC was 75.9° ± 29.6°, with PTC of 37.2° ± 14.5° and TLC of

41.5° ± 16.2°. The distributions of UEV, Apex, and LEV of the

major and minor curves are shown in Table 1. A total of 43.0%

(40/93) of patients presented low bone mass at L4 (T-score≤
−2.0), and 57.0% (53/93) presented normal bone density.
Mean HU values and asymmetric ratio
from Apex− 4 to Apex + 4 of the major
curve

The mean VB-HU from Apex− 4 to Apex + 4 of the major

curve is shown in Table 2. No significant difference among

vertebral levels was detected. There were significantly negative
Frontiers in Surgery 04
moderate correlations between the mean VB-HU at each level

and the Cobb angle.

VB-HU and PST-HU within the concave and convex sides

and their asymmetric ratios are shown in Table 3. The VB-HU

and PST-HU within the concave side were significantly greater

than those within the convex side from Apex− 3 to Apex + 3.

However, at Apex− 4 and Apex + 4, the VB-HU and PST-HU

within the convex side were statistically greater than those

within the concave side, which was contrary to other vertebral

levels. The asymmetric ratio of VB-HU and PST-HU peaked

at the apex, with values of 1.43 ± 0.27 and 1.40 ± 0.25,

respectively. The asymmetric ratio indicated a declining

tendency cranially and caudally and decreased gradually to a

minimum at Apex− 4 and Apex + 4.
HU values and asymmetric ratio at the
UEV, Apex, LEV, USV, and LSV

HU values and asymmetric HU ratios at UEV, Apex, LEV,

USV, and LSV are shown in Table 4. The VB-HU within the

concave side was significantly greater than that on the convex

side at the apex, UEV, and LEV of MTC. The PST-HU was

also significantly greater within the concave side at the apex

and LEV. However, there was no significant difference in HU

values between the concave and convex sides at USV and LSV.

For PTC, VB-HU and PST-HU within the concave side

were significantly greater than those within the convex side at

the apex and LEV, while no significant difference was

detected at the UEV. For TLC, the VB-HU and PST-HU were

significantly greater within the concave side at the apex, while

there was no difference at UEV and LEV.

The asymmetric HU ratio peaked at the apex of both major

and minor curves and gradually diminished from the apex to

the end vertebrae (Figure 4). The asymmetric HU ratio at the

apex of the major curve was significantly greater than that of the
frontiersin.org
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TABLE 2 VB-HU from Apex− 4 to Apex + 4 of the major curve and its
correlation with Cobb angle.

Level VB-HU Correlation with Cobb angle

Pearson correlation coefficient P

Apex− 4 244.1 ± 40.0 −0.533 <0.01

Apex− 3 237.9 ± 40.7 −0.534 <0.01

Apex− 2 240.0 ± 40.6 −0.588 <0.01

Apex− 1 244.2 ± 41.1 −0.635 <0.01

Apex 242.8 ± 41.9 −0.709 <0.01

Apex + 1 244.5 ± 43.5 −0.600 <0.01

Apex + 2 244.2 ± 45.0 −0.563 <0.01

Apex + 3 245.4 ± 44.4 −0.532 <0.01

Apex + 4 246.3 ± 46.2 −0.512 <0.01

VB-HU, the Hounsfield Unit values of vertebral body; Apex, apical vertebra.

TABLE 1 Distribution of UEV, Apex, and LEV of major and minor curves.

PTC MTC TLC

UEV Apex LEV UEV Apex LEV UEV Apex LEV

T1 66 (71.0%)

T2 26 (28.0%) 56 (60.2%)

T3 1 (1.1%) 32 (34.4%) 2 (2.2%) 2 (2.2%)

T4 5 (5.4%) 27 (29.0%) 8 (8.6%)

T5 32 (34.4%) 27 (29.0%)

T6 25 (26.9%) 31 (33.3%) 2 (2.2%)

T7 6 (6.5%) 23 (24.7%) 7 (7.5%)

T8 1 (1.1%) 2 (2.2%) 24 (25.8%) 2 (2.2%)

T9 39 (41.9%) 2 (2.2%) 2 (2.2%)

T10 20 (21.5%) 5 (5.4%) 3 (3.2%)

T11 1 (1.1%) 29 (31.2%) 14 (15.1%)

T12 31 (33.3%) 42 (45.2%) 1 (1.1%)

L1 19 (20.4%) 23 (24.7%) 9 (9.7%)

L2 5 (5.4%) 9 (9.7%) 18 (19.4%) 3 (3.2%)

L3 49 (52.7%) 11 (11.8%)

L4 16 (17.2%) 45 (48.4%)

L5 34 (36.6%)

PTC, proximal thoracic curve; MTC, main thoracic curve; TLC, thoracolumbar/lumbar curve; UEV, upper end vertebra; Apex, apical vertebra; LEV, lower end vertebra.
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minor curves (P < 0.001). There was no significant difference in

the asymmetric HU ratio at UEV and LEV among all curves.
Comparison of VB-HU at the Apex, UEV,
and LEV of the major curve among
subgroups

The 93 patients were divided into three groups according to the

Cobb angle of the major curve: mild group (<60°), moderate group

(60°–90°), and severe group (>90°). The comparison of VB-HU at

Apex, UEV, and LEV of the major curve among subgroups is
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shown in Table 5. There was a significant difference in VB-HU at

the apex among the subgroups. Although the VB-HU within the

concave side at the apex gradually decreased with increasing

Cobb angle, there was no significant difference among the

subgroups. However, the mean VB-HU and the VB-HU within

the convex side at the apex significantly decreased from the mild

to severe group (Figure 5). No significant difference was detected

in VB-HU at UEV and LEV between the mild and moderate

groups, while VB-HU in the severe group was significantly less

than that in the other groups. Between the mild and moderate

groups, the VB-HU within neither side was significantly different

at UEV and LEV. In the severe group, the VB-HU within the

concave side was significantly less than that in the mild group at

UEV and LEV, and the VB-HU within the convex side was

significantly less than that in the other groups.
Correlation between the asymmetric HU
ratio and Cobb angle of the major curve

The correlation between the asymmetric HU ratio and the

Cobb angle of the major curve is shown in Table 6. There

were significantly positive and strong correlations between the

Cobb angle and the asymmetric ratio of VB-HU and PST-HU

at the apex of the major curve (r = 0.880, P < 0.001; r = 0.758,

P < 0.001). The asymmetric ratios of VB-HU and PST-HU at

the apex of the minor curves were also significantly associated

with the Cobb angle of the major curve.
frontiersin.org

https://doi.org/10.3389/fsurg.2022.1000031
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


TABLE 3 VB-HU and PST-HU within the concave and convex side of the major curve and its asymmetric ratio.

VB-HU PST-HU

Level Concave Convex Ratio P Concave Convex Ratio P

Apex− 4 233.9 ± 39.6 255.2 ± 44.2 0.92 ± 0.08 <0.001 239.1 ± 38.5 269.6 ± 43.1 0.89 ± 0.09 <0.001

Apex− 3 241.8 ± 41.0 233.3 ± 44.9 1.05 ± 0.12 0.001 249.6 ± 36.2 250.9 ± 45.5 1.01 ± 0.14 0.607

Apex− 2 256.4 ± 38.8 221.0 ± 45.6 1.18 ± 0.14 <0.001 266.0 ± 39.5 236.2 ± 45.6 1.15 ± 0.14 <0.001

Apex− 1 271.3 ± 39.4 213.4 ± 48.2 1.31 ± 0.22 <0.001 281.3 ± 40.7 225.3 ± 45.9 1.28 ± 0.18 <0.001

Apex 280.8 ± 39.4 203.7 ± 48.4 1.43 ± 0.27 <0.001 289.6 ± 39.7 213.3 ± 47.3 1.40 ± 0.25 <0.001

Apex + 1 269.6 ± 42.8 214.8 ± 50.2 1.29 ± 0.20 <0.001 278.2 ± 44.1 219.6 ± 47.8 1.30 ± 0.21 <0.001

Apex + 2 259.3 ± 45.5 224.6 ± 49.5 1.18 ± 0.15 <0.001 270.2 ± 42.8 231.5 ± 45.8 1.19 ± 0.16 <0.001

Apex + 3 245.0 ± 44.7 242.2 ± 48.4 1.02 ± 0.11 0.164 253.3 ± 40.3 243.3 ± 44.2 1.05 ± 0.14 <0.001

Apex + 4 235.9 ± 48.1 251.0 ± 48.3 0.94 ± 0.09 <0.001 237.8 ± 41.2 251.2 ± 43.4 0.95 ± 0.10 <0.001

VB-HU, the Hounsfield Unit values of vertebral body; PST-HU, the Hounsfield Unit values of pedicle screw trajectory; Apex, apical vertebra.

TABLE 4 HU values and the asymmetric ratio at UEV, Apex, and LEV of major and minor curves.

VB-HU PST-HU

Level Concave Convex Ratio P Concave Convex Ratio P

PTC

UEV 254.6 ± 44.1 254.1 ± 44.1 1.00 ± 0.03 0.539 268.1 ± 44.1 267.5 ± 43.4 1.00 ± 0.03 0.444

Apex 278.3 ± 45.4 248.7 ± 48.4 1.13 ± 0.11 <0.001 287.0 ± 43.1 261.6 ± 45.6 1.11 ± 0.08 <0.001

LEV 250.0 ± 43.5 236.6 ± 39.9 1.06 ± 0.10 <0.001 266.5 ± 42.4 244.1 ± 38.2 1.10 ± 0.12 <0.001

USV 243.7 ± 40.2 240.3 ± 43.5 1.01 ± 0.09 0.773 249.6 ± 41.5 255.0 ± 41.7 0.98 ± 0.08 0.251

MTC

UEV 243.2 ± 42.2 236.1 ± 42.2 1.04 ± 0.10 0.003 252.2 ± 37.0 253.5 ± 41.0 1.00 ± 0.11 0.616

Apex 280.8 ± 39.4 203.7 ± 48.4 1.43 ± 0.27 <0.001 289.6 ± 39.7 213.3 ± 47.3 1.40 ± 0.25 <0.001

LEV 246.1 ± 49.2 240.4 ± 47.7 1.03 ± 0.10 0.01 255.1 ± 45.2 244.4 ± 42.7 1.05 ± 0.12 <0.001

LSV 233.8 ± 46.3 239.2 ± 45.9 0.98 ± 0.07 0.089 237.8 ± 43.7 240.9 ± 43.0 0.99 ± 0.07 0.263

TLC

UEV 244.8 ± 48.2 240.4 ± 47.3 1.02 ± 0.09 0.250 247.2 ± 41.4 246.2 ± 42.2 1.01 ± 0.09 0.652

Apex 252.2 ± 51.5 224.4 ± 49.3 1.13 ± 0.10 <0.001 263.2 ± 48.3 235.9 ± 47.2 1.12 ± 0.10 <0.001

LEV 244.5 ± 45.5 243.5 ± 44.9 1.00 ± 0.04 0.253 254.4 ± 43.2 254.1 ± 43.7 1.00 ± 0.03 0.704

VB-HU, the Hounsfield Unit values of vertebral body; PST-HU, the Hounsfield Unit values of pedicle screw trajectory; PTC, proximal thoracic curve; MTC, main

thoracic curve; TLC, thoracolumbar/lumbar curve; UEV, upper end vertebra; Apex, apical vertebra; LEV, lower end vertebra; USV, upper stable vertebra; LSV, lower

stable vertebra.
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Comparison of asymmetric HU ratios
among subgroups

A comparison of the asymmetric HU ratio among subgroups

is shown in Table 6. There was a significant difference in the

asymmetric ratio of VB-HU and PST-HU at the apex of the

major curve among the subgroups. The ratio at UEV was

significantly greater in the severe group, while there was no

significant difference between the mild and moderate groups.

The only difference in the asymmetric ratio of VB-HU at LEV

was detected between the mild and severe groups.

For minor curves, the asymmetric HU ratio at the apex of

PTC was significantly greater in the severe group, and no
Frontiers in Surgery 06
significant difference was detected between the mild and

moderate groups. However, for TLC, there was no significant

difference in the asymmetric HU ratio at the apex between

the moderate and severe groups, and the ratio in the mild

group was significantly less than that in the other groups. The

outcome of VB-HU is shown in Figure 6, and the outcome of

PST-HU was similar to that of VB-HU.
Discussion

The most common tool used for the assessment of BMD

is DXA, but the accuracy of DXA-based BMD evaluation
frontiersin.org
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FIGURE 4

Asymmetric ratio of VB-HU and PST-HU at UEV, Apex, LEV, USV, and
LSV.

TABLE 5 Comparison of VB-HU at Apex, UEV, and LEV within major curve among subgroups.

<60° (n = 31) 60°–90° (n = 31) >90° (n = 31)

Level Mean Concave Convex Mean Concave Convex Mean Concave Convex

UEV 258.6 ± 35.5 258.3 ± 36.7 256.9 ± 36.6 241.3 ± 30.2 244.8 ± 41.6 239.8 ± 27.9 218.8 ± 42.0ab 234.5 ± 43.2a 212.6 ± 48.0ab

Apex 268.5 ± 29.4 290.0 ± 31.0 238.9 ± 32.4 241.2 ± 27.0a 283.4 ± 30.8 212.3 ± 30.7a 208.8 ± 42.9ab 272.0 ± 51.2 149.9 ± 43.2ab

LEV 266.2 ± 40.0 265.2 ± 41.4 266.2 ± 42.0 253.3 ± 38.7 253.0 ± 43.3 246.2 ± 33.7 216.7 ± 44.6ab 227.4 ± 52.1a 206.7 ± 46.5ab

aindicates a significant difference compared with <60° group.
bindicates a significant difference compared with 60°–90° group.

VB-HU, the Hounsfield Unit values of vertebral body; UEV, upper end vertebra; Apex, apical vertebra; LEV, lower end vertebra.

FIGURE 5

Comparison of VB-HU at Apex, UEV, and LEV of the major curve
among subgroups; a indicates a significant difference compared
with the mild group; b indicates a significant difference compared
with the moderate group.
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can be affected by various factors, such as bony spurs,

facet hypertrophy, and vertebral rotation (14). The most

accurate site to assess BMD is the cancellous bone, but

DXA is not adequate to differentiate between cancellous and

cortical bone (18). Thus, DXA may not be reliable for

the evaluation of areal BMD in patients with spinal

deformities, especially scoliosis (10). The HU value measured by

CT scan has been widely proposed for the evaluation of global

or areal BMD because it is closely correlated with standard

BMD and bone strength (12). With the assistance of

multiplanar reconstruction software, it is even feasible to

accurately assess the vBMD in patients with severe scoliosis.

However, few studies have reported its use in patients with

various severities of AIS.

Numerous studies have reported the high prevalence

of low bone mass in AIS and the association between BMD

and progression of Cobb angle (2, 19, 20). In the current

study, low bone mass was detected in 43.0% of patients,

and the T-score was significantly correlated with the

Cobb angle within the major curve (r =−0.633; P < 0.01),

which was consistent with previous studies. Additionally,

this study provided more accurate BMD data of each

vertebral body based on HU measurement and suggested that
Frontiers in Surgery 07
the vBMD at the periapical levels was associated with the

curve severity.

The asymmetric vertebral morphology in AIS, including

vertebral bodies and pedicles, has been widely reported

(21–25). However, the asymmetrical loss of vBMD was only

researched in patients with adult degenerative scoliosis (14).

Considering the discrepancy in pathogenesis between

degenerative and idiopathic scoliosis, this was the first study

to demonstrate the asymmetrical loss of vBMD in AIS based

on HU measurements. The current study suggested greater

VB-HU and PST-HU within the concave side and relatively

low HU values within the convex side of the major curve. The

asymmetric ratio was the most predominantly presented at the

apex and indicated a declining tendency cranially and caudally.

Wolff’s law may explain this change, as increasing or decreasing

the load of bone could remodel the trabecular bone to adapt to

these loads (26). In patients with AIS, the gravity load

transmitted through the concave side of the vertebra increased

and decreased on the convex side, and the apical vertebra of

the major curve resisted the most asymmetric loading (27).

Such developments occurred not only in the structural curve

but also in the nonstructural curve (21). Thus, we measured

the asymmetric ratio in all primary and compensatory curves,
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TABLE 6 Correlation between asymmetric HU ratio and cobb angle of major and minor curves.

Asymmetric ratio of VB-HU Correlation Asymmetric ratio of PST-HU Correlation

Level <60° (n = 31) 60–90° (n = 31) >90° (n = 31) r P <60° (n = 31) 60–90° (n = 31) >90° (n = 31) r P

PTC

UEV 1.00 ± 0.03 1.00 ± 0.03 1.01 ± 0.04 0.089 0.399 1.00 ± 0.02 1.00 ± 0.03 1.01 ± 0.04 0.028 0.791

Apex 1.08 ± 0.08 1.13 ± 0.07 1.20 ± 0.14ab 0.463 <0.001 1.06 ± 0.07 1.10 ± 0.05 1.17 ± 0.10ab 0.477 <0.001

LEV 1.00 ± 0.13 1.03 ± 0.09 1.06 ± 0.09 0.258 0.053 1.02 ± 0.08 1.10 ± 0.12 1.08 ± 0.12 0.200 0.054

MTC

UEV 1.01 ± 0.07 1.02 ± 0.10 1.10 ± 0.11ab 0.319 0.002 0.97 ± 0.07 0.98 ± 0.09 1.08 ± 0.15ab 0.351 0.001

Apex 1.22 ± 0.08 1.35 ± 0.14a 1.83 ± 0.22ab 0.880 <0.001 1.23 ± 0.08 1.36 ± 0.15a 1.79 ± 0.28ab 0.758 <0.001

LEV 1.00 ± 0.07 1.03 ± 0.09 1.09 ± 0.12a 0.306 0.003 1.01 ± 0.06 1.05 ± 0.11 1.09 ± 0.18 0.231 0.026

TLC

UEV 1.01 ± 0.05 1.02 ± 0.08 1.01 ± 0.12 −0.147 0.159 1.01 ± 0.06 1.01 ± 0.09 1.00 ± 0.14 −0.101 0.336

Apex 1.06 ± 0.07 1.15 ± 0.08a 1.20 ± 0.12a 0.469 <0.001 1.06 ± 0.06 1.14 ± 0.08a 1.18 ± 0.11a 0.404 <0.001

LEV 1.00 ± 0.03 1.00 ± 0.03 1.01 ± 0.05 0.072 0.494 1.00 ± 0.01 1.00 ± 0.03 1.01 ± 0.04 0.101 0.336

aindicates a significant difference compared with the <60° group.
bindicates a significant difference compared with the 60°–90° group.

VB-HU, the Hounsfield Unit values of vertebral body; PST-HU, the Hounsfield Unit values of pedicle screw trajectory; PTC, proximal thoracic curve; MTC, main

thoracic curve; TLC, thoracolumbar/lumbar curve; UEV, upper end vertebra; Apex, apical vertebra; LEV, lower end vertebra.

FIGURE 6

Comparison of the asymmetric ratio of VB-HU among subgroups; a
indicates a significant difference compared with the mild group; b
indicates a significant difference compared with the moderate
group.
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and similar findings were obtained. The maximum asymmetric

ratio was detected at the apex of the major curve, and the degree

of intravertebral difference diminished farther away from the

apex, presenting symmetric HU values at USV and LSV.

However, the asymmetric ratio gradually increased again from

the end vertebrae to the apex of the minor curves and

decreased from the apex to the end vertebra. The HU values

within the concave and convex sides were statistically equal at

the UEV of PTC, LEV of TLC, USV, and LSV, which might

be attributed to the lower vertebral rotation and asymmetric

loading (25).
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As the asymmetrical change in vertebra was correlated

with the curve magnitude, we included patients who

covered the complete spectrum of curve severities from

mild (<60°) to severe (>90°). In the current study, the

asymmetric ratio of VB-HU and PST-HU at the apex, UEV,

and LEV of the major curve and at the apex of the minor

curves were significantly associated with the Cobb angle of

the major curve, which was in accordance with previous

studies (22–25). Similar results were obtained in our

subgroup analysis; both the asymmetric ratio and mean VB-

HU at the apex of the major curve were significantly

different among subgroups. However, when we compared the

unilateral VB-HU among different curve severities, no

significant difference was detected within the concave side

(290.0 ± 31.0 vs. 283.4 ± 30.8 vs. 272.0 ± 51.2, P > 0.05), while

the VB-HU on the convex side significantly decreased from

the mild to severe group (238.9 ± 32.4 vs. 212.3 ± 30.7 vs.

149.9 ± 43.2, P < 0.01), which presented as the increasing

asymmetric HU ratio mentioned above. These findings

suggested that although the loss of vBMD progressed with

the curve magnitude, the degree of this change was

asymmetrical between the concave and convex sides. The

loss of vBMD within the convex side was pronounced, while

it was not detectable within the concave side. Additionally,

following the progression of curve severity, the aggravation

of vBMD loss would be accelerated within the convex side.

One explanation for these changes was that more severe

scoliosis could cause more gravity shifts toward the concave

side, resulting in more asymmetrical compression and

shearing force across vertebrae, especially at the apex. UEV

and LEV were less translated vertebrae in the major curve,
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and the results at UEV and LEV confirmed this view, as the

difference in HU values was not significant between the

mild and severe groups.

Pedicle screws have been widely used in the correction

and posterior fusion of AIS because of the adequate three-

column fixation provided by insertional torque (28).

However, reports have shown that screw loosening is a well-

known complication, with a rate of 27%–32% in patients with

AIS (7, 15, 29). Since the cancellous bone density of the VB

and PST has been identified as a powerful predictor of

implant loosening, the asymmetrical loss of vBMD in AIS

patients demonstrated by the current study may indicate a

high risk of metal implant instability on the convex side

around the periapical levels (15). We considered that if

surgeons ignored the asymmetric vBMD due to using DXA,

the efficacy of fixation could be impacted. Therefore, HU

values based on CT scans were recommended as a

complement to the DXA T-score for areal BMD evaluation

before surgery.

In recent years, the application of CT values to evaluate

vertebral bone mineral density has become a research hotspot,

especially in lumbar vertebrae, cervical vertebrae, ankylosing

spondylitis, and degenerative lumbar scoliosis (30, 31).

Our study was the first to use the Hounsfield unit for

assessing asymmetrical loss of vertebral bone mineral

density and its correlation with curve severity in adolescent

idiopathic scoliosis.
Strengths and limitations

Based on our findings, several strategies should be

noted by surgeons. If significant asymmetric vBMD was

detected in patients with AIS, the distraction of the

pedicle screws at the concave side should be a priority in

correcting the major curve, instead of compression of the

screws at the convex side (14). Additionally, supplemental

anchors (cross trajectory technique) and larger screws should

be placed within the convex side around the apex of the

major curve to compensate for the impact of low bone mass

(32). Keeping an eye on asymmetric vBMD would help

surgeons in surgical planning and reduce the risk of screw

loosening after surgery. For patients with mild scoliosis,

timely exercises, bracing, and appropriate anti-osteoporosis

therapy should be performed to eliminate the asymmetrical

loss of vBMD, which could delay the curve progression to the

surgical threshold (33, 34).

This study has several limitations. First, we recommended

placing supplemental anchors and larger screws within the

convex side around the apex to provide more fixation, but

this was only a hypothesis based on HU measurements and

needs to be proven by further biomechanical tests and clinical

research. Second, we only evaluated the cancellous bone of
Frontiers in Surgery 09
PST. In practice, the screw threads could touch the cortical

bone when the pedicle width was narrow. Thus, the PST-HU

measured in the current study may not be accurate for

pedicles with a narrow diameter. Third, only Lenke1–4 AIS

patients were included, and whether the results were

appropriate for patients with lumbar major curves needs to be

confirmed by further research.
Conclusion

The asymmetrical loss of vBMD was associated with

the progression of curve severity in AIS, presenting a slight

loss within the concavity and severe loss within the convexity

both in major and minor curves. HU values based on CT

scans were recommended as a complement to the DXA

T-score for areal BMD evaluation before surgery. For patients

with severe AIS, the distraction of the pedicle screws at the

concave side should be a priority in correcting the major

curve, and supplemental anchors, as well as larger-sized

screws, should be placed within the convex side around the

apex of the major curve to reduce the risk of screw loosening

after surgery.
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